Category Archives: Stell Cell Research


$10 million settlement over alleged misconduct in Boston heart stem cell lab – Science Magazine

Brigham and Women's Hospital in Boston.

BRIAN SNYDER/REUTERS/Newscom

By Kelly ServickApr. 27, 2017 , 5:00 PM

A research misconduct investigation of a prominent stem cell lab by the Harvard Universityaffiliated Brigham and Womens Hospital (BWH) in Boston has led to a massive settlement with the U.S. government over allegations of fraudulently obtained federal grants. As Retraction Watch reports, BWH and its parent health care system have agreed to pay $10 million to resolve allegations that former BWH cardiac stem cell scientist Piero Anversa and former lab members Annarosa Leri and Jan Kajstura relied on manipulated and fabricated data in grant applications submitted to the U.S. National Institutes of Health (NIH).

A statement from the U.S. Attorneys Office for the District of Massachusetts released today notes that it was BWH itself that shared the allegations against Anversas lab with the government. The hospital had been conducting its own probe into the Anversa lab since at least 2014, when a retraction published in the journal Circulation revealed the ongoing investigation. The hospital has not yet released any findings.

In 2014, Anversa and Leri sued Harvard and BWHalong with BWH President Elizabeth Nabel and Gretchen Brodnicki, Harvards dean for faculty and research integrityfor launching and publicizing the investigation that they claimed wrongfully damaged their careers. In their complaint, they acknowledged fabricated data in the Circulation paper and altered figures in a 2011 paper for whichThe Lancethas published an expression of concern. But they claimed that Kajstura had altered data without their knowledge. (Anversa and Leris recent papers list their institution as Swiss Institute for Regenerative Medicine, Retraction Watch notes.)

In July 2015, a federal district court judge dismissed the lawsuit, ruling that the plaintiffs had to first air their grievances with the federal Office of Research Integrity, which handles misconduct investigations at NIH-funded labs.

Grant fraud cases against universities rarely involve research misconduct, and most are brought by whistleblowers who stand to claim a share of any returned funds. Despite the high penalty, BWH gets praise from the Department of Justice in todays announcement for self-disclosing the allegations and for taking steps to prevent future recurrences of such conduct.

But the result is confusing and potentially discouraging, says Ferric Fang, a microbiologist at the University of Washington in Seattle, who has published several analyses of retractions, misconduct, and the scientific enterprise. It sounds as if the researchers themselves were found to have engaged in improper practices, but the institution is on the hook for the settlement. The decision deserves greater clarification, he says, or it could discourage other institutions from being as forthcoming in the future.

Original post:
$10 million settlement over alleged misconduct in Boston heart stem cell lab - Science Magazine

Are baby, wisdom teeth the next wave in stem cell treatment? – CNN

It's based on experimental research that suggests stem cells extracted from the pulp of these teeth might someday regrow a lost adult tooth or offer other regenerative medicine benefits -- some potentially life-saving.

"So I'll try not to get emotional here, but my husband was diagnosed with acute myeloid leukemia in 2011," said Bassetto, of Naperville, Illinois, head of a sales team at a software company.

In 2012, her husband, James, had a stem cell transplant to restore his bone marrow and renew his blood.

"He was very fortunate. He was one of six kids, and his brother was a perfect match," she said. She noted that her two children, Madeline, 23, and Alex, 19, may not be so lucky if they develop health problems, since they have only each other; the chance of two siblings being a perfect stem cell match is only 25%.

Unfortunately, her husband's stem cell transplant was not successful. He developed graft-versus-host disease, where his brother's donated stem cells attacked his own cells, and he died shortly afterward.

However, she says, the transplant had given him a chance at a longer life.

Last year, when her son saw a dentist for wisdom tooth pain, a brochure for dental stem cell storage caught Bassetto's eye and struck a chord.

"I know stem cells have tremendous health benefits in fighting disease, and there's a lot ways they're used today," she said. "Had my husband had his own cells, potentially, his treatment could have been more successful."

Medical breakthroughs happen all the time, said Bassetto. "Who knows what potential there is 20 years, 40 years down the road, when my son is an adult or an aging adult?

"Almost like a life insurance policy, is how I viewed it," she said.

Some scientists see storing teeth as a worthwhile investment, but others say it's a dead end.

