Category Archives: Somatic Stem Cells


Clonal architecture evolution in Myeloproliferative Neoplasms: from … – Nature.com

Abu-Zeinah G, Krichevsky S, Cruz T, Hoberman G, Jaber D, Savage N, et al. Interferon-alpha for treating polycythemia vera yields improved myelofibrosis-free and overall survival. Leukemia. 2021;35:2592601.

Article CAS PubMed PubMed Central Google Scholar

Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and personalized prognosis in myeloproliferative neoplasms. N. Engl J Med. 2018;379:141630.

Article CAS PubMed PubMed Central Google Scholar

Guglielmelli P, Lasho TL, Rotunno G, Mudireddy M, Mannarelli C, Nicolosi M, et al. MIPSS70: Mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis. J Clin Oncol J Am Soc Clin Oncol. 2018;36:3108.

Article CAS Google Scholar

Tefferi A, Guglielmelli P, Lasho TL, Gangat N, Ketterling RP, Pardanani A, et al. MIPSS70+ Version 2.0: Mutation and Karyotype-Enhanced International Prognostic Scoring System for Primary Myelofibrosis. J Clin Oncol J Am Soc Clin Oncol. 2018;36:176970.

Article Google Scholar

Gagelmann N, Ditschkowski M, Bogdanov R, Bredin S, Robin M, Cassinat B, et al. Comprehensive clinical-molecular transplant scoring system for myelofibrosis undergoing stem cell transplantation. Blood. 2019;133:223342.

Article CAS PubMed Google Scholar

Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl J Med. 2014;371:248898.

Article PubMed PubMed Central Google Scholar

Genovese G, Khler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl J Med. 2014;371:247787.

Article PubMed PubMed Central Google Scholar

Nielsen C, Bojesen SE, Nordestgaard BG, Kofoed KF, Birgens HS. JAK2V617F somatic mutation in the general population: myeloproliferative neoplasm development and progression rate. Haematologica. 2014;99:144855.

Article CAS PubMed PubMed Central Google Scholar

McKerrell T, Park N, Chi J, Collord G, Moreno T, Ponstingl H, et al. JAK2 V617F hematopoietic clones are present several years prior to MPN diagnosis and follow different expansion kinetics. Blood Adv. 2017;1:96871.

Article CAS PubMed PubMed Central Google Scholar

Hirsch P, Mamez AC, Belhocine R, Lapusan S, Tang R, Suner L, et al. Clonal history of a cord blood donor cell leukemia with prenatal somatic JAK2 V617F mutation. Leukemia. 2016;30:17569.

Article CAS PubMed Google Scholar

Van Egeren D, Escabi J, Nguyen M, Liu S, Reilly CR, Patel S, et al. Reconstructing the lineage histories and differentiation trajectories of individual cancer cells in myeloproliferative neoplasms. Cell Stem Cell. 2021;28:514523.e9.

Article PubMed PubMed Central Google Scholar

Williams N, Lee J, Mitchell E, Moore L, Baxter EJ, Hewinson J, et al. Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature. 2022;602:1628.

Article CAS PubMed Google Scholar

Sousos N, N Leathlobhair M, Simoglou Karali C, Louka E, Bienz N, Royston D, et al. In utero origin of myelofibrosis presenting in adult monozygotic twins. Nat Med. 2022;28:120711.

Article CAS PubMed PubMed Central Google Scholar

Hermange G, Rakotonirainy A, Bentriou M, Tisserand A, El-Khoury M, Girodon F, et al. Inferring the initiation and development of myeloproliferative neoplasms. Proc Natl Acad Sci. 2022;119:e2120374119.

Article PubMed PubMed Central Google Scholar

Mead AJ, Mullally A. Myeloproliferative neoplasm stem cells. Blood. 2017;129:160716.

Article CAS PubMed PubMed Central Google Scholar

Abdel-Wahab O, Manshouri T, Patel J, Harris K, Yao J, Hedvat C, et al. Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res. 2010;70:44752.

Article CAS PubMed PubMed Central Google Scholar

Schaub FX, Looser R, Li S, Hao-Shen H, Lehmann T, Tichelli A, et al. Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood. 2010;115:20037.

Article CAS PubMed Google Scholar

Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123:22208.

Article CAS PubMed Google Scholar

Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC, Grinfeld J, et al. Effect of mutation order on myeloproliferative neoplasms. N. Engl J Med. 2015;372:60112.

Article PubMed PubMed Central Google Scholar

Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27:18619.

Article CAS PubMed Google Scholar

Rampal R, Ahn J, Abdel-Wahab O, Nahas M, Wang K, Lipson D, et al. Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. Proc Natl Acad Sci USA. 2014;111:E54015410.

Article CAS PubMed PubMed Central Google Scholar

Harutyunyan A, Klampfl T, Cazzola M, Kralovics R. p53 lesions in leukemic transformation. N. Engl J Med. 2011;364:48890.

Article CAS PubMed Google Scholar

Coltro G, Rotunno G, Mannelli L, Mannarelli C, Fiaccabrino S, Romagnoli S, et al. RAS/CBL mutations predict resistance to JAK inhibitors in myelofibrosis and are associated with poor prognostic features. Blood Adv. 2020;4:367787.

Article CAS PubMed PubMed Central Google Scholar

Santos FP, Getta B, Masarova L, Famulare C, Schulman J, Datoguia TS, et al. Prognostic Impact of RAS pathway mutations in Patients with Myelofibrosis. Leukemia. 2020;34:799810.

Article CAS PubMed Google Scholar

Marcault C, Zhao LP, Maslah N, Verger E, Daltro De Oliveira R, Soret-Dulphy J, et al. Impact of NFE2 mutations on AML transformation and overall survival in patients with myeloproliferative neoplasms (MPN). Blood 2021; https://doi.org/10.1182/blood.2020010402.

Tefferi A, Guglielmelli P, Lasho TL, Coltro G, Finke CM, Loscocco GG, et al. Mutation-enhanced international prognostic systems for essential thrombocythaemia and polycythaemia vera. Br J Haematol. 2020;189:291302.

Article CAS PubMed Google Scholar

Guglielmelli P, Lasho TL, Rotunno G, Score J, Mannarelli C, Pancrazzi A, et al. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia. 2014;28:180410.

Article CAS PubMed Google Scholar

Tefferi A, Lasho TL, Finke C, Elala Y, Barraco D, Hanson CA, et al. Targeted next-generation sequencing in polycythemia vera and essential Thrombocythemia. Blood. 2015;126:354.

Article Google Scholar

Sashida G, Wang C, Tomioka T, Oshima M, Aoyama K, Kanai A, et al. The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition. J Exp Med. 2016;213:145977.

Article CAS PubMed PubMed Central Google Scholar

Alvarez-Larrn A, Daz-Gonzlez A, Such E, Mora E, Andrade-Campos M, Garca-Hernndez C, et al. Genomic characterization of patients with polycythemia vera developing resistance to hydroxyurea. Leukemia. 2021;35:6237.

Article PubMed Google Scholar

Jayavelu AK, Schnder TM, Perner F, Herzog C, Meiler A, Krishnamoorthy G, et al. Splicing factor YBX1 mediates persistence of JAK2-mutated neoplasms. Nature. 2020;588:15763.

Article PubMed Google Scholar

Ernst P, Schnder TM, Huber N, Perner F, Jayavelu AK, Eifert T, et al. Histone demethylase KDM4C is a functional dependency in JAK2-mutated neoplasms. Leukemia. 2022;36:18439.

Article CAS PubMed PubMed Central Google Scholar

Staehle AM, Peeken JC, Vladimirov G, Hoeness ME, Bojtine Kovacs S, Karantzelis N, et al. The histone demethylase JMJD2C constitutes a novel NFE2 target gene that is required for the survival of JAK2V617F mutated cells. Leukemia 2023; https://doi.org/10.1038/s41375-023-01826-y.

Wright NA. Boveri at 100: cancer evolution, from preneoplasia to malignancy. J Pathol. 2014;234:14651.

Article PubMed Google Scholar

Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM, et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature. 2011;469:35661.

Article CAS PubMed Google Scholar

Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481:50610.

Article CAS PubMed PubMed Central Google Scholar

Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150:26478.

Article CAS PubMed PubMed Central Google Scholar

van Galen P, Hovestadt V, Wadsworth Ii MH, Hughes TK, Griffin GK, Battaglia S, et al. Single-cell RNA-Seq reveals AML hierarchies relevant to disease progression and immunity. Cell. 2019;176:12651281.e24.

Article PubMed PubMed Central Google Scholar

Miles LA, Bowman RL, Merlinsky TR, Csete IS, Ooi AT, Durruthy-Durruthy R, et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature. 2020;587:47782.

Article CAS PubMed PubMed Central Google Scholar

Maslah N, Verger E, Giraudier S, Chea M, Hoffman R, Mascarenhas J, et al. Single-cell analysis reveals selection of TP53-mutated clones after MDM2 inhibition. Blood Adv 2022; https://doi.org/10.1182/bloodadvances.2021005867.

Beer PA, Delhommeau F, LeCoudic J-P, Dawson MA, Chen E, Bareford D, et al. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 2010;115:28912900.

Article CAS PubMed Google Scholar

Kennedy AL, Myers KC, Bowman J, Gibson CJ, Camarda ND, Furutani E, et al. Distinct genetic pathways define pre-malignant versus compensatory clonal hematopoiesis in Shwachman-Diamond syndrome. Nat Commun. 2021;12:1334.

Article CAS PubMed PubMed Central Google Scholar

Sahoo SS, Pastor VB, Goodings C, Voss RK, Kozyra EJ, Szvetnik A, et al. Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes. Nat Med. 2021;27:180617.

Article CAS PubMed PubMed Central Google Scholar

Morita K, Wang F, Jahn K, Hu T, Tanaka T, Sasaki Y, et al. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2020;11:5327.

Article CAS PubMed PubMed Central Google Scholar

Taylor J, Mi X, North K, Binder M, Penson A, Lasho T, et al. Single-cell genomics reveals the genetic and molecular bases for escape from mutational epistasis in myeloid neoplasms. Blood. 2020;136:147786.

Article PubMed PubMed Central Google Scholar

Guess T, Potts CR, Bhat P, Cartailler JA, Brooks A, Holt C, et al. Distinct patterns of clonal evolution drive myelodysplastic syndrome progression to secondary acute myeloid leukemia. Blood Cancer Discov. 2022;3:31629.

Article CAS PubMed PubMed Central Google Scholar

Thompson ER, Nguyen T, Kankanige Y, Yeh P, Ingbritsen M, McBean M, et al. Clonal independence of JAK2 and CALR or MPL mutations in comutated myeloproliferative neoplasms demonstrated by single-cell DNA sequencing. Haematologica. 2021;106:3135.

Article PubMed Google Scholar

Rodriguez-Meira A, Buck G, Clark S-A, Povinelli BJ, Alcolea V, Louka E, et al. Unravelling Intratumoral Heterogeneity through High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing. Mol Cell. 2019;73:12921305.e8.

Article CAS PubMed PubMed Central Google Scholar

Psaila B, Wang G, Rodriguez-Meira A, Li R, Heuston EF, Murphy L, et al. Single-cell analyses reveal megakaryocyte-biased hematopoiesis in myelofibrosis and identify mutant clone-specific targets. Mol Cell. 2020;78:477492.e8.

Article CAS PubMed PubMed Central Google Scholar

Giustacchini A, Thongjuea S, Barkas N, Woll PS, Povinelli BJ, Booth CAG, et al. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat Med. 2017;23:692702.

Article CAS PubMed Google Scholar

Rodriguez-Meira A, Norfo R, Wen WX, Chdeville AL, Rahman H, OSullivan J, et al. Deciphering TP53 mutant Cancer evolution with single-cell multi-omics. 2022; https://doi.org/10.1101/2022.03.28.485984.

Nam AS, Kim K-T, Chaligne R, Izzo F, Ang C, Taylor J, et al. Somatic mutations and cell identity linked by Genotyping of Transcriptomes. Nature. 2019;571:35560.

