Category Archives: Stell Cell Research


Stem Cells – Research | ucsf.edu

Since the success in 1998 by the University of Wisconsins James Thomson in deriving human embryonic stem cells from embryos, the stem cell research field has exploded.

The discovery by Japans Shinya Yamanaka, MD, PhD,in 2006, of how to transform ordinary adult skin cells into cells that, like embryonic stem cells, are capable of developing into any cell in the human body, has revolutionized stem cell research.

At top, Robert Blelloch, MD, PhD, performs stem cell research. Above,Shinya Yamanaka, MD, PhD, a scientist at the UCSF-affiliated Gladstone Institutes, UCSF and Kyoto University, was recognized for a revolutionary achievement in the field of stem cell science with a Nobel Prize in Medicine in 2012.

In between and since, there has been major progress in scientists understanding of stem cells. Today, fueled in part by the robust research enterprise at UCSF, the field is burgeoning.Yamanaka, a senior investigator at the UCSF-affiliated Gladstone Institutes and a professor of anatomy at UCSF, shared the Nobel Prize in Physiology and Medicine with John B. Gurdon of the Gurdon Institute in Cambridge, England, in 2012.

In about 125 labs of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF one of the largest such programs in the country scientists are carrying out the basic research needed to understand how stem cells could be manipulated to treat diseases, to translate these findings into clinical research and to develop novel therapies.

In studies conducted in the culture dish and in animals, scientists are learning how to prompt stem cells to develop into specialized cells of tissues such as the heart, pancreas and brain. The ultimate goal is to transplant these cells into patients to regenerate damaged tissues.

The scientists also are exploring the use of stem cells as vehicles for delivering drugs into diseased tissues, and are using specialized cells produced by stem cells, such as liver and heart muscle cells, to test the effectiveness of experimental drugs in the culture dish. In addition, they are studying the role of stem cells in generating many forms of cancer, an important first step for targeting the cells for therapies.

The center is structured along seven research pipelines aimed at driving discoveries from the lab bench to clinical care. Each pipeline focuses on a different organ system: the blood, pancreas and liver, heart, reproductive organs, nervous system, musculoskeletal tissues and skin. And each pipeline is overseen by two leaders of international standing one representing the basic sciences and one representing clinical research. The approach has proven successful in the private sector for driving the development of new therapies.

Among the basic science studies being conducted by UCSF investigators are:

Exploring a novel stem cell strategy for treating brain diseases Five UCSF labs are pioneering a novel approach to treating brain diseases and injuries, using a particular type of embryonic stem cell to manipulate the brains neural circuitry. They recently reported the first use of the cells, which mature into neurons, in creating a new period of plasticity, or capacity to change, in the brains of rodents.

See original here:
Stem Cells - Research | ucsf.edu

Pros And Cons Of Stem Cell Research – Popular Issues …

You are here: Popular Issues >> Pros And Cons Of Stem Cell Research

Pros and Cons of Stem Cell Research - What are Stem Cells? There has been much controversy in the press recently about the pros and cons of stem cell research. What is the controversy all about? "Stem" cells can be contrasted with "differentiated" cells. They offer much hope for medical advancement because of their ability to grow into almost any kind of cell. For instance, neural cells in the brain and spinal cord that have been damaged can be replaced by stem cells. In the treatment of cancer, cells destroyed by radiation or chemotherapy can be replaced with new healthy stem cells that adapt to the affected area, whether it be part of the brain, heart, liver, lungs, or wherever. Dead cells of almost any kind, no matter the type of injury or disease, can be replaced with new healthy cells thanks to the amazing flexibility of stem cells. As a result, billions of dollars are being poured into this new field.

Pros and Cons of Stem Cell Research - Where Do They Come From? To understand the pros and cons of stem cell research, one must first understand where stem cells come from. There are three main sources for obtaining stem cells - adult cells, cord cells, and embryonic cells. Adult stem cells can be extracted either from bone marrow or from the peripheral system. Bone marrow is a rich source of stem cells. However, some painful destruction of the bone marrow results from this procedure. Peripheral stem cells can be extracted without damage to bones, but the process takes more time. And with health issues, time is often of the essence. Although difficult to extract, since they are taken from the patient's own body, adult stem cells are superior to both umbilical cord and embryonic stem cells. They are plentiful. There is always an exact DNA match so the body's immune system never rejects them. And as we might expect, results have been both profound and promising.