"Research is still mostly in the experimental (preclinical) phase," said Ben Scheven, senior lecturer in oral cell biology in the school of dentistry at the University of Birmingham. Still, he said, "dental stem cells may provide an advantageous cell therapy for repair and regeneration of tissues," someday becoming the basis for reconstructing bone tissue, retinas and even optic neurons.

Dr. Pamela Robey, chief of the craniofacial and skeletal diseases branch of the National Institute of Dental and Craniofacial Research, acknowledges the "promising" studies, but she has a different take on the importance of the cells.

"There are studies with dental pulp cells being used to treat neurological disorders and problems in the eye and other things," Robey said. The research is based on the idea that these cells "secrete factors that encourage local cells to begin the repair process."

"The problem is, these studies have really not been that rigorous," she said, adding that many have been done only in animals and so provide "slim" evidence of benefits. "The science needs a lot more work."

Robey would know. Her laboratory discovered dental stem cells in 2003.

"My fellows, Songtao Shi and Stan Gronthos, did the work in my lab," Robey said. "Songtao Shi is a dentist, and basically he observed that, when you get a cavity, you get what's called 'reparative dentin.' In other words, the tooth is trying to protect itself from that cavity, so it makes a little bit of dentin to kind of plug the hole, so to speak."

Dentin is the innermost hard layer of tooth that lies beneath the enamel. Underneath the dentin is a soft tissue known as pulp, which contains the nerve tissue and blood supply.

Observing dentin perform reparative work, Shi hypothesized that this must mean there's a stem cell within the tooth that's able to activate and make dentin. So if you wanted to grow an adult tooth instead of getting an implant, knowing how to make dentin would be the start of the process, explained Robey.

Pursuing this idea, Shi, Gronthos and the team conducted their first study with wisdom teeth. They discovered that pulp cells in these third molars did indeed make dentin, but the cells found in baby teeth, called SHED (stem cells from human exfoliated deciduous teeth), had slightly different properties.

"The SHED cells seem to make not only dentin but also something that is similar to bone," Robey said. This "dentin osteogenic material" is a little like bone and a little like dentin -- "unusual stuff," she said.

There is a meticulous process for extracting stem cells from the pulp.

"We very carefully remove any soft tissue that's adhering to the tooth. We treat it with disinfectant, because the mouth is not really that clean," Robey said, laughing.

Scientists then use a dental drill to pass the enamel and dentin -- "kind of like opening up a clam," said Robey -- to get to the pulp. "We take the pulp out, and we digest it with an enzyme to release the cells from the matrix of the pulp, and then we put the cells into culture and grow them."

According to Laning, even very small amounts of dental pulp are capable of producing many hundreds of millions of structural stem cells.

Harvesting dental stem cells is not a matter of waiting for the tooth to fall out and then quickly calling your dentist. When a baby tooth falls out, the viability of the pulp is limited if it's not preserved in the proper solution.

American Academy of Pediatric Dentistry President Dr. Jade Miller explained that "it's critical that the nerve tissue in that pulp tissue, the nerve supply and blood supply, still remain intact and alive." Typically, the best baby teeth to harvest are the upper front six or lower front six -- incisors and cuspids, he said.

For a child between 5 and 8 years of age, it's best to extract the tooth when there's about one-third of the root remaining, Miller said: "It really requires some planning, and so parents need to make this decision early on and be prepared and speak with their pediatric dentist about that."

Bassetto found the process easy. All it involved was a phone call to the company recommended by her dentist.

"They offer a service where they grow the cells and save those and also keep the pulp of the tooth without growing cells from it," she said. "I opted for both." From there, she said, the dentist shipped the extracted teeth overnight in a special package.

Bassetto said she paid less than $2,000 upfront, and now $10 a month for continued storage.

So is banking teeth something parents should be doing?

In a policy statement, the American Academy of Pediatric Dentistry "encourages dentists to follow future evidence-based literature in order to educate parents about the collection, storage, viability, and use of dental stem cells with respect to autologous regenerative therapies."

"Right now, I don't think it is a logical thing to do. That's my personal opinion," said Robey of the National Institute of Dental and Craniofacial Research. As of today, "we don't have methods for creating a viable tooth. I think they're coming down the pike, but it's not around the corner."

Science also does not yet support using dental pulp stem cells for other purposes.

"That's not to say that in the future, somebody could come up with a method that would make them very beneficial," Robey said.

