Category Archives: Induced Pluripotent Stem Cells


Pluripotency of Induced Pluripotent Stem Cells

Volume 11, Issue 5, October 2013, Pages 299303

Special Issue: Induced Pluripotent Stem Cells

Edited By Qi Zhou

Induced pluripotent stem (iPS) cells can be generated by forced expression of four pluripotency factors in somatic cells. This has received much attention in recent years since it may offer us a promising donor cell source for cell transplantation therapy. There has been great progress in iPS cell research in the past few years. However, several issues need to be further addressed in the near future before the clinical application of iPS cells, like the immunogenicity of iPS cells, the variability of differentiation potential and most importantly tumor formation of the iPS derivative cells. Here, we review recent progress in research into the pluripotency of iPS cells.

Induced pluripotent stem (iPS) cells can be derived from mouse somatic cells via the ectopic expression of four defined factors, Oct4, Sox2, Klf4 and c-Myc (also known as Yamanaka factors) [1]. The mouse iPS cells express pluripotency markers and both X chromosomes are reactivated, allowing differentiation into various cell types of three germ layers when injected into a blastocyst. iPS technology makes reprogramming much easier [2]and[3] in comparison to early reprogramming methods such as somatic cell nuclear transfer (SCNT) [4]and[5], iPS technology also circumvents the ethical problems arising from the use of human oocytes. In addition, the generation of patient-specific iPS cells could be used to screen new drugs [6]and[7]. However, there are currently several limitations in applying iPS cells clinically. Efficiency of converting somatic cells to iPS cells is still very low. In particular, only approximately 0.1% to 1% of somatic cells experience changes at the transcriptional level and finally become pluripotent stem cells when non-integration approaches are used [8]. Moreover, compared to embryonic stem (ES) cells, the developmental potential and differentiation capacity of iPS cells is significantly reduced and there is increased variability among all iPS cell lines [9]. In mice, only small proportions of these cells are fully reprogrammed based on the most stringent tetraploid complementation assay for evaluating pluripotency [10], [11], [12]and[13]. Therefore, it is necessary to establish a strict molecular standard system to distinguish fully reprogrammed iPS cells from those partially reprogrammed, as we currently lack suitable in vivo pluripotency tests for human iPS cells.

In this review, we mainly focus on recent progress on rodent, non-human primate and human iPS cells, and point out some key questions which need to be addressed in the near future, such as the pluripotency level of human iPS cells and the establishment of a new standard to assess the pluripotency level of human iPS cells.

Takahashi and Yamanaka reprogrammed mouse embryonic fibroblasts by the ectopic expression of four reprogramming factors using retroviral vectors, and finally produced iPS cells which resemble ES cells [1]. This original iPS reprogramming approach used viral vectors, including retrovirus and lentivirus which possess high reprogramming efficiency [14]and[15]. The genome may be mutated by integrating other gene sequences, thus raising concerns on the safety issue. In addition, the insertion of oncogenes, like c-Myc, increases the risk of tumor formation [16]and[17]. Subsequently, several modified methods were used to obtain much safer iPS cells, for instance, piggyBac transposon [18], adenovirus [19], sendai virus [20], plasmid [21], episomal vectors [22] and minicircle vectors [23]. However, the reprogramming efficiency is significantly decreased and it takes longer to reactivate the key pluripotency markers to achieve full reprogramming. Therefore, efficient generation of non-integrated iPS cells by new approaches may promote their clinical application.

Recent studies have described several reprogramming methods using proteins, RNAs and small-molecule compounds to derive safe iPS cells [24], [25]and[26]. Zhou et al. obtained iPS cells induced by recombination of the proteins of the four Yamanaka factors obtained by fusing the C-terminus of the proteins with poly-arginine (11R) [24]. A recent study reported that mouse and human iPS cells can be efficiently generated by miRNA mediated reprogramming [25]. Miyoshi et al. [26] successfully generated iPS cells by direct transfection of human somatic cells using mature miRNA. iPS cells can also be generated by synthetic RNAs, which bypass the innate response to viruses [27]. Recently, Houet et al. [28] showed that pluripotent stem cells can be generated from mouse somatic cells at an efficiency of 0.2% by using a combination of seven small-molecule compounds. Compared to traditional viral methods, the aforementioned approaches can be used to generate qualified iPS cells (Table 1) without the risk of insertional mutagenesis. Nonetheless, some familiar drawbacks exist, such as a longer and less efficient reprogramming process. In other words, what we need to do next is to optimize non-integration induction systems in order to resolve these drawbacks.

Read more:
Pluripotency of Induced Pluripotent Stem Cells

Induced Pluripotent Stem Cells (IPSCs) – HowStuffWorks

Save Those Teeth

Dentists usually discard wisdom teeth after they've been extracted -- but maybe they should start saving them; they just might be useful in make stem cells. Recently, a group of Japanese scientists made induced pluripotent stem cells (IPSCs) from the tooth pulp of extracted wisdom teeth. They used viruses to deliver stem cell factors to mesenchymal stromal cells isolated from the pulp of third molars. The resulting IPSCs were similar to embryonic stem cells.

In 2003, an NIH researcher, Sangtao Shi, extracted stem cells from his daughter's baby teeth. The stem cells grew in culture and could form bone when implanted into mice. Potentially, you could bank stem cells from your teeth for future use, but it would be an expensive process.

Maybe that's what the tooth fairy does with all those teeth?