Article CAS PubMed PubMed Central Google Scholar

Originally posted here:
Clonal architecture evolution in Myeloproliferative Neoplasms: from ... - Nature.com

10th International Multithematic Scientific Bio-Medical Congress … – Nature.com

The 10th International Multithematic Bio-Medical Congress (IMBMC) 2022, Bio-Medical Scientific Cyprus, took place at European University Cyprus (EUC), Nicosia, Cyprus, under the auspices of the Ministry of Health and the Cyprus Medical Association. IMBMC is an internationally recognized event that was founded and established by Professor Dr Ioannis Patrikios, the Deputy Dean and Faculty member of the School of Medicine at EUC. During the 10th IMBMC, both Sir Gregory Winter (Nobel Prize in Chemistry, 2018, on protein and antibody engineering and antibody therapies) and Sir Martin Evans (awarded the 2007 Nobel Prize in Physiology or Medicine for his groundbreaking discoveries on embryonic stem cells and DNA recombination in mammals) were announced as Honorary Professors of the School of Medicine, European University Cyprus.

The first honorary keynote speaker Professor Sir Gregory Winters contribution engaged in the science of protein engineering. Being the founder of both Cambridge Antibody Technology (1989) and Domantis (2000), he spearheaded the use of a new class of drugs using engineered antibody technology to treat pathological diseases. At the Laboratory of Molecular Biology, Dr Winter focused on innovating techniques to familiarize the use of antibodies in the field of therapeutics, with his goal being to develop entirely humanized antibodies, using combinational gene repertoires. Over half of the antibodies sold today are a result of his inventions, including the humanized antibodies Campath-1H, Herceptin, Avastin, Synagis, and the first human antibody (Humira) to receive approval by the US Food and Drug Administration. Precisely, antibodies, as todays principal biological drug, especially for the treatment of cancer and autoimmune diseases, have replaced areas that were poorly served by chemical drugs. Will such developments thrive.

Professor Dr Kypros Herodotou Nicolaides spoke on preeclampsia (PE), which is a leading cause of maternal mortality and severe morbidity, in association with increased perinatal risks. He focused on ways to approach PE. These included actions on specific weeks and interventions to tackle PE, the rate, and the rate of term. Three methods were used. The first method to target PE was aspirin (150mg per day from 12 to 36 weeks reduced the rate of PE <32 weeks by 90%, PE <37 weeks by 60%), which had no effect on term PE. The second one included the incorporation of maternal characteristics in blood pressure, serum placental growth factor, and serum sFlt-1, which identified about 70% of women who developed term PE. Unfortunately, it was found that the use of pravastatin did not reduce the rate of term PE. The last approach to prevent term PE involved screening at 36 weeks with planned delivery at 37, 38, 39, and 40 weeks, respectively. This method was considered to reduce the rate of PE by more than 50%.

Professor Dr Gregg L. Semenza gave a speech that featured his lab discovery of hypoxia-inducible factor 1 (HIF-1). As he mentioned, a continuous supply of oxygen is necessary for each of the fifty trillion cells in the adult human body. HIF regulates thousands of genes according to oxygen availability, a discovery that awarded him with the 2019 Nobel Prize in Physiology or Medicine. The aim targeted the inhibition of cancer progression, relying on the molecular mechanisms of oxygen homeostasis, in association with HIF-1. It was intended to develop HIF inhibitors that could treat cancer and blinding eye diseases.

Professor Dr Stylianos E. Antonarakis presented two research themes, the former entitled Human Genomes and the Evolution of Medicine and the latter How to make an external ear: the story of FOXI3. The first study focused on the human genome sequence and variation as a fundamental component in health and disease. He stated the importance and impact of genomic variation on phenotypic variation and the evolving knowledge of individual genomic variation; the practice of medicine is gradually evolving. Diagnosis, prevention, and therapy are all evolving as the mysteries of the genome are elucidated. Genomic Medicine takes the spotlight regarding the etiology of the myriad of constitutional and somatic disorders and raises expectations for the development of rationalistic and intelligent therapeutic methods. His second speech focused on the developmental disorder craniofacial microsomia (CFM), which has a variety of manifestations, including external ear deformity. The CFM inheritance structure is obscure and debatable. The researchers identified pathogenic variants in the transcription factor FOXI3 that cause one form of CFM. Observations in human and mouse studies point to a recessive mode of inheritance in which the phenotypic diversity is caused by a fusion of rare (causative) and common (modifier) FOXI3 alleles. His studies pertain to the relationship between genomic variability and phenotypic variation that he has studied throughout his life.

Professor Dr Philippe Menasch, a cardiac surgeon, gave a presentation entitled Cells for Heart Failure: Replacement Therapy or Paracrine Signaling? He noticed the benefit in terms of function even though the cells were no longer physically present in the transplanted tissue, which prompted a change from the original idea of replacement therapy to paracrine signaling, in which the combination of biomolecules secreted by the cells and primarily gathered in extracellular vesicles (EV) harness endogenous repair pathways. Despite the issues presented in the field, biodistribution and fate-tracking studies suggest that intravenously delivered cells or their secreted products are trapped in remote organs with very limited cardiac homing even though using EV from cardiac-committed cells may improve their targeting at same-tissue recipient cells. The bridge between this remote sequestration and a cardiac benefit might be a shift of the phenotype of locally present endogenous immune cells toward a reparative pattern. Thereby making these cells the conveyors of the cell- or secretome-induced protective effects. Thus, while the initial hypothesis underlying the use of cells for treating heart failure was that they could act as a replacement therapy, the current trend is to rather consider them as inducers of paracrine signaling. In the case of heart failure, but also for other conditions, the major effect of this signaling seems to be a modulation of systemic inflammation whose benefits then translate at the level of the diseased organ. More recently, the group has refocused its interest toward leveraging the paracrine effect of cells to generate a cellular secretome, which might help streamline clinical applications.

Professor Dr Paul Moss, who specializes in the field of hematology, presented: From Diagnostics to Therapeutics; Antibodies Take Centre Stage in COVID-19, focusing on the worldwide increase in mortality rates due to COVID-19. He highlighted that both innate and adaptive immune systems provide partial protection against reinfection of the disease. Spike-specific antibodies are the major correlate of protection following vaccination, and individual responses depend on a range of factors such as age, gender, and comorbidity as specifically heighted. Considering that the coronavirus distinguishes among other infections, as the biological basis is unclear and further studies should be conducted around memory B cells and plasma cells, antibodies have also emerged as powerful therapeutic agents. Hence, antibodies have been the spotlight in the control, prevention, and policy management of the COVID-19 pandemic. The information that has been derived from this challenge can now be applied effectively to a range of other medical conditions.

Professor Dr Nikolai N. Korpan specializes in cryosurgery, which is defined as clinical implications that are used at extremely low temperatures, including an organ preservation technique. He presented his unique longstanding clinical experiences with ultra-low temperatures in treating patients with severe primary and secondary malignant diseases worldwide. Ice crystallization processes are of high importance, which damage the protein denaturation and rupture the cell membranes by the action of subzero cold in intracellular ice formation. This anti-cancer concept includes radical and palliative cryosurgical operations. Cryosurgical palliative methods with a pain reduction (painlessness or pain reduction) and fetor ex ore as well as improvement of the general state by getting the tumor under control are to achieve the major subjective facilitation with cancer patients, as he noted. Hence, in the near future, a new norm for oncological diagnosis and surgery will set a new bar for modern science and modern medicine. These theoretical stages will soon become a reality in medical practice according to his personal estimation.

Professor Dr Paolo Madeddu discussed the topic entitled Using Pericytes to Mend Broken Hearts: Where do we Stand? Pericytes were first found in the nineteenth century by Rouget. These cells surround capillaries in every organ of the human body, and he indicated the possible use of pericytes as a novel therapeutic avenue in regenerative medicine. He emphasized that pericytes are tissue-specific, multi-functional cells that are capable of treating vascular diseases. Dr Madeddus research activity examined the therapeutic effect of pericytes regarding ischemic heart disease, given the ability of pericytes to regenerate and repair heart tissue after myocardial infarction.

Professor Dr Amanda Varnava continued the session on The Ultimate Goal: Is Gene Therapy in Hypertrophic Cardiomyopathy Yet Possible? Dr Varnava has an interest in the cardiology of child-bearing period and runs a specialist pregnancy and heart disease service. Hypertrophic cardiomyopathy is the most prevalent congenital heart condition, affecting 1 in 500 of the population with devastating incidences of sudden cardiac death among young people. It is shown that the underlying genetic basis of the disease concerns gene mutation in the gene encoding of the cardiac sarcomere apparatus. A single change in the encoding system may lead to protein degradation and malfunction. Sequentially, sarcomeric dysfunction is inevitable as well as hypertrophy and myocardial fibrosis. Even though no therapeutic options are available to date, she discussed the importance of these molecular targets and suggested new targeted therapies to avoid complications and limit the mortality rate.

Professor Dr Gerasimos Filippatos gave a talk about Heart Failure Update. It was shown that sodium-glucose cotransporter 2 inhibitors, as drugs that improve the symptoms of heart failure and improves the left ventricular ejection fraction (LVEF). However, it remains unclear how these drugs benefit heart failure, as he clearly pointed out. Another second-line agent that was found to control heart failure outcomes is the oral soluble guanylate cyclase stimulator vericiguat, which is used for patients who have a reduced LVEF. Concerning inotropes, in patients who suffer from progressed heart failure with reduced ejection fraction, the myosin activator omecamtiv mecarbil can also improve HF outcomes again as he explained. Researchers have focused on the effect of diuretics, as when they are used in combination with other drugs, as they can improve both diuretic response and relieve congestion in hospitalized HF patients. Moreover, as he noted, diabetics and patients with chronic kidney diseases that are given non-steroidal mineralocorticoids in combination with spironolactone and eplerenone can have a positive effect on their cardiovascular and renal function. Prof. Filippatos concluded that in the field of ventricular assist devices, transdermal charging is the new frontier, as it eliminates the need for external leads providing a lower risk of infection and a better quality of life.

Professor Dr Vasso Apostolopoulos spoke on Vaccines in The New Era: What Have We Learnt in The Last 30 Years? Recently, her interest has shifted on how chronic diseases, such as cancer, autoimmune disorders, mental health, and infectious diseases, can be treated if approached from an immunologic perspective. The current research on checkpoint markers is shown to lead to apoptotic T cell behavior and immune escape mechanisms in the event of cancer. In the last 5 years, researchers have published numerous information about checkpoint markers as they relate to diseases such as autoimmune disorders, inflammatory disorders, and cancer. Peptide alterations of T cell epitopes with 12 amino acid mutations can control immune responses, by downregulating or upregulating feedback. The aim of her research is to reinforce innovative immune modulators/therapeutics/vaccines. Several innovative immune modulators against cancer, autoimmune disorders, and infectious diseases have been successfully established.

Professor Dr Kevin Harrington gave a speech entitled Is There a Rationale for Combining Radiotherapy and Immunotherapy in Patients with Head and Neck Cancer? Dr Harrington is a clinical oncologist who specializes in the development of novel treatments concerning head and neck cancer, for which he led multiple phase I, II, and III trials. In CheckMate-141 and KEYNOTE-040 and -048 studies, it was found that these agents, when combined with radiotherapy, are active regarding palliative treatment of relapsed and metastatic diseases. In preclinical studies, it was advised that ICPI therapy should be given simultaneously with RT. This suggestion was generalized into trial designs based on anti-PD1/-PD-L-1 therapy given 1 week before. The results of this study brought negative endpoints, similar to other studies, which also delivered negative outcomes at primary and secondary points, as he pointed out. The presentation greatly focused on the innovation of strategies to enhance the development of combination regimens for patients suffering from locally advanced head and neck cancers.