Still, she observed, if science made it possible to grow natural teeth from stem cells and you were in a car accident, for example, and lost your two front teeth, you'd probably be "very happy to give up a third molar to use the cells in the molar to create new teeth." Third molars are fairly expendable, she said.

Plus, Robey explained, it may not be necessary to bank teeth: Another type of stem cell, known as induced pluripotent stem cells, can be programmed into almost any cell type.

"It's quite a different story than banking umbilical cord blood, which we do know contains stem cells that re-create blood," Robey said.

"So cord blood banking -- and now we have a national cord blood bank as opposed to private clinics -- so there's a real rationale for banking cord blood, whereas the rationale for banking baby teeth is far less clear," Robey said.

And there's no guarantee that your long-cryopreserved teeth or cells will be viable in the future. Banking teeth requires proper care and oversight on the part of cryopreservation companies, she said. "I think that that's a big question mark. If you wanted to get your baby teeth back, how would they handle that? How would they take the tooth out of storage and isolate viable cells?"

Provia's Laning, who has "successfully thawed cells that have been frozen for more than 30 years," dismissed such ideas.

"Cryopreservation technology is not the problem here," he said. "Stem cells from bone marrow and other sources have been frozen for future clinical use in transplants for more than 50 years. Similarly, cord blood has a track record of almost 40 years." The technology for long-term cryopreservation has been refined over the years without any substantial changes, he said.

Despite issues and doubts, Miller, of the pediatric dentistry academy, said parents still need to consider banking baby teeth.

A grandparent, he is making the decision for his own family.

"It's really at its infancy, much of this research," he said. "There's a very strong chance there's going to be utilization for these stem cells, and they could be life-saving."

He believes that saving baby teeth could benefit not only his grandchildren but also their older siblings and various other family members if their health goes awry and a stem cell treatment is needed.

"The science is strong enough to show it's not science fiction," Miller said. "There's going to be a significant application, and I want to give my grandkids the opportunity to have those options."

Aside from cost, Miller said there are other considerations: "Is this company going to be around in 30, 40 years?" he asked. "That's not an easy thing to figure out."

Having taken the leap, Bassetto doesn't worry.

"In terms of viability, you know, if something were to happen with the company, you could always get what's stored and move it elsewhere, so I felt I was protected that way," she said. She feels "pretty confident" with her decision and plans to store her grandchildren's baby teeth.

Still, she concedes that her circumstances may be rare.

"Not everybody's going to be touched by some kind of disease where it just hits home," Bassetto said. "For me, that made it a no-brainer."

Read this article:
Are baby, wisdom teeth the next wave in stem cell treatment? - CNN

Transparent bones enable researchers to observe the stem cells inside – Medical Xpress

April 26, 2017 A mouse tibia that has been rendered transparent with Bone CLARITY. Stem cells appear distributed throughout the bone in red. The ability to see bone stem cell behavior is crucial for testing new osteoporosis treatments. Credit: Science Translational Medicine, Greenbaum, Chan, et al; Gradinaru laboratory/Caltech

Ten years ago, the bones currently in your body did not actually exist. Like skin, bone is constantly renewing itself, shedding old tissue and growing it anew from stem cells in the bone marrow. Now, a new technique developed at Caltech can render intact bones transparent, allowing researchers to observe these stem cells within their environment. The method is a breakthrough for testing new drugs to combat diseases like osteoporosis.

The research was done in the laboratory of Viviana Gradinaru (BS '05), assistant professor of biology and biological engineering and a Heritage Medical Research Institute Investigator. It appears in a paper in the April 26 issue of Science Translational Medicine.

In healthy bone, a delicate balance exists between the cells that build bone mass and the cells that break down old bone in a continual remodeling cycle. This process is partially controlled by stem cells in bone marrow, called osteoprogenitors, that develop into osteoblasts or osteocytes, which regulate and maintain the skeleton. To better understand diseases like osteoporosis, which occurs when loss of bone mass leads to a high risk of fractures, it is crucial to study the behavior of stem cells in bone marrow. However, this population is rare and not distributed uniformly throughout the bone.

"Because of the sparsity of the stem cell population in the bone, it is challenging to extrapolate their numbers and positions from just a few slices of bone," says Alon Greenbaum, postdoctoral scholar in biology and biological engineering and co-first author on the paper. "Additionally, slicing into bone causes deterioration and loses the complex and three-dimensional environment of the stem cell inside the bone. So there is a need to see inside intact tissue."