Stem cells taken from the umbilical cord are a second very rich source of stem cells. Umbilical cells can also offer a perfect match where a family has planned ahead. Cord cells are extracted during pregnancy and stored in cryogenic cell banks as a type of insurance policy for future use on behalf of the newborn. Cord cells can also be used by the mother, the father or others. The more distant the relationship, the more likely it is that the cells will be rejected by the immune system's antibodies. However, there are a number of common cell types just as there are common blood types so matching is always possible especially where there are numerous donors. The donation and storage process is similar to blood banking. Donation of umbilical cells is highly encouraged. Compared to adult cells and embryonic cells, the umbilical cord is by far the richest source of stem cells, and cells can be stored up in advance so they are available when needed. Further, even where there is not an exact DNA match between donor and recipient, scientists have developed methods to increase transferability and reduce risk.

Pros and Cons of Stem Cell Research - Embryonic Cells The pros and cons of stem cell research come to the surface when we examine the third source of stem cells - embryonic cells. Embryonic stem cells are extracted directly from an embryo before the embryo's cells begin to differentiate. At this stage the embryo is referred to as a "blastocyst." There are about 100 cells in a blastocyst, a very large percentage of which are stem cells, which can be kept alive indefinitely, grown in cultures, where the stem cells continue to double in number every 2-3 days. A replicating set of stem cells from a single blastocyst is called a "stem cell line" because the genetic material all comes from the same fertilized human egg that started it. President Bush authorized federal funding for research on the 15 stem cell lines available in August 2001. Other stem cell lines are also available for research but without the coveted assistance of federal funding.

So what is the controversy all about? Those who value human life from the point of conception, oppose embryonic stem cell research because the extraction of stem cells from this type of an embryo requires its destruction. In other words, it requires that a human life be killed. Some believe this to be the same as murder. Against this, embryonic research advocates argue that the tiny blastocyst has no human features. Further, new stem cell lines already exist due to the common practice of in vitro fertilization. Research advocates conclude that many fertilized human cells have already been banked, but are not being made available for research. Advocates of embryonic stem cell research claim new human lives will not be created for the sole purpose of experimentation.

Others argue against such research on medical grounds. Mice treated for Parkinson's with embryonic stem cells have died from brain tumors in as much as 20% of cases.1 Embryonic stem cells stored over time have been shown to create the type of chromosomal anomalies that create cancer cells.2 Looking at it from a more pragmatic standpoint, funds devoted to embryonic stem cell research are funds being taken away from the other two more promising and less controversial types of stem cell research mentioned above.

Learn More Now!

Footnotes 1 The Real Promise of Stem Cell Research Dr. David Prentice, HealthNewsDigest.com 2 Derivation of Human Stem-Cell Lines from Human Blastocysts, C. A. Cowan and others. March 25, 2004, New England Journal of Medicine, p.1355 with secondary reference to footnotes 13-17 p.1356.

Like this information? Help us by sharing it with others using the social media buttons below. What is this?

View post:
Pros And Cons Of Stem Cell Research - Popular Issues ...

Stem cell controversy – Wikipedia, the free encyclopedia

The stem cell controversy is the bioethical debate primarily concerning the creation, treatment, and destruction of human embryos incident to research involving embryonic stem cells. Not all stem cell research involves the creation, use, or destruction of human embryos. For example, adult stem cells, amniotic stem cells and induced pluripotent stem cells do not involve human embryos.

Stem cells have the ability to differentiate into almost any specialized cells, helping heal physical trauma, degenerative conditions, and genetic diseases (in combination with gene therapy). Further treatments using stem cells could potentially be developed thanks to their ability to repair extensive tissue damage.[1]

Great levels of success and potential have been shown from research using adult stem cells. In early 2009, the FDA approved the first human clinical trials using embryonic stem cells. Embryonic stem cells are pluripotent, and thus can become any other cell type excluding the placenta. Adult stem cells, however, are generally limited to differentiating into different cell types of their tissue of origin. However, some evidence suggests that adult stem cell plasticity may exist, increasing the number of cell types a given adult stem cell can become. In addition, embryonic stem cells are considered more useful for nervous system therapies, because researchers have struggled to identify and isolate neural progenitors from adult tissues. Embryonic stem cells, however, might be rejected by the immune system - a problem that wouldn't occur if the patient received his or her own stem cells.

Some stem cell researchers are working to develop techniques of isolating stem cells that are as potent as embryonic stem cells, but do not require a human embryo.