Ran Nir-Paz presentation entitled The Enemy of Your Enemy is Your Friend The Reintroduction of Bacteriophages for Resistant and Persistent Infections. His study focused on introducing phage therapy for resistant and persistent infections. Recently, the treatment method with bacteriophages for preserving infections has reappeared. The research involved a wide phage band with over 500 identified phages used to discover the most effective lytic phage and to develop treatment schemes. After supplying 15 Israeli patients with intravenous bacteriophages, it was found that 50% of the requests concerned respiratory, skin, and soft tissue infections. The clinical trials mentioned above were further analyzed in his lecture.

More here:
10th International Multithematic Scientific Bio-Medical Congress ... - Nature.com

Autism Therapy Market Anticipated to Garner Significant Growth of … – GlobeNewswire

MELBOURNE, April 04, 2023 (GLOBE NEWSWIRE) -- Data Bridge Market Research completed a qualitative study titled "Autism Therapy Market" with 100+ market data tables, pie charts, graphs, and figures spread across Pages and an easy to grasp full analysis. A steadfast Autism Therapy market research report serves to be a very momentous component of business strategy. This report provides important information which assists to identify and analyze the needs of the market, the market size, and the competition with respect to Autism Therapy industry. When the market report is accompanied with precise tools and technology, it helps tackle a number of uncertain challenges for the business. This market research report is one of the key factors used in maintaining competitiveness over competitors. Autism Therapy market report supports the business to take better decisions for the successful future planning in terms of current and future trends in particular product or the industry.

Data Bridge Market Research analyses that the autism therapy market, which was USD 2.05 billion in 2022, would rise to USD 3.42 billion by 2030 and is expected to undergo a CAGR of 6.60% during the forecast period 2023 to 2030. In addition to the insights on market scenarios such as market value, growth rate, segmentation, geographical coverage, and major players, the market reports curated by the Data Bridge Market Research also include depth expert analysis, patient epidemiology, pipeline analysis, pricing analysis, and regulatory framework.

Download a PDF Sample of the Autism Therapy Market @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-autism-therapy-market

Autism therapies are the type of therapies that are applied in autistic children or adults to improve or enhance their condition. Different therapies include speech-language therapy, behavior therapy, play-based therapy, occupational therapy, physical therapy, and nutritional therapy. This neurological disorder is related to several disabilities, such as challenges with the individual's behavior or lack of social skills. The diagnosis of autism can be made from a very early age, but the cause is still unknown.

The growing incidence of autism and pervasive developmental disorder (PDD) is essential to escalate market growth. Huge research studies performed by organizations to assess the safety and efficiency of drugs in patients with ASD are anticipated to boost market growth. The stimulants segment dominated the market with a huge revenue share due to the wide availability and ease of accessibility of drugs to patients.

Fundamental Aim of Autism Therapy Market Report

In the Autism Therapy market, every company has goals, but this report focus in on the most important ones, allowing you to gain insight into the competition, the future of the market, potential new products, and other useful information that can boost your sales significantly.

Some of the major players operating in the autism therapy market are:

Recent Development

Download the Complete Research Study Here in PDF Format @ https://www.databridgemarketresearch.com/checkout/buy/enterprise/global-autism-therapy-market

The investment made in the study would provide you access to information such as:

Opportunities:

The increasing demand for stimulants is boosting the growth of the market. Adderall, Focalin, Vyvanse, Dexedrine, and Ritalin are some stimulants approved by the U.S. FDA for treating patients who have autism. These drugs improve patient behavior by 80% when administered properly to patients. Therefore, growing efficiency related to the stimulants may attract a new target population and boost market growth.

A growing number of product launches associated with autism therapy boost market growth. For instance, the FDA granted fast-track designation to Curemark's CM-AT specified for ASD in 3-8 years old children in 2022. Furthermore, Indian researchers developed the 6BIO compound in 2021, which has shown the potential to enhance daily activities in the pre-clinical investigation of patients with an autism spectrum disorder. Thus, this factor boosts market growth.

Key Growth Drivers:

The increasing incidence of the autistic population is boosting the market's growth. For instance, France and Portugal have the lowest rates of autism in the world, with approximately 0.69% and 0.71%, respectively, as per the research published by Health Data Exchange. In 2021, the CDC stated that nearly 1 in 44 children in the U.S. is diagnosed with an autism spectrum disorder (ASD). Thus, this increasing prevalence demands high adoption of therapies, boosting the market growth.

Huge research studies performed by organizations to assess the safety and efficacy of drugs in patients with ASD are anticipated to drive the market. The positive outcomes of these studies lead to new growth opportunities for the market. For instance, Stalicla completed phase 1b trials of precision medicine candidate STP1 and witnessed positive results with symptom improvement in patients with ASD in 2022. Therefore, the effective completion of the trial and following product approvals are estimated to drive the market. Thus, this factor boosts market growth.

Read the In-Depth Research Report @https://www.databridgemarketresearch.com/reports/global-autism-therapy-market

Key Market Segments Covered in Autism Therapy Industry Research

Age Group

Type

Treatment Type

Drug

Distribution Channel

Autism Therapy Market Regional Analysis/Insights:

The countries covered in the autism therapy market report are U.S., Canada, and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America

North America dominates the autism therapy market due to increasing R&D activities and the launching several new products through mergers and strategic partnerships in this region. Also, the increasing awareness about the availability of numerous therapies to treat patients with autism spectrum disorders in this region

Asia-Pacific is expected to witness significant growth due to the wide presence of major market players and strategic initiatives undertaken by them to develop and commercialize several new products to treat patients.For instance, Teijin Pharma and Hamamatsu Medical University confirmed the safety, efficiency, and tolerability of oxytocin nasal spray for treating patients with an autism spectrum disorder in 2022

Table of Contents:

For The Entire Table of Contents, Click Here @ https://www.databridgemarketresearch.com/toc/?dbmr=global-autism-therapy-market

Explore More Reports:

About Data Bridge Market Research:

An absolute way to forecast what the future holds is to comprehend the trend today!

Data Bridge Market Research set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavours to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process. Data Bridge is an aftermath of sheer wisdom and experience which was formulated and framed in the year 2015 in Pune.

Data Bridge Market Research has over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude. We are content with our glorious 99.9 % client satisfying rate.

Contact Us:

Data Bridge Market ResearchUS: +1 888 387 2818UK: +44 208 089 1725Hong Kong: +852 8192 7475Email:- corporatesales@databridgemarketresearch.com

Follow this link:
Autism Therapy Market Anticipated to Garner Significant Growth of ... - GlobeNewswire

On My Mind: Beyond traditional talk therapy – Martha’s Vineyard Times

In good psychotherapy, we feel listened to, understood without judgment, and cared for. In doing so, it helps us feel safer, kinder, wiser, and happier. With the help of cognitive and behavioral tools, we can unlearn unkind and untrue beliefs from our past the idea, for example, that we are unlovable, worthless, or chronically endangered. When this occurs, it is liberating; but sometimes personal transformation takes more.

Because talk therapy often relies on the well-established verbal and logical pathways of the mind, it can fail to tap into underused parts of the psyche that can hold powerful memories, feelings, and beliefs. As part of my training, I went through a Freudian psychoanalysis during which, four days a week for five years, I lay on a couch, told my analyst the random thoughts that came to my mind, described my dreams, and talked about the feelings that arose in my life and toward my analyst. While it was an extraordinary experience to sit with an empathic, devoted listener for that chunk of my life, I only rarely and haphazardly experienced deep emotional states or revelations. I did change, I think for the better, during those five years, but its hard to know how much of that had to do with the analysis itself, and how much came simply from the passage of five years of life in general, and medical and psychiatric training in specific.

Now, newer psychotherapeutic techniques that help people to explore and unburden hidden parts of the mind are entering the mainstream. In each of these therapies, it appears that the parts of the brain that dont normally communicate in usual day-to-day experience are connecting. Here are three alternatives to traditional talk therapy that allow clients to enter altered states of consciousness and heal.

Somatic therapy

While there are several schools of somatic therapy, fundamental to all of them is the idea that the physical body holds memories, emotions, and beliefs that can be revealed through touch, and through focusing on specific body parts and sensations. In Somatic Experiencing, people have an opportunity to renegotiate traumatic memories from childhood. For instance, a middle-aged man was directed to touch a part of his body. He closed his eyes and rested his hand on his belly. His first thoughts were, Oh, I am becoming flabby. No one would want to touch me. I wouldnt want anyone to look at my belly. As he continued to hold his hand there, memories of himself as a child came to mind, and he remembered his older brother telling him that he had four spare tires in his belly, and that no one would ever want to touch him. He recalled that as a 6-year-old, he once bent over and counted not four spare tires, but six!

What could he conclude but that his brother was telling the truth? He was fat and disgusting.

When he opened his eyes, the man told his therapist about the memory. The therapist offered to put his hand on his belly, and when he did, the man was flooded with memories of the multiple ways, over many years, in which his brother had shamed him. Tears streamed from his eyes. He recalled crying alone in his room as a child with such immediacy that he experienced a nasally smell of tears that he hadnt encountered for decades. When he opened his eyes, he felt exhausted and liberated. He looked at his belly, which was not flabby, and he noticed how good he felt about his body. The shame-filled feelings were inaccurate lessons that he had learned from his brother (who, himself, had been abused by their father). The man felt liberated and was able to let go of the body shame that had burdened him for decades. In my experience as a therapist, focusing on how the body responds to emotions, or imagining touch, can evoke remarkable memories, feelings, and release.

Internal Family Systems therapy (IFS)

In our culture, we are taught to think of ourselves as one person with a unified mind. Other cultures see the human psyche as composed of many separate subpersonalities or modules, each with its own motivations, perspectives, reasoning, and memories. Even Freud divided the psyche into three separate parts the id, which holds unbridled desires, such as sexual and aggressive drives; the superego, which manages and restrains those impulses; and the ego, which is the reality-based part that mediates between the id and superego. Several (mostly non-Western) cultures see us as having parts that are male, female, demonic, ancestral, and spiritual, to name just a few.

IFS posits that when we are irritable, depressed, fearful, gleeful, or playful, these emotional states are expressions of different parts of ourselves. And all of these parts even the negative ones are trying to help us, even if they end up doing us harm. An alcoholic part, for example, which might in many ways be wreaking havoc on a persons life, might be there with the well-intentioned purpose of numbing painful emotions related to trauma. A suicidal part might be trying to help a person escape from overwhelming hopelessness. A rageful part might be trying to protect a lonely inner child who was neglected, humiliated, or physically abused.

Unlike in traditional therapy, in IFS the therapist is an active guide who, rather than encouraging random thoughts, helps the client to enter a kind of trance in which they focus on one part or sub-personality at a time. Take, for example, the case of a young woman who entered therapy struggling with self-loathing and shame. When she closed her eyes and focused on the part of her that told her that she was ugly, weak, and stupid, she encountered a powerful voice that told her that if she didnt keep criticizing herself, she would let herself become unlovable, lazy, and uneducated. When the therapist asked her client to question where this critical part learned to be so harsh, images of her unpredictable, cold, and critical mother came into her mind. With the therapists help, she was able to imagine letting her mother know that she didnt accept her cruel messages. At the same time, she was able to show her own shamed inner child how fulfilling her life had actually become: She had started a successful business, married a supportive and caring partner, and been a loving mother. In the course of therapy, she stopped shaming and apologizing for herself, and became a happier person.

I write further about IFS in this article: bit.ly/MVTMoreThanOne.

Psychedelic-assisted therapy

Under the influence of psychedelic medications, new connections are formed between brain cells, and new channels for communication between different parts of the brain open up. A graphic demonstration of this can be found in Islander Michael Pollans book, How to Change Your Mind. To some extent, I imagine that these new channels and connections within the brain are also what happens in spiritual awakenings, mystical experiences, and transformational experiences in psychotherapy. MV Times correspondent Ray Whitaker writes informatively about some Islanders who have had transformational experiences working with ketamine in the practice of Nurse Practitioner Prudy Carter Donovan. See mvtimes.com/2023/02/22/taking-inward-journey-part-two/.