To do this, the team built upon a technique called CLARITY, originally developed for clearing brain tissue during Gradinaru's postgraduate work at Stanford University. CLARITY renders soft tissues, such as brain, transparent by removing opaque molecules called lipids from cells while also providing structural support by an infusion of a clear hydrogel mesh. Gradinaru's group at Caltech later expanded the method to make all of the soft tissue in a mouse's body transparent. The team next set out to develop a way to clear hard tissues, like the bone that makes up our skeleton.

In the work described in the new paper, the team began with bones taken from postmortem transgenic mice. These mice were genetically engineered to have their stem cells fluoresce red so that they could be easily imaged. The team examined the femur and tibia, as well as the bones of the vertebral column; each of the samples was about a few centimeters long. First, the researchers removed calcium from the bones: calcium contributes to opacity, and bone tissue has a much higher amount of calcium than soft tissues. Next, because lipids also provide tissues with structure, the team infused the bone with a hydrogel that locked cellular components like proteins and nucleic acids into place and preserved the architecture of the samples. Finally, a gentle detergent was flowed throughout the bone to wash away the lipids, leaving the bone transparent to the eye. For imaging the cleared bones, the team built a custom light- sheet microscope for fast and high-resolution visualization that would not damage the fluorescent signal. The cleared bones revealed a constellation of red fluorescing stem cells inside.

The group collaborated with researchers at the biotechnology company Amgen to use the method, named Bone CLARITY, to test a new drug developed for treating osteoporosis, which affects millions of Americans per year.

"Our collaborators at Amgen sent us a new therapeutic that increases bone mass," says Ken Chan, graduate student and co-first author of the paper. "However, the effect of these therapeutics on the stem cell population was unclear. We reasoned that they might be increasing the proliferation of stem cells." To test this, the researchers gave one group of mice the treatment and, using Bone CLARITY, compared their vertebral columns with bones from a control group of animals that did not get the drug. "We saw that indeed there was an increase in stem cells with this drug," he says. "Monitoring stem cell responses to these kinds of drugs is crucial because early increases in proliferation are expected while new bone is being built, but long-term proliferation can lead to cancer."

The technique has promising applications for understanding how bones interact with the rest of the body.

"Biologists are beginning to discover that bones are not just structural supports," says Gradinaru, who also serves as the director of the Center for Molecular and Cellular Neuroscience at the Tianqiao and Chrissy Chen Institute for Neuroscience at Caltech. "For example, hormones from bone send the brain signals to regulate appetite, and studying the interface between the skull and the brain is a vital part of neuroscience. It is our hope that Bone CLARITY will help break new ground in understanding the inner workings of these important organs."

The paper is titled "Bone CLARITY: Clearing, imaging, and computational analysis of osteoprogenitors within intact bone marrow."

Explore further: Growing new bone for more effective injury repair

More information: Alon Greenbaum et al, Bone CLARITY: Clearing, imaging, and computational analysis of osteoprogenitors within intact bone marrow, Science Translational Medicine (2017). DOI: 10.1126/scitranslmed.aah6518

Broken bones do not always repair fully, especially after major trauma such as a car accident. Complications can occur when the bone is broken in several places, the blood flow is reduced or infection sets in. Patients can ...

An international team of researchers, funded by Morris Animal Foundation, has shown that adipose (fat) stem cells might be the preferred stem cell type for use in canine therapeutic applications, including orthopedic diseases ...

Researchers at the University of Illinois report they can alter blood cell development through the use of biomaterials designed to mimic characteristics of the bone marrow.

A team of scientists at the Children's Research Institute at UT Southwestern (CRI) has become the first to use a tissue-clearing technique to localize a rare stem cell population, in the process cracking open a black box ...

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

Ten years ago, the bones currently in your body did not actually exist. Like skin, bone is constantly renewing itself, shedding old tissue and growing it anew from stem cells in the bone marrow. Now, a new technique developed ...

Regenerative medicine using human pluripotent stem cells to grow transplantable tissue outside the body carries the promise to treat a range of intractable disorders, such as diabetes and Parkinson's disease.

Scientists have long thought that calcium transport into mitochondria - the powerhouses of cells - is a key signal linking cardiac workload, or how hard the heart pumps, with energy production. Studies at the Lewis Katz School ...

Using a unique microscope capable of illuminating living cell structures in great detail, researchers at the University of Colorado Anschutz Medical Campus have found clues into how a destructive autoimmune disease works, ...