Whether from embryos or adult tissues, stem cells are few. But many are needed for cell therapies. There have been ethical and political problems with using embryonic stem cells -- so if there were a way to get more stem cells from adults, it might be less controversial. Enter the IPSC.

Every cell in the body has the same genetic instructions. So what makes a heart cell different from a liver cell? The two cells express different sets of genes. Likewise, a stem cell turns on specific sets of genes to differentiate into another cell. So, is it possible to reprogram a differentiated cell so that it reverts back to a stem cell? In 2006, scientists did just that. They used a virus to deliver four stem cell factors into skin cells. The factors caused the differentiated stem cells to go into an embryonic-stem-cell-like state. The resulting cells, called induced pluripotent stem cells (IPSCs), shared many characteristics with human embryonic stem cells. The structures of IPSCs were similar, they expressed the same markers and genes, and they grew the same. And the researchers were able to grow the IPSCs into cell lines.

There are many more differentiated cells in the human body than stem cells, embryonic or adult. So, vast amounts of stem cells could be made from a patient's own differentiated cells, like skin cells. Making IPSCs does not involve embryos, so this would circumvent the ethical and political issues involved in stem cell research. However, making ISPSCs is a recent development, so scientists need to do more research before they can be used for therapies. First, we need to understand the "reprogramming" process better. And then we need to investigate whether IPSCs are just similar enough or are actually identical to embryonic stem cells. Current research is focused on these questions, but reprogramming cells to make IPSCs has great potential.

Now that you have a good idea of what stems cells are and how they work, let's see how they can be used to treat diseases.

Read the original post:
Induced Pluripotent Stem Cells (IPSCs) - HowStuffWorks

piggyBac transposition reprograms fibroblasts to induced …

Transgenic expression of just four defined transcription factors (c-Myc, Klf4, Oct4 and Sox2) is sufficient to reprogram somatic cells to a pluripotent state. The resulting induced pluripotent stem (iPS) cells resemble embryonic stem cells in their properties and potential to differentiate into a spectrum of adult cell types. Current reprogramming strategies involve retroviral, lentiviral, adenoviral and plasmid transfection to deliver reprogramming factor transgenes. Although the latter two methods are transient and minimize the potential for insertion mutagenesis, they are currently limited by diminished reprogramming efficiencies. piggyBac (PB) transposition is host-factor independent, and has recently been demonstrated to be functional in various human and mouse cell lines. The PB transposon/transposase system requires only the inverted terminal repeats flanking a transgene and transient expression of the transposase enzyme to catalyse insertion or excision events. Here we demonstrate successful and efficient reprogramming of murine and human embryonic fibroblasts using doxycycline-inducible transcription factors delivered by PB transposition. Stable iPS cells thus generated express characteristic pluripotency markers and succeed in a series of rigorous differentiation assays. By taking advantage of the natural propensity of the PB system for seamless excision, we show that the individual PB insertions can be removed from established iPS cell lines, providing an invaluable tool for discovery. In addition, we have demonstrated the traceless removal of reprogramming factors joined with viral 2A sequences delivered by a single transposon from murine iPS lines. We anticipate that the unique properties of this virus-independent simplification of iPS cell production will accelerate this field further towards full exploration of the reprogramming process and future cell-based therapies.

Original post:
piggyBac transposition reprograms fibroblasts to induced ...

What are induced pluripotent stem cells? [Stem Cell …

Introduction: What are stem cells, and why are they important? What are the unique properties of all stem cells? What are embryonic stem cells? What are adult stem cells? What are the similarities and differences between embryonic and adult stem cells? What are induced pluripotent stem cells? What are the potential uses of human stem cells and the obstacles that must be overcome before these potential uses will be realized? Where can I get more information?

Induced pluripotent stem cells (iPSCs) are adult cells that have been genetically reprogrammed to an embryonic stem celllike state by being forced to express genes and factors important for maintaining the defining properties of embryonic stem cells. Although these cells meet the defining criteria for pluripotent stem cells, it is not known if iPSCs and embryonic stem cells differ in clinically significant ways. Mouse iPSCs were first reported in 2006, and human iPSCs were first reported in late 2007. Mouse iPSCs demonstrate important characteristics of pluripotent stem cells, including expressing stem cell markers, forming tumors containing cells from all three germ layers, and being able to contribute to many different tissues when injected into mouse embryos at a very early stage in development. Human iPSCs also express stem cell markers and are capable of generating cells characteristic of all three germ layers.

Although additional research is needed, iPSCs are already useful tools for drug development and modeling of diseases, and scientists hope to use them in transplantation medicine. Viruses are currently used to introduce the reprogramming factors into adult cells, and this process must be carefully controlled and tested before the technique can lead to useful treatment for humans. In animal studies, the virus used to introduce the stem cell factors sometimes causes cancers. Researchers are currently investigating non-viral delivery strategies. In any case, this breakthrough discovery has created a powerful new way to "de-differentiate" cells whose developmental fates had been previously assumed to be determined. In addition, tissues derived from iPSCs will be a nearly identical match to the cell donor and thus probably avoid rejection by the immune system. The iPSC strategy creates pluripotent stem cells that, together with studies of other types of pluripotent stem cells, will help researchers learn how to reprogram cells to repair damaged tissues in the human body.

Previous|VI. What are induced pluripotent stem cells?|Next

See the article here:

What are induced pluripotent stem cells? [Stem Cell ...