Ketamine is currently the only legal psychedelic, but MDMA and psilocybin are likely to become legal in coming years. All three of these medications can change the mind in ways that relieve and ameliorate (sometimes temporarily, sometimes permanently) peoples fears, oppressive self-hatred, suicidal thoughts, bulimia, anorexia, and addictions to food, alcohol, cigarettes, and other drugs.

Ketamine is often given in clinics where patients experience an inner journey with the medication, in the absence of therapy. An extreme example of this practice is acquiring ketamine via telemedicine practices. (See bit.ly/Ket_Telemedicine).

But the best way to experience ketamine is to work with a skilled therapist who helps prepare clients for their psychedelic journeys by setting goals, exploring fears, and creating a setting for the experience that feels safe and right. Studies that have included Internal Family Systems therapy before and after the psychedelic journey suggest that it can greatly enhance the experience. IFS used before the journey helps reassure parts that are wary or frightened, and gives the client a sense of safety before receiving the medication. There is a wonderful expression in the world of IFS: No medication without the agreement of all parts. Working with parts that, quite reasonably, have apprehension can make the experience much more relaxed, safe, and beneficial.

During the journey, the IFS therapist takes notes on what is said or shared during the experience. After the ketamine wears off, the therapist helps the client to integrate and reinforce revelations that may have occurred. Sometimes changes stem from intentions, such as the desire to give up cigarettes, but other changes can occur spontaneously.

Many people rank psychedelic journeys among the most important spiritual experiences of their lives. People commonly have a sense of oneness with the universe and with all life on earth. In one case, a client unexpectedly returned from the inner journey having lost interest in eating animals.

There are other therapies, such as Eye Movement Desensitization and Reprocessing (EMDR), hypnotherapy, and past-life regression, that can also be transformative. The same is true at times for traditional therapies such as psychoanalysis, forms of Cognitive Behavioral Therapy, and Dialectical Behavior Therapy. Transformations occur in the setting of powerful emotional releases, trance states, and psychological and spiritual revelations, and all of them involve new activity in parts of the brain that may have remained quiet for a long time. Especially as we age, but perhaps at any age, a little help in rewiring the brain can make a big difference in improving our well-being and our lives.

Dr. Charles Silberstein is a psychiatrist at Marthas Vineyard Hospital and Island Counseling Center, where he is the medical director. He is board-certified in general, addiction, and geriatric psychiatry. He writes regularly about issues Islanders have with mental health.

Laura Roosevelt is a poet and journalist who writes regularly for the Arts & Ideas and Edible Vineyard magazines. She currently curates the MV Times Poets Corner.

See the rest here:
On My Mind: Beyond traditional talk therapy - Martha's Vineyard Times

Global Data Center Cooling Market Size Expected to Skyrocket in the Years Ahead | Schneider Electric, Vertiv G – openPR

Global data center cooling market is projected to register a CAGR of 14.4% in the forecast period of 2020 to 2027. The new market report contains data for historic year 2018, the base year of calculation is 2019 and the forecast period is 2020 to 2027.

The passage highlights the trend of governmental organizations increasing their maintenance budgets for system infrastructure while also investing in initiatives for project development, modernization, and enhancement. This has led to the success of investments and an increase in the annual funding set aside by ICT vendors for the growth of the online market. The passage also mentions the anticipated increase in global ICT exports, which are expected to rise by an average of 3.9% yearly from US$ 784.3 billion in 2021 to US$ 955.19 billion in 2030. The global supply of ICT has increased by 9.5% yearly since 2009.

Request To Download Sample of This Strategic Report: https://reportocean.com/industry-verticals/sample-request?report_id=DB1000

In terms of global ICT exports in 2021, Ireland ranked first with US$ 169.32 billion, followed by the United States at number 2, India at number 3, and China at number 4. The passage also notes the significant increase in Brunei's global ICT exports by 228.2% year over year since 2009, while Sierra Leone's global ICT exports have decreased by 61.7% year over year in the same period. Overall, the passage highlights the growth and potential of the global ICT market, driven by increased investments and funding for infrastructure and project development.

It seems that the ICT industry in Europe is predicted to experience moderate growth in the coming years, with an annual increase of 1.5% expected from 2021 to 2026. Germany currently holds the top position in terms of ICT revenue in Europe, followed by the United Kingdom, France, and Ireland. It's interesting to note that while some countries like Malta have experienced significant growth in the ICT industry since 2016, others like Italy have seen a slight decline. This information can be useful for businesses and investors looking to enter or expand in the European ICT market.

Download Free Sample of This Strategic Report: https://reportocean.com/industry-verticals/sample-request?report_id=DB1000

Market Segmentation:

Global Data Center Cooling Market By Type (Enterprise Data Center, Edge Data Center), Solutions (Air Conditioning, Chilling Units, Cooling Towers, Economizer System, Liquid Cooling System, Computer Room Air Conditioning (CRAC) & Computer Room Air Handler(CRAH), Control Units, Others), Service (Consulting & Training, Installation & Deployment, Maintenance & Support), Cooling Type (Room Based Cooling, Rack Based Cooling, Row Based Cooling), Organization Size (Large Organization Size, Small & Medium Organization), Country (U.S., Canada, Mexico, Germany, France, U.K., Italy, Spain, Russia, Turkey, Belgium, Netherlands, Switzerland, Hungary, Rest of Europe, China, India, Japan, Taiwan, South Korea, Australia, Singapore, Indonesia, Thailand, Malaysia, Philippines, Rest of Asia-Pacific, South Africa, Egypt, Saudi Arabia, U.A.E, Israel and Rest of Middle East & Africa) Industry Trends and Forecast to 2027

Some of the major factors contributing to the growth of the global data center cooling market are:

- Increasing count of the data center- Rising demand for the cost saving solution

Market Players

- Schneider Electric- Vertiv Group Corp- STULZ GMBH- Delta Power Solutions- nVent- Daikin Applied (A Subsidiary of DAIKIN INDUSTRIES, Ltd.)- Airedale Air Conditioning (A Subsidiary of MODINE MANUFACTURING COMPANY)- Nortek Air Solutions, LLC- Asetek, Inc- Eaton- FUJITSU- Rittal GmbH & Co. KG- 3M- ALFA LAVAL- Coolcentric- Instor- Submer- EcoCooling- BladeRoom Group Ltd- Grundfos Pumps Corporation (A Subsidiary of GRUNDFOS)- Black Box Corporation

.................Some More Report..............

https://www.marketwatch.com/press-release/business-management-software-market-size-report-overview-demand-share-trends-and-forecast-2031-2023-03-24?mod=search_headlinehttps://www.marketwatch.com/press-release/hr-payroll-software-market-size-latest-trends-share-top-players-revenue-and-forecast-2031-2023-03-24?mod=search_headlinehttps://www.marketwatch.com/press-release/somatic-genetic-testing-market-size-outlook-key-players-share-revenue-and-forecast-2031-2023-03-24?mod=search_headlinehttps://www.marketwatch.com/press-release/transplantation-of-hematopoietic-stem-cells-market-size-demand-share-key-players-revenue-report-and-forecast-2031-2023-03-24?mod=search_headlinehttps://www.marketwatch.com/press-release/precision-psychiatry-market-size-share-analysis-top-industry-players-and-forecast-2031-2023-03-24?mod=search_headlinehttps://www.marketwatch.com/press-release/acth-deficiency-treatment-market-size-latest-trends-growth-share-leading-players-and-forecast-2031-2023-03-24?mod=search_headlinehttps://www.marketwatch.com/press-release/beta-thalassemia-testing-market-size-overview-leading-players-growth-share-and-forecast-2031-2023-03-24?mod=search_headlinehttps://www.marketwatch.com/press-release/extracorporeal-membrane-oxygenation-ecmo-outsourcing-service-market-size-share-trends-segmentation-analysis-and-forecast-2031-2023-03-24?mod=search_headlinehttps://www.marketwatch.com/press-release/transplantation-of-multipotent-hematopoietic-stem-cells-market-size-outlook-prominent-players-share-challenges-and-forecast-2031-2023-03-24?mod=search_headlinehttps://www.marketwatch.com/press-release/pneumonia-diagnostic-market-size-outlook-segmentation-analysis-share-drivers-and-forecast-2031-2023-03-24?mod=search_headline

Request full Report :- https://reportocean.com/industry-verticals/sample-request?report_id=DB1000

About Report Ocean:

We are the best market research reports provider in the industry. Report Ocean is the world's leading research company, known for its informative research reports. We are committed to providing our clients with both quantitative and qualitative research results. As a part of our global network and comprehensive industry coverage, we offer in-depth knowledge, allowing informed and strategic business conclusions to report. We utilize the most recent technology and analysis tools along with our own unique research models and years of expertise, which assist us to create necessary details and facts that exceed expectations.

Get in Touch with Us: Report Ocean: Email: sales@reportocean.com Address: 500 N Michigan Ave, Suite 600, Chicago, Illinois 60611 - UNITED STATES Tel:+1 888 212 3539 (US - TOLL FREE) Website: https://reportocean.com

This release was published on openPR.

Go here to read the rest:
Global Data Center Cooling Market Size Expected to Skyrocket in the Years Ahead | Schneider Electric, Vertiv G - openPR

Automating iPSC generation to enable autologous photoreceptor … – Journal of Translational Medicine

Starzl TE. The early days of transplantation. JAMA. 1994;272(21):1705.

Article CAS PubMed PubMed Central Google Scholar

Vanholder R, Dominguez-Gil B, Busic M, Cortez-Pinto H, Craig JC, Jager KJ, et al. Organ donation and transplantation: a multi-stakeholder call to action. Nat Rev Nephrol. 2021;17(8):55468.

Article PubMed PubMed Central Google Scholar

Aubert O, Yoo D, Zielinski D, Cozzi E, Cardillo M, Durr M, et al. COVID-19 pandemic and worldwide organ transplantation: a population-based study. Lancet Public Health. 2021;6(10):e709e19.

Article PubMed PubMed Central Google Scholar

Zhang Y, Klassen HJ, Tucker BA, Perez MT, Young MJ. CNS progenitor cells promote a permissive environment for neurite outgrowth via a matrix metalloproteinase-2-dependent mechanism. J Neurosci. 2007;27(17):4499506.

Article CAS PubMed PubMed Central Google Scholar

Luo J, Baranov P, Patel S, Ouyang H, Quach J, Wu F, et al. Human retinal progenitor cell transplantation preserves vision. J Biol Chem. 2014;289(10):636271.

Article CAS PubMed PubMed Central Google Scholar

Han IC, Bohrer LR, Gibson-Corley KN, Wiley LA, Shrestha A, Harman BE, et al. Biocompatibility of Human Induced Pluripotent Stem cell-derived retinal progenitor cell grafts in immunocompromised rats. Cell Transpl. 2022;31:9636897221104451.

Article Google Scholar

Tucker BA, Park IH, Qi SD, Klassen HJ, Jiang C, Yao J, et al. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS ONE. 2011;6(4):e18992.

Article CAS PubMed PubMed Central Google Scholar

Mandai M, Fujii M, Hashiguchi T, Sunagawa GA, Ito SI, Sun J, et al. iPSC-Derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice. Stem Cell Reports. 2017;8(1):6983.

Article PubMed PubMed Central Google Scholar

Lin B, McLelland BT, Aramant RB, Thomas BB, Nistor G, Keirstead HS, et al. Retina organoid transplants develop photoreceptors and improve visual function in RCS rats with RPE dysfunction. Invest Ophthalmol Vis Sci. 2020;61(11):34.

Article CAS PubMed PubMed Central Google Scholar

McLelland BT, Lin B, Mathur A, Aramant RB, Thomas BB, Nistor G, et al. Transplanted hESC-Derived retina organoid sheets differentiate, integrate, and improve visual function in retinal degenerate rats. Invest Ophthalmol Vis Sci. 2018;59(6):2586603.