Your brain needs just the right balance between excitatory "on" signals and inhibitory "calm down" signals. Now scientists from the Florida campus of The Scripps Research Institute (TSRI) have shown that a protein helps balance ...

Humans, like virtually all other complex organisms on Earth, have adapted to their planet's 24-hour cycle of sunlight and darkness. That circadian rhythm is reflected in human behavior, of course, but also in the molecular ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

More here:
Transparent bones enable researchers to observe the stem cells inside - Medical Xpress

Researchers Invent Stem Cell Capable of Becoming an Entire Embryo – Futurism

A New Type of Stem Cell

While much has been gleaned about the power of stem cells over the last few decades, researchers from the Salk Institute and Peking Universityin China recently found out theres plenty left to discover and invent. Nature, it seems, will always keep you guessing.

In a study published in the journal Cell, the team of researchers revealed they had succeeded in creating a new kind of stem cell thats capable of becoming any type of cell in the human body. Extended pluripotent stem cells or EPS cells are similar to induced pluripotent stem cells(iPS cells), which were invented in 2006.

The key difference between the two is that iPS cells are made from skin cells (called fibroblasts) and EPS cells are made from a combination of skin cells and embryonic stem cells. iPS cells are the hallmark of stem cell research and can be programmed to become any cell in the human body hence the pluripotent part of their name. EPS cells, too, can give rise to any type of cell in the human body, but they can also do something very different something unprecedented, actually: they can create the tissues needed to nourish and grow an embryo.

The discovery of EPS cells provides a potential opportunity for developing a universal method to establish stem cells that have extended developmental potency in mammals, says Jun Wu, one of the studys authors and senior scientist at the Salk Institute, in the organizations news release.

When a human or any mammalian egg gets fertilized, the cells divide up into two task forces: one set is responsible for creating the embryo, and the other set creates the placenta and other supportive tissues needed for the embryo to survive (called extra-embryonic tissues). This happens very early in the reproductive process so early, in fact, that researchers have had a very hard time recreating it in a lab setting.

By culturing and studying both types of cells in action, researchers would not only be able to understand the mechanism that drives it, but hopefully could shed some light on what happens when things go wrong, like in the case of miscarriage.

The researchers at the Salk Institute managed to form a chemical cocktail of four chemicals and a type of growth factor that created a stable environment in which they could culture both types of cells in an immature state. They could then harness the two types of cells for their respective abilities.

What they discovered was that not only were these cells extremely useful for creating chimeras (where two types of animal cells or human and animal cells are mixed to form something new), but were also technically capable of creating and sustaining an entire embryo.At least in theory: while they were able to sustain both human and mouse cells, the ethical considerations of creating a human embryo this way have prevented them from attempting it.

That being said, theres no shortage of applications for this type of stem cell: researchers will be able to use them to model diseases, regenerate tissue, create and trial drug therapies, and study in depth early reproductive processes like implantation. Human-animal chimeras may also help engineer organs for transplant or, you know, give rise to the next superhero.

Continue reading here:
Researchers Invent Stem Cell Capable of Becoming an Entire Embryo - Futurism

Stem cells help researchers identify neuronal defects causing Angelman syndrome – Science Daily

Stem cells help researchers identify neuronal defects causing Angelman syndrome
Science Daily
Angelman patients are very active in the ongoing research into the disorder. The induced pluripotent stem cells used in Levine's research were derived from skin and blood cells donated by people with Angelman. Those cells were then reprogrammed into ...

and more »

View original post here:
Stem cells help researchers identify neuronal defects causing Angelman syndrome - Science Daily

Frances Saunders: Know where your Relay for Life donations are going – Merced Sun-Star

Frances Saunders: Know where your Relay for Life donations are going
Merced Sun-Star
The annual Relay for Life fundraiser, sponsored by the American Cancer Society, will be April 29. Participants might not know that the American Cancer Society does embryonic (stem cell) research on aborted, unborn babies. They might want to think about ...

and more »

View post:
Frances Saunders: Know where your Relay for Life donations are going - Merced Sun-Star

Should Californians give more money for stem cell research? – The … – The San Diego Union-Tribune

Are Californians getting their moneys worth for the $3 billion they invested in stem cell science in 2004? Is there cause for optimism that major breakthrough discoveries are about to happen? What is holding back stem cell treatments from reaching patients?