Article CAS PubMed PubMed Central Google Scholar

Zerti D, Hilgen G, Dorgau B, Collin J, Ader M, Armstrong L, et al. Transplanted pluripotent stem cell-derived photoreceptor precursors elicit conventional and unusual light responses in mice with advanced retinal degeneration. Stem Cells. 2021;39(7):88296.

Article CAS PubMed Google Scholar

Santos-Ferreira T, Volkner M, Borsch O, Haas J, Cimalla P, Vasudevan P, et al. Stem cell-derived photoreceptor transplants differentially integrate into mouse models of cone-rod dystrophy. Invest Ophthalmol Vis Sci. 2016;57(7):350920.

Article CAS PubMed Google Scholar

Gagliardi G, Ben M, Barek K, Chaffiol A, Slembrouck-Brec A, Conart JB, Nanteau C, et al. Characterization and transplantation of CD73-Positive photoreceptors isolated from human iPSC-Derived retinal organoids. Stem Cell Reports. 2018;11(3):66580.

Article CAS PubMed PubMed Central Google Scholar

Chao JR, Lamba DA, Klesert TR, Torre A, Hoshino A, Taylor RJ, et al. Transplantation of human embryonic stem cell-derived retinal cells into the Subretinal Space of a non-human primate. Transl Vis Sci Technol. 2017;6(3):4.

Article PubMed PubMed Central Google Scholar

Zhu J, Cifuentes H, Reynolds J, Lamba DA. Immunosuppression via loss of IL2rgamma enhances long-term functional integration of hESC-Derived photoreceptors in the mouse retina. Cell Stem Cell. 2017;20(3):37484. e5.

Article CAS PubMed Google Scholar

Lamba DA, McUsic A, Hirata RK, Wang PR, Russell D, Reh TA. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS ONE. 2010;5(1):e8763.

Article PubMed PubMed Central Google Scholar

Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in crx-deficient mice. Cell Stem Cell. 2009;4(1):739.

Article CAS PubMed PubMed Central Google Scholar

Lingam S, Liu Z, Yang B, Wong W, Parikh BH, Ong JY, et al. cGMP-grade human iPSC-derived retinal photoreceptor precursor cells rescue cone photoreceptor damage in non-human primates. Stem Cell Res Ther. 2021;12(1):464.

Article CAS PubMed PubMed Central Google Scholar

Aboualizadeh E, Phillips MJ, McGregor JE, DiLoreto DA Jr, Strazzeri JM, Dhakal KR, et al. Imaging transplanted photoreceptors in living Nonhuman Primates with single-cell resolution. Stem Cell Reports. 2020;15(2):48297.

Article CAS PubMed PubMed Central Google Scholar

Kruczek K, Gonzalez-Cordero A, Goh D, Naeem A, Jonikas M, Blackford SJI, et al. Differentiation and transplantation of embryonic stem cell-derived cone photoreceptors into a mouse model of end-stage retinal degeneration. Stem Cell Reports. 2017;8(6):165974.

Article CAS PubMed PubMed Central Google Scholar

Gonzalez-Cordero A, West EL, Pearson RA, Duran Y, Carvalho LS, Chu CJ, et al. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol. 2013;31(8):7417.

Article CAS PubMed Google Scholar

Ballios BG, Cooke MJ, Donaldson L, Coles BL, Morshead CM, van der Kooy D, et al. A Hyaluronan-Based Injectable Hydrogel improves the survival and integration of stem cell progeny following transplantation. Stem Cell Reports. 2015;4(6):103145.

Article CAS PubMed PubMed Central Google Scholar

Klassen H, Sakaguchi DS, Young MJ. Stem cells and retinal repair. Prog Retin Eye Res. 2004;23(2):14981.

Article CAS PubMed Google Scholar

Eberle D, Santos-Ferreira T, Grahl S, Ader M. Subretinal transplantation of MACS purified photoreceptor precursor cells into the adult mouse retina.J Vis Exp. 2014(84):e50932.

Lakowski J, Gonzalez-Cordero A, West EL, Han YT, Welby E, Naeem A, et al. Transplantation of photoreceptor precursors isolated via a cell surface Biomarker Panel from embryonic stem cell-derived self-forming retina. Stem Cells. 2015;33(8):246982.

Article CAS PubMed Google Scholar

Semo M, Haamedi N, Stevanato L, Carter D, Brooke G, Young M, et al. Efficacy and safety of human retinal progenitor cells. Transl Vis Sci Technol. 2016;5(4):6.

Article PubMed PubMed Central Google Scholar

Aftab U, Jiang C, Tucker B, Kim JY, Klassen H, Miljan E, et al. Growth kinetics and transplantation of human retinal progenitor cells. Exp Eye Res. 2009;89(3):30110.

Article CAS PubMed Google Scholar

Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2009;106(39):16698703.

Article CAS PubMed PubMed Central Google Scholar

Meyer JS, Howden SE, Wallace KA, Verhoeven AD, Wright LS, Capowski EE, et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells. 2011;29(8):120618.

Article CAS PubMed Google Scholar

Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10(6):77185.

Article CAS PubMed Google Scholar

Capowski EE, Samimi K, Mayerl SJ, Phillips MJ, Pinilla I, Howden SE, et al. Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development. 2019. https://doi.org/10.1242/dev.171686.

Article PubMed PubMed Central Google Scholar

Phillips MJ, Perez ET, Martin JM, Reshel ST, Wallace KA, Capowski EE, et al. Modeling human retinal development with patient-specific induced pluripotent stem cells reveals multiple roles for visual system homeobox 2. Stem Cells. 2014;32(6):148092.

Article CAS PubMed Google Scholar

Wiley LA, Burnight ER, DeLuca AP, Anfinson KR, Cranston CM, Kaalberg EE, et al. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness. Sci Rep. 2016;6:30742.

Article CAS PubMed PubMed Central Google Scholar

Reichman S, Terray A, Slembrouck A, Nanteau C, Orieux G, Habeler W, et al. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci U S A. 2014;111(23):851823.

Article CAS PubMed PubMed Central Google Scholar

Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao LH, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 2014;5:4047.

Article CAS PubMed Google Scholar

Kuwahara A, Ozone C, Nakano T, Saito K, Eiraku M, Sasai Y. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun. 2015;6:6286.

Article CAS PubMed Google Scholar

Mellough CB, Collin J, Khazim M, White K, Sernagor E, Steel DH, et al. IGF-1 signaling plays an important role in the formation of Three-Dimensional laminated neural retina and other ocular structures from human embryonic stem cells. Stem Cells. 2015;33(8):241630.

Article PubMed Google Scholar

Singh RK, Mallela RK, Cornuet PK, Reifler AN, Chervenak AP, West MD, et al. Characterization of three-dimensional retinal tissue derived from human embryonic stem cells in adherent monolayer cultures. Stem Cells Dev. 2015;24(23):277895.

Article CAS PubMed PubMed Central Google Scholar

Lowe A, Harris R, Bhansali P, Cvekl A, Liu W. Intercellular adhesion-dependent cell survival and ROCK-Regulated actomyosin-driven forces mediate self-formation of a retinal organoid. Stem Cell Reports. 2016;6(5):74356.

Article CAS PubMed PubMed Central Google Scholar

Gonzalez-Cordero A, Kruczek K, Naeem A, Fernando M, Kloc M, Ribeiro J, et al. Recapitulation of human Retinal Development from Human pluripotent stem cells generates transplantable populations of cone photoreceptors. Stem Cell Reports. 2017;9(3):82037.

Article PubMed PubMed Central Google Scholar

Wahlin KJ, Maruotti JA, Sripathi SR, Ball J, Angueyra JM, Kim C, et al. Photoreceptor outer segment-like structures in long-term 3D retinas from human pluripotent stem cells. Sci Rep. 2017;7(1):766.

Article PubMed PubMed Central Google Scholar

Ovando-Roche P, West EL, Branch MJ, Sampson RD, Fernando M, Munro P, et al. Use of bioreactors for culturing human retinal organoids improves photoreceptor yields. Stem Cell Res Ther. 2018;9(1):156.

Article CAS PubMed PubMed Central Google Scholar

Hallam D, Hilgen G, Dorgau B, Zhu L, Yu M, Bojic S, et al. Human-Induced pluripotent stem cells generate light responsive retinal organoids with variable and nutrient-dependent efficiency. Stem Cells. 2018;36(10):153551.

Article CAS PubMed Google Scholar

Luo Z, Zhong X, Li K, Xie B, Liu Y, Ye M, et al. An optimized system for effective derivation of three-dimensional retinal tissue via wnt signaling regulation. Stem Cells. 2018;36(11):170922.

Article CAS PubMed Google Scholar

NIH human embryonic stem cell registry. https://grants.nih.gov/stem_cells/registry/current.htm. Accessed 27 Feb 2023.

Guha P, Morgan JW, Mostoslavsky G, Rodrigues NP, Boyd AS. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell. 2013;12(4):40712.

Article CAS PubMed Google Scholar

Singh VK, Kalsan M, Kumar N, Saini A, Chandra R. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol. 2015;3:2.

Article PubMed PubMed Central Google Scholar

Mantripragada VP, Luangphakdy V, Hittle B, Powell K, Muschler GF. Automated in-process characterization and selection of cell-clones for quality and efficient cell manufacturing. Cytotechnology. 2020;72(5):61527.

Article CAS PubMed PubMed Central Google Scholar

Wiley LA, Anfinson KR, Cranston CM, Kaalberg EE, Collins MM, Mullins RF, et al. Generation of Xeno-Free, cGMP-compliant patient-specific iPSCs from skin biopsy. Curr Protoc Stem Cell Biol. 2017. https://doi.org/10.1002/cpsc.30.

Article PubMed PubMed Central Google Scholar

Bohrer LR, Wiley LA, Burnight ER, Cooke JA, Giacalone JC, Anfinson KR, et al. Correction of NR2E3 associated enhanced s-cone syndrome patient-specific iPSCs using CRISPR-Cas9. Genes (Basel). 2019. https://doi.org/10.3390/genes10040278.

Article PubMed PubMed Central Google Scholar

Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573-87e29.

Article CAS PubMed PubMed Central Google Scholar

Continued here:
Automating iPSC generation to enable autologous photoreceptor ... - Journal of Translational Medicine

What are the differences between Stem Cells and Somatic Cells?

Any cell type in a multicellular organism, except germline cells, is called a somatic cell. In contrast, stem cells are unspecialized cells with self-renewal capacity that can divide limitlessly to produce new stem cells, as well can differentiate to different cell types in the body.

Somatic cells are diploid cells, which contain two pairs of chromosomes, one received from each parent. Any cell other than germ cells (sperm and egg), gametocytes (cells that divide to form germ cells), and undifferentiated stem cells are known as somatic cells.

Unlike germ cells, somatic cells are not capable of producing offspring; instead, they form all the internal organs and tissues and contribute significantly to their functionalities.

Meiosis. Image Credit: Ody_Stocker/Shutterstock.com

Stem cells are unspecialized cells with self-renewal capacity. They can divide through mitosis limitlessly to replenish other cell types of multicellular organisms throughout their life.

After stem cell division, each newly produced cell can either remain as a stem cell or differentiate to form any other cell type with more defined functions, such as muscle cell, blood cell, or neural cell.

Under special circumstances, differentiation of stem cells can also be induced to generate tissue- or organ-specific cell types with special functions. There are mainly two types of stem cells: embryonic stem cells, which are derived from embryos, and somatic or adult stem cells, which are undifferentiated cells residing in a tissue or organ along with other differentiated cells (somatic cells).

Image Credit: Designua/Shutterstock.com

The major difference between embryonic and somatic stem cells is that embryonic stem cells have the potential to differentiate into all cell types of the body, as they are pluripotent stem cells (cells that are able to differentiate into three primary germ cell layers of the early embryo and, thus, into any cell type of the body); whereas, it is believed that somatic stem cells can differentiate only into different cell types present in the tissue of their origin.

Another type of genetically modified stem cell is induced pluripotent stem cell (iPSC). These cells are somatic stem cells that are genetically reprogramed to become like embryonic stem cells by inducing expressions of specific genes and other components necessary for maintaining embryonic stem cell properties.

Adult stem cells reside along with somatic cells in many tissues and organs, including peripheral blood, blood vessels, bone marrow, skeletal muscle, teeth, skin, gut, liver, ovary, testis, brain, and heart.

They are present in a small number and located in a specific area of each tissue called stem cell niche. Unlike somatic cells, stem cells can be in an inactive, non-dividing state for a long time until they are activated by certain internal or external signals, such as tissue injury or diseased conditions.

Adult stem cells can undergo normal differentiation pathways to give rise to specialized cells of the tissue wherein they are located. Some examples of stem cell differentiation into specialized somatic cells are as follows:

Hematopoietic stem cells differentiate into all types of blood cells, including red blood cells (RBC), B lymphocytes, T lymphocytes, neutrophils, basophiles, eosinophils, monocytes, natural killer cells, and macrophages.

Mesenchymal stem cells also known as bone marrow stromal stem cells, differentiate into different cell types, including bone cells, cartilage cells, fat cells, and stromal cells, that regulate blood production.

Neural stem cells are present in the brain and can differentiate into three major brain cell types namely neurons (nerve cells), astrocytes, and oligodendrocytes.

Epithelial stem cells are present in the epithelial lining of the gastrointestinal tract and can differentiate into different cell types, including absorptive cells, goblet cells, and enteroendocrine cells.

Skin stem cells are of two types: epidermal stem cells that are found in the basal layer of the epidermis and can differentiate into keratinocytes; and follicular stem cells that are found at the base of hair follicles and can differentiate into both follicular cells and keratinocytes.

Besides normal differentiation, adult stem cells sometimes undergo transdifferentiation, a process by which stem cells from a particular tissue differentiate into specialized cell types of another tissue. For instance, stem cells from the brain give rise to blood cells.

Despite many functional differences between stem cells and somatic cells, the ability of stem cells to differentiate into specialized cell types of the body has uncovered a potential way toward cell-based therapies, where stem cells can be used as a renewable source for replacing damaged somatic cells to treat many detrimental disorders, including heart diseases, stroke, spinal cord injury, macular degeneration, diabetes, rheumatoid arthritis, etc.

Go here to read the rest:
What are the differences between Stem Cells and Somatic Cells?

Gene therapy – Wikipedia

Medical field

Gene therapy is a medical field which focuses on the genetic modification of cells to produce a therapeutic effect[1] or the treatment of disease by repairing or reconstructing defective genetic material.[2] The first attempt at modifying human DNA was performed in 1980, by Martin Cline, but the first successful nuclear gene transfer in humans, approved by the National Institutes of Health, was performed in May 1989.[3] The first therapeutic use of gene transfer as well as the first direct insertion of human DNA into the nuclear genome was performed by French Anderson in a trial starting in September 1990. It is thought to be able to cure many genetic disorders or treat them over time.

Between 1989 and December 2018, over 2,900 clinical trials were conducted, with more than half of them in phase I.[4] As of 2017, Spark Therapeutics' Luxturna (RPE65 mutation-induced blindness) and Novartis' Kymriah (Chimeric antigen receptor T cell therapy) are the FDA's first approved gene therapies to enter the market. Since that time, drugs such as Novartis' Zolgensma and Alnylam's Patisiran have also received FDA approval, in addition to other companies' gene therapy drugs. Most of these approaches utilize adeno-associated viruses (AAVs) and lentiviruses for performing gene insertions, in vivo and ex vivo, respectively. AAVs are characterized by stabilizing the viral capsid, lower immunogenicity, ability to transduce both dividing and nondividing cells, the potential to integrate site specifically and to achieve long-term expression in the in-vivo treatment. (Gorell et al. 2014) ASO / siRNA approaches such as those conducted by Alnylam and Ionis Pharmaceuticals require non-viral delivery systems, and utilize alternative mechanisms for trafficking to liver cells by way of GalNAc transporters.

The concept of gene therapy is to fix a genetic problem at its source. If, for instance, a mutation in a certain gene causes the production of a dysfunctional protein resulting (usually recessively) in an inherited disease, gene therapy could be used to deliver a copy of this gene that does not contain the deleterious mutation and thereby produces a functional protein. This strategy is referred to as gene replacement therapy and is employed to treat inherited retinal diseases.[5][6]

While the concept of gene replacement therapy is mostly suitable for recessive diseases, novel strategies have been suggested that are capable of also treating conditions with a dominant pattern of inheritance.

Not all medical procedures that introduce alterations to a patient's genetic makeup can be considered gene therapy. Bone marrow transplantation and organ transplants in general have been found to introduce foreign DNA into patients.[13]

Gene therapy was conceptualized in 1972, by authors who urged caution before commencing human gene therapy studies.

The first attempt, an unsuccessful one, at gene therapy (as well as the first case of medical transfer of foreign genes into humans not counting organ transplantation) was performed by Martin Cline on 10 July 1980.[14][15] Cline claimed that one of the genes in his patients was active six months later, though he never published this data or had it verified[16] and even if he is correct, it's unlikely it produced any significant beneficial effects treating beta thalassemia.[medical citation needed]

After extensive research on animals throughout the 1980s and a 1989 bacterial gene tagging trial on humans, the first gene therapy widely accepted as a success was demonstrated in a trial that started on 14 September 1990, when Ashanthi DeSilva was treated for ADA-SCID.[17]

The first somatic treatment that produced a permanent genetic change was initiated in 1993.[18] The goal was to cure malignant brain tumors by using recombinant DNA to transfer a gene making the tumor cells sensitive to a drug that in turn would cause the tumor cells to die.[19]

The polymers are either translated into proteins, interfere with target gene expression, or possibly correct genetic mutations. The most common form uses DNA that encodes a functional, therapeutic gene to replace a mutated gene. The polymer molecule is packaged within a "vector", which carries the molecule inside cells.[medical citation needed]

Early clinical failures led to dismissals of gene therapy. Clinical successes since 2006 regained researchers' attention, although as of 2014[update], it was still largely an experimental technique.[20] These include treatment of retinal diseases Leber's congenital amaurosis[5][21][22][23] and choroideremia,[24] X-linked SCID,[25] ADA-SCID,[26][27] adrenoleukodystrophy,[28] chronic lymphocytic leukemia (CLL),[29] acute lymphocytic leukemia (ALL),[30] multiple myeloma,[31] haemophilia,[27] and Parkinson's disease.[32] Between 2013 and April 2014, US companies invested over $600 million in the field.[33]

The first commercial gene therapy, Gendicine, was approved in China in 2003, for the treatment of certain cancers.[34] In 2011, Neovasculgen was registered in Russia as the first-in-class gene-therapy drug for treatment of peripheral artery disease, including critical limb ischemia.[35] In 2012, Glybera, a treatment for a rare inherited disorder, lipoprotein lipase deficiency, became the first treatment to be approved for clinical use in either Europe or the United States after its endorsement by the European Commission.[20][36]

Following early advances in genetic engineering of bacteria, cells, and small animals, scientists started considering how to apply it to medicine. Two main approaches were considered replacing or disrupting defective genes.[37] Scientists focused on diseases caused by single-gene defects, such as cystic fibrosis, haemophilia, muscular dystrophy, thalassemia, and sickle cell anemia. Glybera treats one such disease, caused by a defect in lipoprotein lipase.[36]

DNA must be administered, reach the damaged cells, enter the cell and either express or disrupt a protein.[38] Multiple delivery techniques have been explored. The initial approach incorporated DNA into an engineered virus to deliver the DNA into a chromosome.[39][40] Naked DNA approaches have also been explored, especially in the context of vaccine development.[41]

Generally, efforts focused on administering a gene that causes a needed protein to be expressed. More recently, increased understanding of nuclease function has led to more direct DNA editing, using techniques such as zinc finger nucleases and CRISPR. The vector incorporates genes into chromosomes. The expressed nucleases then knock out and replace genes in the chromosome. As of 2014[update] these approaches involve removing cells from patients, editing a chromosome and returning the transformed cells to patients.[42]

Gene editing is a potential approach to alter the human genome to treat genetic diseases,[7] viral diseases,[43] and cancer.[44][45] As of 2020[update] these approaches are being studied in clinical trials.[46][47]

Gene therapy may be classified into two types:

In somatic cell gene therapy (SCGT), the therapeutic genes are transferred into any cell other than a gamete, germ cell, gametocyte, or undifferentiated stem cell. Any such modifications affect the individual patient only, and are not inherited by offspring. Somatic gene therapy represents mainstream basic and clinical research, in which therapeutic DNA (either integrated in the genome or as an external episome or plasmid) is used to treat disease.[48]

Over 600 clinical trials utilizing SCGT are underway[when?] in the US. Most focus on severe genetic disorders, including immunodeficiencies, haemophilia, thalassaemia, and cystic fibrosis. Such single gene disorders are good candidates for somatic cell therapy. The complete correction of a genetic disorder or the replacement of multiple genes is not yet possible. Only a few of the trials are in the advanced stages.[49][needs update]

In germline gene therapy (GGT), germ cells (sperm or egg cells) are modified by the introduction of functional genes into their genomes. Modifying a germ cell causes all the organism's cells to contain the modified gene. The change is therefore heritable and passed on to later generations. Australia, Canada, Germany, Israel, Switzerland, and the Netherlands[50] prohibit GGT for application in human beings, for technical and ethical reasons, including insufficient knowledge about possible risks to future generations[50] and higher risks versus SCGT.[51] The US has no federal controls specifically addressing human genetic modification (beyond FDA regulations for therapies in general).[50][52][53][54]

The delivery of DNA into cells can be accomplished by multiple methods. The two major classes are recombinant viruses (sometimes called biological nanoparticles or viral vectors) and naked DNA or DNA complexes (non-viral methods).[55]

In order to replicate, viruses introduce their genetic material into the host cell, tricking the host's cellular machinery into using it as blueprints for viral proteins. Retroviruses go a stage further by having their genetic material copied into the genome of the host cell. Scientists exploit this by substituting a virus's genetic material with therapeutic DNA. (The term 'DNA' may be an oversimplification, as some viruses contain RNA, and gene therapy could take this form as well.) A number of viruses have been used for human gene therapy, including retroviruses, adenoviruses, herpes simplex, vaccinia, and adeno-associated virus.[4] Like the genetic material (DNA or RNA) in viruses, therapeutic DNA can be designed to simply serve as a temporary blueprint that is degraded naturally or (at least theoretically) to enter the host's genome, becoming a permanent part of the host's DNA in infected cells.

Non-viral vectors for gene therapy[56] present certain advantages over viral methods, such as large scale production and low host immunogenicity. However, non-viral methods initially produced lower levels of transfection and gene expression, and thus lower therapeutic efficacy. Newer technologies offer promise of solving these problems, with the advent of increased cell-specific targeting and subcellular trafficking control.

Methods for non-viral gene therapy include the injection of naked DNA, electroporation, the gene gun, sonoporation, magnetofection, the use of oligonucleotides, lipoplexes, dendrimers, and inorganic nanoparticles.

More recent approaches, such as those performed by companies such as Ligandal, offer the possibility of creating cell-specific targeting technologies for a variety of gene therapy modalities, including RNA, DNA and gene editing tools such as CRISPR. Other companies, such as Arbutus Biopharma and Arcturus Therapeutics, offer non-viral, non-cell-targeted approaches that mainly exhibit liver trophism. In more recent years, startups such as Sixfold Bio, GenEdit, and Spotlight Therapeutics have begun to solve the non-viral gene delivery problem. Non-viral techniques offer the possibility of repeat dosing and greater tailorability of genetic payloads, which in the future will be more likely to take over viral-based delivery systems.

Companies such as Editas Medicine, Intellia Therapeutics, CRISPR Therapeutics, Casebia, Cellectis, Precision Biosciences, bluebird bio, and Sangamo have developed non-viral gene editing techniques, however frequently still use viruses for delivering gene insertion material following genomic cleavage by guided nucleases. These companies focus on gene editing, and still face major delivery hurdles.