These are some of the issues to be addressed Thursday in San Diego at a special stem cell meeting thats free and open to the public.

The session is sponsored by Californias stem cell agency and UC San Diego, a major hub of stem cell research and experimental treatment.

The event is the first in a statewide outreach tour by the California Institute for Regenerative Medicine, or CIRM.

The agency is projected to run out of money in 2020 unless more money is raised from public or private sources, and the series of forums is partly meant as a way to persuade voters to further support the institute with more funding.

The free event Stem Cell Therapies and You is slated for noon to 1:00 p.m. at the Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, across from the Salk Institute in La Jolla.

Four speakers at Thursdays event are to discuss the state of stem cell research:

-- Catriona Jamieson, director of the UC San Diego Alpha Stem Cell Clinic and an expert on blood cancers

-- Jennifer Briggs Braswell, executive director of the Sanford Stem Cell Clinical Center, another stem cell clinic at UCSD

-- David Higgins, a patient advocate for Parkinsons on the CIRM board, and a San Diegan

-- Jonathan Thomas, chairman of CIRMs governing board

Boosted with the $3 billion in bond money raised through Proposition 71 (not including the additional $3 billion in interest that taxpayers are also repaying), California has become an international leader in stem cell exploration.

The money has helped attract top-notch scientists from across the country to work in this state, and it has underpinned much of the training for new researchers in this field.

While encouraging reports of individual patients being cured with experimental stem cell therapies have emerged in recent years, no stem cell-based treatment developed in this state has been approved for commercial use.

This lack of therapies on the market has resulted in some criticism that stewards of Californias groundbreaking effort have spent lavishly on researchers and the infrastructure that supports them instead of focusing on how to more quickly turn lab discoveries into usable products and technologies for the public.

In January, the biomedical news site Stat published a lengthy and critical analysis of CIRMs record in clinical trials, quoting critics who said Prop. 71s supporters shamelessly oversold the initiative as providing quick cures.

The airwaves were swamped with guys in white coats who were identified with their academic affiliation even though they were principals of private companies (some of which later got CIRM grants), and basically saying, Were going to have cures by Christmas. Marcy Darnovsky, who directs the Berkeley-based Center for Genetics and Society, was quoted as saying in the Stat article.

Providing answers

Supporters of CIRM and the programs it has backed financially said it can take many years to effectively translate research into treatments, especially when ensuring safety is paramount. The agency is supporting about 30 clinical trials, including some at its own alpha stem cell clinics, combining treatment with research support.

Jonathan Thomas, CIRMs chairman, said the San Diego event and others like it in other parts of the state are meant to update patients and all Californians about how their money has been spent, and to hear from the public. While San Diego will be in the spotlight at this meeting, work throughout CIRM will be discussed.

San Diego has received a lot of money from CIRM, including about $60 million that has gone to ViaCyte, developer of a stem cell-based implant that could produce a functional cure for Type 1 diabetes.

Many San Diego County stem cell researchers have received grants for various projects. These include David Schubert of the Salk Institute for Biological Studies, for stem cell-based development of an Alzheimers drug; Robert Wechsler-Reya of Sanford Burnham Prebys Medical Discovery Institute, to determine the role of neural stem cells in growth, regeneration and cancer; and Bianca Moth of Cal State San Marcos, to train students for a career in stem cell research.

The Sanford Consortium for Regenerative Medicine building, where the Thursday meeting will be held, was constructed with $43 million from CIRM toward its total price tag of $127 million.

Four clinical trials are taking place at UC San Diegos alpha stem cell clinic, said Larry Goldstein, director of the universitys stem cell program.

These are the diabetes treatment being developed with ViaCyte; a treatment for spinal cord injury derived from human fetal cells; a chronic heart failure therapy using mesenchymal stem cells; and a drug called cirmtuzumab that targets cancer stem cells for chronic lymphocytic leukemia. (Yes, the drug was named after CIRM, which supported its research and development.)

Other stem cell treatments are taking place at UC San Diego outside the alpha clinic, Goldstein said. They include one from Kite Pharma of Santa Monica, using genetically modified immune cells called CAR T cells. The trial is being handled through the universitys bone marrow transplant program at Moores Cancer Center because CAR T cell therapy amounts to a bone marrow transplant.

Safety requires time

All these trials need time because patient safety is being evaluated, Goldstein said. That process can consume years.

So far, they all look safe, which is terrific news, Goldstein said.