BioNTech, Moderna Therapeutics and CureVac focus on delivery of mRNA payloads, which are necessarily non-viral delivery problems.

Alnylam, Dicerna Pharmaceuticals, and Ionis Pharmaceuticals focus on delivery of siRNA (antisense oligonucleotides) for gene suppression, which also necessitate non-viral delivery systems.

In academic contexts, a number of laboratories are working on delivery of PEGylated particles, which form serum protein coronas and chiefly exhibit LDL receptor mediated uptake in cells in vivo.[57]

In in vivo gene therapy, a vector (typically, a virus) is introduced to the patient, which then achieves the desired biological effect by passing the genetic material (e.g. for a missing protein) into the patient's cells. In ex vivo gene therapies, such as CAR-T therapeutics, the patient's own cells (autologous) or healthy donor cells (allogeneic) are modified outside the body (hence, ex vivo) using a vector to express a particular protein, such as a chimeric antigen receptor.[58]

In vivo gene therapy is seen as simpler, since it does not require the harvesting of mitotic cells. However, ex vivo gene therapies are better tolerated and less associated with severe immune responses.[59] The death of Jesse Gelsinger in a trial of an adenovirus-vectored treatment for ornithine transcarbamylase deficiency due to a systemic inflammatory reaction led to a temporary halt on gene therapy trials across the United States.[60] As of 2021[update], in vivo and ex vivo therapeutics are both seen as safe.[61]

Athletes may adopt gene therapy technologies to improve their performance.[62] Gene doping is not known to occur, but multiple gene therapies may have such effects. Kayser et al. argue that gene doping could level the playing field if all athletes receive equal access. Critics claim that any therapeutic intervention for non-therapeutic/enhancement purposes compromises the ethical foundations of medicine and sports.[63]

Genetic engineering could be used to cure diseases, but also to change physical appearance, metabolism, and even improve physical capabilities and mental faculties such as memory and intelligence. Ethical claims about germline engineering include beliefs that every fetus has a right to remain genetically unmodified, that parents hold the right to genetically modify their offspring, and that every child has the right to be born free of preventable diseases.[64][65][66] For parents, genetic engineering could be seen as another child enhancement technique to add to diet, exercise, education, training, cosmetics, and plastic surgery.[67][68] Another theorist claims that moral concerns limit but do not prohibit germline engineering.[69]

A recent issue of the journal Bioethics was devoted to moral issues surrounding germline genetic engineering in people.[70]

Possible regulatory schemes include a complete ban, provision to everyone, or professional self-regulation. The American Medical Association's Council on Ethical and Judicial Affairs stated that "genetic interventions to enhance traits should be considered permissible only in severely restricted situations: (1) clear and meaningful benefits to the fetus or child; (2) no trade-off with other characteristics or traits; and (3) equal access to the genetic technology, irrespective of income or other socioeconomic characteristics."[71]

As early in the history of biotechnology as 1990, there have been scientists opposed to attempts to modify the human germline using these new tools,[72] and such concerns have continued as technology progressed.[73][74] With the advent of new techniques like CRISPR, in March 2015 a group of scientists urged a worldwide moratorium on clinical use of gene editing technologies to edit the human genome in a way that can be inherited.[75][76][77][78] In April 2015, researchers sparked controversy when they reported results of basic research to edit the DNA of non-viable human embryos using CRISPR.[79][80] A committee of the American National Academy of Sciences and National Academy of Medicine gave qualified support to human genome editing in 2017[81][82] once answers have been found to safety and efficiency problems "but only for serious conditions under stringent oversight."[83]

Gene therapy approaches to replace a faulty gene with a healthy gene have been proposed and are being studied for treating some genetic diseases. Diseases such as sickle cell disease that are caused by autosomal recessive disorders for which a person's normal phenotype or cell function may be restored in cells that have the disease by a normal copy of the gene that is mutated, may be a good candidate for gene therapy treatment.[84][85] The risks and benefits related to gene therapy for sickle cell disease are not known.[85]

Some genetic therapies have been approved by the U.S. Food and Drug Administration (FDA), the European Medicines Agency (EMA), and for use in Russia and China.

Some of the unsolved problems include:

Three patients' deaths have been reported in gene therapy trials, putting the field under close scrutiny. The first was that of Jesse Gelsinger, who died in 1999, because of immune rejection response.[109][110] One X-SCID patient died of leukemia in 2003.[17] In 2007, a rheumatoid arthritis patient died from an infection; the subsequent investigation concluded that the death was not related to gene therapy.[111]

Regulations covering genetic modification are part of general guidelines about human-involved biomedical research.[citation needed] There are no international treaties which are legally binding in this area, but there are recommendations for national laws from various bodies.[citation needed]

The Helsinki Declaration (Ethical Principles for Medical Research Involving Human Subjects) was amended by the World Medical Association's General Assembly in 2008. This document provides principles physicians and researchers must consider when involving humans as research subjects. The Statement on Gene Therapy Research initiated by the Human Genome Organization (HUGO) in 2001, provides a legal baseline for all countries. HUGO's document emphasizes human freedom and adherence to human rights, and offers recommendations for somatic gene therapy, including the importance of recognizing public concerns about such research.[112]

No federal legislation lays out protocols or restrictions about human genetic engineering. This subject is governed by overlapping regulations from local and federal agencies, including the Department of Health and Human Services, the FDA and NIH's Recombinant DNA Advisory Committee. Researchers seeking federal funds for an investigational new drug application, (commonly the case for somatic human genetic engineering,) must obey international and federal guidelines for the protection of human subjects.[113]

NIH serves as the main gene therapy regulator for federally funded research. Privately funded research is advised to follow these regulations. NIH provides funding for research that develops or enhances genetic engineering techniques and to evaluate the ethics and quality in current research. The NIH maintains a mandatory registry of human genetic engineering research protocols that includes all federally funded projects.[114]

An NIH advisory committee published a set of guidelines on gene manipulation.[115] The guidelines discuss lab safety as well as human test subjects and various experimental types that involve genetic changes. Several sections specifically pertain to human genetic engineering, including Section III-C-1. This section describes required review processes and other aspects when seeking approval to begin clinical research involving genetic transfer into a human patient.[116] The protocol for a gene therapy clinical trial must be approved by the NIH's Recombinant DNA Advisory Committee prior to any clinical trial beginning; this is different from any other kind of clinical trial.[115]

As with other kinds of drugs, the FDA regulates the quality and safety of gene therapy products and supervises how these products are used clinically. Therapeutic alteration of the human genome falls under the same regulatory requirements as any other medical treatment. Research involving human subjects, such as clinical trials, must be reviewed and approved by the FDA and an Institutional Review Board.[117][118]

In 1972, Friedmann and Roblin authored a paper in Science titled "Gene therapy for human genetic disease?".[119] Rogers (1970) was cited for proposing that exogenous good DNA be used to replace the defective DNA in those with genetic defects.[120]

In 1984, a retrovirus vector system was designed that could efficiently insert foreign genes into mammalian chromosomes.[121]

The first approved gene therapy clinical research in the US took place on 14 September 1990, at the National Institutes of Health (NIH), under the direction of William French Anderson.[122] Four-year-old Ashanti DeSilva received treatment for a genetic defect that left her with adenosine deaminase deficiency (ADA-SCID), a severe immune system deficiency. The defective gene of the patient's blood cells was replaced by the functional variant. Ashanti's immune system was partially restored by the therapy. Production of the missing enzyme was temporarily stimulated, but the new cells with functional genes were not generated. She led a normal life only with the regular injections performed every two months. The effects were successful, but temporary.[123]

Cancer gene therapy was introduced in 1992/93 (Trojan et al. 1993).[124] The treatment of glioblastoma multiforme, the malignant brain tumor whose outcome is always fatal, was done using a vector expressing antisense IGF-I RNA (clinical trial approved by NIH protocol no.1602 24 November 1993,[125] and by the FDA in 1994). This therapy also represents the beginning of cancer immunogene therapy, a treatment which proves to be effective due to the anti-tumor mechanism of IGF-I antisense, which is related to strong immune and apoptotic phenomena.

In 1992, Claudio Bordignon, working at the Vita-Salute San Raffaele University, performed the first gene therapy procedure using hematopoietic stem cells as vectors to deliver genes intended to correct hereditary diseases.[126] In 2002, this work led to the publication of the first successful gene therapy treatment for ADA-SCID. The success of a multi-center trial for treating children with SCID (severe combined immune deficiency or "bubble boy" disease) from 2000 and 2002, was questioned when two of the ten children treated at the trial's Paris center developed a leukemia-like condition. Clinical trials were halted temporarily in 2002, but resumed after regulatory review of the protocol in the US, the United Kingdom, France, Italy, and Germany.[127]

In 1993, Andrew Gobea was born with SCID following prenatal genetic screening. Blood was removed from his mother's placenta and umbilical cord immediately after birth, to acquire stem cells. The allele that codes for adenosine deaminase (ADA) was obtained and inserted into a retrovirus. Retroviruses and stem cells were mixed, after which the viruses inserted the gene into the stem cell chromosomes. Stem cells containing the working ADA gene were injected into Andrew's blood. Injections of the ADA enzyme were also given weekly. For four years T cells (white blood cells), produced by stem cells, made ADA enzymes using the ADA gene. After four years more treatment was needed.[128]

Jesse Gelsinger's death in 1999 impeded gene therapy research in the US.[129][130] As a result, the FDA suspended several clinical trials pending the reevaluation of ethical and procedural practices.[131]

The modified gene therapy strategy of antisense IGF-I RNA (NIH n 1602)[125] using antisense / triple helix anti-IGF-I approach was registered in 2002, by Wiley gene therapy clinical trial - n 635 and 636. The approach has shown promising results in the treatment of six different malignant tumors: glioblastoma, cancers of liver, colon, prostate, uterus, and ovary (Collaborative NATO Science Programme on Gene Therapy USA, France, Poland n LST 980517 conducted by J. Trojan) (Trojan et al., 2012). This anti-gene antisense/triple helix therapy has proven to be efficient, due to the mechanism stopping simultaneously IGF-I expression on translation and transcription levels, strengthening anti-tumor immune and apoptotic phenomena.

Sickle cell disease can be treated in mice.[132] The mice which have essentially the same defect that causes human cases used a viral vector to induce production of fetal hemoglobin (HbF), which normally ceases to be produced shortly after birth. In humans, the use of hydroxyurea to stimulate the production of HbF temporarily alleviates sickle cell symptoms. The researchers demonstrated this treatment to be a more permanent means to increase therapeutic HbF production.[133]

A new gene therapy approach repaired errors in messenger RNA derived from defective genes. This technique has the potential to treat thalassaemia, cystic fibrosis and some cancers.[134]

Researchers created liposomes 25 nanometers across that can carry therapeutic DNA through pores in the nuclear membrane.[135]

In 2003, a research team inserted genes into the brain for the first time. They used liposomes coated in a polymer called polyethylene glycol, which unlike viral vectors, are small enough to cross the bloodbrain barrier.[136]

Short pieces of double-stranded RNA (short, interfering RNAs or siRNAs) are used by cells to degrade RNA of a particular sequence. If a siRNA is designed to match the RNA copied from a faulty gene, then the abnormal protein product of that gene will not be produced.[137]

Gendicine is a cancer gene therapy that delivers the tumor suppressor gene p53 using an engineered adenovirus. In 2003, it was approved in China for the treatment of head and neck squamous cell carcinoma.[34]

In March, researchers announced the successful use of gene therapy to treat two adult patients for X-linked chronic granulomatous disease, a disease which affects myeloid cells and damages the immune system. The study is the first to show that gene therapy can treat the myeloid system.[138]

In May, a team reported a way to prevent the immune system from rejecting a newly delivered gene.[139] Similar to organ transplantation, gene therapy has been plagued by this problem. The immune system normally recognizes the new gene as foreign and rejects the cells carrying it. The research utilized a newly uncovered network of genes regulated by molecules known as microRNAs. This natural function selectively obscured their therapeutic gene in immune system cells and protected it from discovery. Mice infected with the gene containing an immune-cell microRNA target sequence did not reject the gene.