Other stem cell trials at the alpha clinic are incipient, he said, including for osteoarthritis using mesenchymal and stromal cells, taken from bone marrow and fat tissue. Numerous stem cell clinics offer treatment with these cells, including some operating in a legal gray zone, outside the clinical trial system.

Goldstein said UCSD plans to better study these poorly defined cells, and what they can do, before beginning treatment. Part of that includes building a genetic profile of these cells, using a method called single cell RNA seq.

Once weve got a better handle on what those cells look like, wed like to put them into clinical trials, he said.

Its especially important that we get a handle on patient-to-patient variability, Goldstein said. We expect there will be variability. Most things in humans are. But to my knowledge, the clinics that are using this methodology dont have a logical and rigorous ability to take advantage of that variability to treat human patients.

bradley.fikes@sduniontribune.com

(619) 293-1020

More:
Should Californians give more money for stem cell research? - The ... - The San Diego Union-Tribune

Stem cell research: The hope and the hype – Channel3000.com – WISC-TV3

Stem cell research: The hope and the... More Headlines

MADISON, Wis. - In research labs at the McPherson Eye Research Institute, work is being done to find ways to use stem cells to halt and possibly reverse vision loss caused by blinding diseases.

I have a tremendous amount of hope, said Dr. David Gamm, director of the McPherson Eye Research Institute and an ophthalmologist with UW Health. The technology is very strong, and there is a lot of real potential in what we and other laboratories are doing.

Before stem cells can be used to treat blinding diseases, more research needs to be done and a clinical trial must be completed. The research team at UW is moving toward a clinical trial.

You are talking about a science and a field of medicine that didnt exist two decades ago. So to be able to get as far as we have in this period of time is really remarkable. Now try telling that to someone who is losing vision. Thats a very difficult thing to be able to handle, whether it is yourself or your family member. So it is never going to be fast enough, Gamm said.

While the research continues into stem cell use, some clinics in the country and around the world have been offering stem cell treatments. Some have made claims the stem cell treatment can cure a wide range of ailments.

If it claims to treat anything that ails you, and has a long list of, not only can we do your retinal degeneration disease, we can treat your MS, we can treat your Alzheimers and so on and so forth, youve got to be careful about that, Gamm said.

In addition to losing money paid to clinics offering treatment claims, patients can risk something even greater.

There have been cases in a Florida clinic where people have been blinded, not by the cells themselves, but because of infections that came along with the injections they received, Gammsaid.

In Wisconsin, there are more than 100,000 individuals who have severe incurable vision loss.

Gamm recommends patients educate themselves about treatment options and health care institutions.

For more information about stem cell research, you can read a statement written by Gammhere: https://vision.wisc.edu/.

More here:
Stem cell research: The hope and the hype - Channel3000.com - WISC-TV3

The New York Stem Cell Foundation Opens New Research Institute and Headquarters in Manhattan – Business Wire (press release)

NEW YORK--(BUSINESS WIRE)--The New York Stem Cell Foundation (NYSCF) today officially opened its new 40,000 square foot Research Institute in Manhattan, one of the largest laboratories in the world devoted exclusively to stem cell research. The new facility, which also contains the headquarters of NYSCF, an independent, non-profit organization founded in 2005 to support cutting-edge stem cell research, will allow scientists to conduct the most advanced research to develop new and better treatments and cures. This new facility will expand NYSCFs capabilities and capacity to build novel technological resources for the stem cell field.

The new NYSCF complex includes a glass-enclosed laboratory housing the NYSCF Global Stem Cell Array, a unique, NYSCF-developed automated robotic technology for manufacturing stem cell lines with unmatched quality in large scale, among other cell culture facilities. NYSCF will also have a highly specialized GMP laboratory facility for manufacturing cells for therapies. Additional laboratories include molecular biology, imaging, cell sorting, and electrophysiology suites, and extensive bench space.

Opening this new world class research laboratory is the culmination of our vision to build the infrastructure for stem cell research and therapeutics, said Susan L. Solomon, NYSCF CEO and Co-founder. As NYSCF is increasingly becoming a global hub of stem cell research and regenerative medicine, our new home will enable new partnerships with global bioscience and research institutions, accelerate the development of new treatments and cures, and further strengthen New York City as a center for biomedical research.

Key NYSCF collaborators, supporters, and friends speaking at the opening ceremony and ribbon cutting, include:

The new NYSCF facility, which was designed by Ennead Architects, also contains numerous conference and meeting suites, in addition to an expansive common area for collaborative and interactive work. A large lecture hall equipped with the latest multimedia technologies solidifies and expands NYSCFs role and capabilities as a key convening resource and host for scientists in the greater New York metropolitan region.

Since 2005, NYSCF has supported and pioneered innovation in science, producing some of the most significant discoveries in human stem cell research to advance the entire field. All the while, patients have remained the sole focus of NYSCFs mission to find cures.

NYSCFs unique model of research - an independent, largely privately funded foundation and safe haven laboratories - continues to push the boundaries of medical research and redefine what the field believes to be possible. By pursuing high-risk, high reward research that traditional funding models do not support, and developing innovative solutions to overcome rate-limiting challenges to the entire field, NYSCF is accelerating new and better treatments and cures for patients around the world.

The New York Stem Cell Foundation is a critical partner to New Yorks research institutions and is doing great things in terms of finding treatments and cures for the most vexing diseases, said U.S. Senator Charles Schumer. We in New York are at the center of biomedical research and the new NYSCF facility will enhance that centrality.

This facility is home to some of the most brilliant scientists and researchers in the field of stem cell research, and we are so fortunate to have it right here in New York, said U.S. Senator Kirsten Gillibrand. The men and women who work here are bringing us closer every day to finding new cures and treatments that would help millions of families around the world.

Michael R. Bloomberg stated, Its great to be celebrating such a wonderful milestone for the New York Stem Cell Foundation. In just 12 years, this organization has grown from one office with a handful of employees to an enormous group of researchers around the world. The New York Stem Cell Foundation strengthens New York City as a global center of research and innovation, and it goes without saying that the next twelve years will be as even more exciting to watch as this institute grow and matures.

Stephen Ross, Chairman and Founder of Related Companies and NYSCF Board member said, We can all take great pride that the New York Stem Cell Foundation, led by Susan Solomon, are doing the most advanced stem cell research in the world, right here in New York City, and now in a state-of-the-art facility. NYSCF is without a doubt, one of New Yorks great entrepreneurial successes of the last decade and as the nations leader in the production of stem cells, they are now poised for dramatic growth. I am pleased to have played a role in the creation of a world-class home for NYSCF and encourage everyone to support their important work as stem cell research is key to improving and saving peoples lives.

The NYSCF is a jewel in the New York City life sciences ecosystem, said Dr. Tony Coles, Chairman and CEO of Yumanity Therapeutics. The biotechnology community looks forward to pushing back the frontiers of science in collaboration with this dynamic organization.

Empire State DevelopmentPresident, CEO & CommissionerHoward Zemsky stated, The States investment in the New York Stem Center Foundations state-of-the-art laboratory is a smart investment in innovation, in progress, and in our future. We are proud to support this groundbreaking work which is spurring the creation of more than 30 new jobs over the next five years. With this project, New York State further establishes itself as the premier hub for advancements and breakthroughs in the burgeoning life sciences industry.

The growth of New York Citys life sciences sector is critical in our efforts to create 100,000 high-quality jobs over the next decade, said NYCEDC President and CEO James Patchett. Since its inception, the New York Stem Cell Foundations innovative research and tireless advocacy has helped build a foundation for this important industry. We are thrilled to welcome their new, state-of-the-art headquarters, which will create more good jobs and further solidify New York City as a premier destination for the life sciences.

About The New York Stem Cell Foundation Research Institute

The New York Stem Cell Foundation (NYSCF) Research Institute is an independent organization accelerating cures and better treatments for patients through stem cell research. The NYSCF global community includes over 140 researchers at leading institutions worldwide, including the NYSCF Druckenmiller Fellows, the NYSCF Robertson Investigators, the NYSCF Robertson Stem Cell Prize Recipients, and NYSCF Research Institute scientists and engineers. The NYSCF Research Institute is an acknowledged world leader in stem cell research and in developing pioneering stem cell technologies, including the NYSCF Global Stem Cell ArrayTM and in manufacturing stem cells for scientists around the globe. NYSCF focuses on translational research in a model designed to overcome the barriers that slow discovery and replace silos with collaboration. For more information, visit http://www.nyscf.org.

Continue reading here:
The New York Stem Cell Foundation Opens New Research Institute and Headquarters in Manhattan - Business Wire (press release)