In August, scientists successfully treated metastatic melanoma in two patients using killer T cells genetically retargeted to attack the cancer cells.[140]

In November, researchers reported on the use of VRX496, a gene-based immunotherapy for the treatment of HIV that uses a lentiviral vector to deliver an antisense gene against the HIV envelope. In a phase I clinical trial, five subjects with chronic HIV infection who had failed to respond to at least two antiretroviral regimens were treated. A single intravenous infusion of autologous CD4 T cells genetically modified with VRX496 was well tolerated. All patients had stable or decreased viral load; four of the five patients had stable or increased CD4 T cell counts. All five patients had stable or increased immune response to HIV antigens and other pathogens. This was the first evaluation of a lentiviral vector administered in a US human clinical trial.[141][142]

In May, researchers announced the first gene therapy trial for inherited retinal disease. The first operation was carried out on a 23-year-old British male, Robert Johnson, in early 2007.[143]

Leber's congenital amaurosis is an inherited blinding disease caused by mutations in the RPE65 gene. The results of a small clinical trial in children were published in April.[5] Delivery of recombinant adeno-associated virus (AAV) carrying RPE65 yielded positive results. In May, two more groups reported positive results in independent clinical trials using gene therapy to treat the condition. In all three clinical trials, patients recovered functional vision without apparent side-effects.[5][21][22][23]

In September researchers were able to give trichromatic vision to squirrel monkeys.[144] In November 2009, researchers halted a fatal genetic disorder called adrenoleukodystrophy in two children using a lentivirus vector to deliver a functioning version of ABCD1, the gene that is mutated in the disorder.[145]

An April paper reported that gene therapy addressed achromatopsia (color blindness) in dogs by targeting cone photoreceptors. Cone function and day vision were restored for at least 33 months in two young specimens. The therapy was less efficient for older dogs.[146]

In September it was announced that an 18-year-old male patient in France with beta thalassemia major had been successfully treated.[147] Beta thalassemia major is an inherited blood disease in which beta haemoglobin is missing and patients are dependent on regular lifelong blood transfusions.[148] The technique used a lentiviral vector to transduce the human -globin gene into purified blood and marrow cells obtained from the patient in June 2007.[149] The patient's haemoglobin levels were stable at 9 to 10 g/dL. About a third of the hemoglobin contained the form introduced by the viral vector and blood transfusions were not needed.[149][150] Further clinical trials were planned.[151] Bone marrow transplants are the only cure for thalassemia, but 75% of patients do not find a matching donor.[150]

Cancer immunogene therapy using modified antigene, antisense/triple helix approach was introduced in South America in 2010/11 in La Sabana University, Bogota (Ethical Committee 14 December 2010, no P-004-10). Considering the ethical aspect of gene diagnostic and gene therapy targeting IGF-I, the IGF-I expressing tumors i.e. lung and epidermis cancers were treated (Trojan et al. 2016).[152][153]

In 2007 and 2008, a man (Timothy Ray Brown) was cured of HIV by repeated hematopoietic stem cell transplantation (see also allogeneic stem cell transplantation, allogeneic bone marrow transplantation, allotransplantation) with double-delta-32 mutation which disables the CCR5 receptor. This cure was accepted by the medical community in 2011.[154] It required complete ablation of existing bone marrow, which is very debilitating.[155]

In August two of three subjects of a pilot study were confirmed to have been cured from chronic lymphocytic leukemia (CLL). The therapy used genetically modified T cells to attack cells that expressed the CD19 protein to fight the disease.[29] In 2013, the researchers announced that 26 of 59 patients had achieved complete remission and the original patient had remained tumor-free.[156]

Human HGF plasmid DNA therapy of cardiomyocytes is being examined as a potential treatment for coronary artery disease as well as treatment for the damage that occurs to the heart after myocardial infarction.[157][158]

In 2011, Neovasculgen was registered in Russia as the first-in-class gene-therapy drug for treatment of peripheral artery disease, including critical limb ischemia; it delivers the gene encoding for VEGF.[35] Neovasculogen is a plasmid encoding the CMV promoter and the 165 amino acid form of VEGF.[159][160]

The FDA approved Phase I clinical trials on thalassemia major patients in the US for 10 participants in July.[161] The study was expected to continue until 2015.[151]

In July 2012, the European Medicines Agency recommended approval of a gene therapy treatment for the first time in either Europe or the United States. The treatment used Alipogene tiparvovec (Glybera) to compensate for lipoprotein lipase deficiency, which can cause severe pancreatitis.[162] The recommendation was endorsed by the European Commission in November 2012,[20][36][163][164] and commercial rollout began in late 2014.[165] Alipogene tiparvovec was expected to cost around $1.6 million per treatment in 2012,[166] revised to $1 million in 2015,[167] making it the most expensive medicine in the world at the time.[168] As of 2016[update], only the patients treated in clinical trials and a patient who paid the full price for treatment have received the drug.[169]

In December 2012, it was reported that 10 of 13 patients with multiple myeloma were in remission "or very close to it" three months after being injected with a treatment involving genetically engineered T cells to target proteins NY-ESO-1 and LAGE-1, which exist only on cancerous myeloma cells.[31]

In March researchers reported that three of five adult subjects who had acute lymphocytic leukemia (ALL) had been in remission for five months to two years after being treated with genetically modified T cells which attacked cells with CD19 genes on their surface, i.e. all B cells, cancerous or not. The researchers believed that the patients' immune systems would make normal T cells and B cells after a couple of months. They were also given bone marrow. One patient relapsed and died and one died of a blood clot unrelated to the disease.[30]

Following encouraging Phase I trials, in April, researchers announced they were starting Phase II clinical trials (called CUPID2 and SERCA-LVAD) on 250 patients[170] at several hospitals to combat heart disease. The therapy was designed to increase the levels of SERCA2, a protein in heart muscles, improving muscle function.[171] The U.S. Food and Drug Administration (FDA) granted this a breakthrough therapy designation to accelerate the trial and approval process.[172] In 2016, it was reported that no improvement was found from the CUPID 2 trial.[173]

In July researchers reported promising results for six children with two severe hereditary diseases had been treated with a partially deactivated lentivirus to replace a faulty gene and after 732 months. Three of the children had metachromatic leukodystrophy, which causes children to lose cognitive and motor skills.[174] The other children had WiskottAldrich syndrome, which leaves them to open to infection, autoimmune diseases, and cancer.[175] Follow up trials with gene therapy on another six children with WiskottAldrich syndrome were also reported as promising.[176][177]

In October researchers reported that two children born with adenosine deaminase severe combined immunodeficiency disease (ADA-SCID) had been treated with genetically engineered stem cells 18 months previously and that their immune systems were showing signs of full recovery. Another three children were making progress.[27] In 2014, a further 18 children with ADA-SCID were cured by gene therapy.[178] ADA-SCID children have no functioning immune system and are sometimes known as "bubble children".[27]

Also in October researchers reported that they had treated six people with haemophilia in early 2011 using an adeno-associated virus. Over two years later all six were producing clotting factor.[27][179]

In January researchers reported that six choroideremia patients had been treated with adeno-associated virus with a copy of REP1. Over a six-month to two-year period all had improved their sight.[6][180] By 2016, 32 patients had been treated with positive results and researchers were hopeful the treatment would be long-lasting.[24] Choroideremia is an inherited genetic eye disease with no approved treatment, leading to loss of sight.

In March researchers reported that 12 HIV patients had been treated since 2009 in a trial with a genetically engineered virus with a rare mutation (CCR5 deficiency) known to protect against HIV with promising results.[181][182]

Clinical trials of gene therapy for sickle cell disease were started in 2014.[183][184]

In February LentiGlobin BB305, a gene therapy treatment undergoing clinical trials for treatment of beta thalassemia gained FDA "breakthrough" status after several patients were able to forgo the frequent blood transfusions usually required to treat the disease.[185]

In March researchers delivered a recombinant gene encoding a broadly neutralizing antibody into monkeys infected with simian HIV; the monkeys' cells produced the antibody, which cleared them of HIV. The technique is named immunoprophylaxis by gene transfer (IGT). Animal tests for antibodies to ebola, malaria, influenza, and hepatitis were underway.[186][187]

In March, scientists, including an inventor of CRISPR, Jennifer Doudna, urged a worldwide moratorium on germline gene therapy, writing "scientists should avoid even attempting, in lax jurisdictions, germline genome modification for clinical application in humans" until the full implications "are discussed among scientific and governmental organizations".[75][76][77][78]

In October, researchers announced that they had treated a baby girl, Layla Richards, with an experimental treatment using donor T cells genetically engineered using TALEN to attack cancer cells. One year after the treatment she was still free of her cancer (a highly aggressive form of acute lymphoblastic leukaemia [ALL]).[188] Children with highly aggressive ALL normally have a very poor prognosis and Layla's disease had been regarded as terminal before the treatment.[189]

In December, scientists of major world academies called for a moratorium on inheritable human genome edits, including those related to CRISPR-Cas9 technologies[190] but that basic research including embryo gene editing should continue.[191]

Researchers successfully treated a boy with epidermolysis bullosa using skin grafts grown from his own skin cells, genetically altered to repair the mutation that caused his disease.[192]

In April the Committee for Medicinal Products for Human Use of the European Medicines Agency endorsed a gene therapy treatment called Strimvelis[193][194] and the European Commission approved it in June.[195] This treats children born with adenosine deaminase deficiency and who have no functioning immune system. This was the second gene therapy treatment to be approved in Europe.[196]

In October, Chinese scientists reported they had started a trial to genetically modify T cells from 10 adult patients with lung cancer and reinject the modified T cells back into their bodies to attack the cancer cells. The T cells had the PD-1 protein (which stops or slows the immune response) removed using CRISPR-Cas9.[197][198]

A 2016 Cochrane systematic review looking at data from four trials on topical cystic fibrosis transmembrane conductance regulator (CFTR) gene therapy does not support its clinical use as a mist inhaled into the lungs to treat cystic fibrosis patients with lung infections. One of the four trials did find weak evidence that liposome-based CFTR gene transfer therapy may lead to a small respiratory improvement for people with CF. This weak evidence is not enough to make a clinical recommendation for routine CFTR gene therapy.[199]

In February Kite Pharma announced results from a clinical trial of CAR-T cells in around a hundred people with advanced non-Hodgkin lymphoma.[200]

In March, French scientists reported on clinical research of gene therapy to treat sickle cell disease.[201]

In August, the FDA approved tisagenlecleucel for acute lymphoblastic leukemia.[202] Tisagenlecleucel is an adoptive cell transfer therapy for B-cell acute lymphoblastic leukemia; T cells from a person with cancer are removed, genetically engineered to make a specific T-cell receptor (a chimeric T cell receptor, or "CAR-T") that reacts to the cancer, and are administered back to the person. The T cells are engineered to target a protein called CD19 that is common on B cells. This is the first form of gene therapy to be approved in the United States. In October, a similar therapy called axicabtagene ciloleucel was approved for non-Hodgkin lymphoma.[203]

In October, biophysicist and biohacker Josiah Zayner claimed to have performed the very first in-vivo human genome editing in the form of a self-administered therapy.[204][205]

On 13 November, medical scientists working with Sangamo Therapeutics, headquartered in Richmond, California, announced the first ever in-body human gene editing therapy.[206][207] The treatment, designed to permanently insert a healthy version of the flawed gene that causes Hunter syndrome, was given to 44-year-old Brian Madeux and is part of the world's first study to permanently edit DNA inside the human body.[208] The success of the gene insertion was later confirmed.[209][210] Clinical trials by Sangamo involving gene editing using zinc finger nuclease (ZFN) are ongoing.[211]

View post:
Gene therapy - Wikipedia