Some believe that human skin cells can be coaxed to "de-differentiate" and revert to an embryonic state. Researchers at Harvard University, led by Kevin Eggan, have attempted to transfer the nucleus of a somatic cell into an existing embryonic stem cell, thus creating a new stem cell line.[2] Another study published in August 2006 also indicates that differentiated cells can be reprogrammed to an embryonic-like state by introducing four specific factors, resulting in induced pluripotent stem cells.[3] Human skins cells reverting to their embryonic state have been accomplished at the Oregon Health & Science University and the Oregon National Primate Research Center, making this no longer a matter of belief.[4]

Researchers at Advanced Cell Technology, led by Robert Lanza, reported the successful derivation of a stem cell line using a process similar to preimplantation genetic diagnosis, in which a single blastomere is extracted from a blastocyst.[5] At the 2007 meeting of the International Society for Stem Cell Research (ISSCR),[6] Lanza announced that his team had succeeded in producing three new stem cell lines without destroying the parent embryos. "These are the first human embryonic cell lines in existence that didn't result from the destruction of an embryo." Lanza is currently in discussions with the National Institutes of Health (NIH) to determine whether the new technique sidesteps U.S. restrictions on federal funding for ES cell research.[7]

Anthony Atala of Wake Forest University says that the fluid surrounding the fetus has been found to contain stem cells that, when utilized correctly, "can be differentiated towards cell types such as fat, bone, muscle, blood vessel, nerve and liver cells". The extraction of this fluid is not thought to harm the fetus in any way. He hopes "that these cells will provide a valuable resource for tissue repair and for engineered organs as well".[8]

While stem cell research has, for years, been stymied by concerns of ethics and morals, in recent years there have been advances in obtaining and using stem cells extracted from adult subjects. By using stem cells taken from an adult, scientists have been able to treat some of the worst diseases that continue to plague our species, including various forms of cancer as well as muscular and neurological degenerative diseases. Taking these stem cells from adults does not permanently harm the patient and has none of the ethical or moral pitfalls that embryonic stem cell research has been associated with. While this new form of stem cell research is gaining in popularity, it still has a stigma attached to it solely by being stem cell research. If the public can be educated about this, a new form of medicine may be fast approaching from the horizon.

The status of the human embryo and human embryonic stem cell research is a controversial issue as, with the present state of technology, the creation of a human embryonic stem cell line requires the destruction of a human embryo. Stem cell debates have motivated and reinvigorated the pro-life movement, whose members are concerned with the rights and status of the embryo as an early-aged human life. They believe that embryonic stem cell research instrumentalizes and violates the sanctity of life, and some also view it as tantamount to murder.[9] The fundamental assertion of those who oppose embryonic stem cell research is the belief that human life is inviolable, combined with the belief that human life begins when a sperm cell fertilizes an egg cell to form a single cell.

A portion of stem cell researchers use embryos that were created but not used in in vitro fertility treatments to derive new stem cell lines. Most of these embryos are to be destroyed, or stored for long periods of time, long past their viable storage life. In the United States alone, there have been estimates of at least 400,000 such embryos.[10] See also Embryo donation.

Read more:
Stem cell controversy - Wikipedia, the free encyclopedia

Human stem cell research: all viewpoints

Sponsored link.

Stem cells are a special form of human life: they are alive and contain human DNA. They have a unique feature in that they can be coaxed into developing into some or all of the 220 cell types found in the human body. Eventually, stem cells may be routinely used by doctors to generate new organs or new replacement body parts for people: They might become a new pancreas to cure a person with diabetes, or new nerve cells to cure a paralized person, etc.

There are three types of stem cells:

"...reprogrammed a dozen cell types, including those from the brain, skin, lung and liver, hinting that the method will work with most, if not all, cell types. On average, she says, 25% of the cells survive the stress and 30% of those convert to pluripotent cells already a higher proportion than the roughly 1% conversion rate of iPS cells." 1

The National Institutes of Health web site states:

"To realize the promise of novel cell-based therapies for such pervasive and debilitating diseases, scientists must be able to manipulate stem cells so that they possess the necessary characteristics for successful differentiation, transplantation, and engraftment. The following is a list of steps in successful cell-based treatments that scientists will have to learn to control to bring such treatments to the clinic. To be useful for transplant purposes, stem cells must be reproducibly made to:

Also, to avoid the problem of immune rejection, scientists are experimenting with different research strategies to generate tissues that will not be rejected.

See the original post here:
Human stem cell research: all viewpoints

CNS STORY: New stem-cell method offers another alternative …

New stem-cell method offers another alternative to embryonic research

By Nancy Frazier O'Brien Catholic News Service

BALTIMORE (CNS) -- A new method of creating versatile stem cells from a relatively simple manipulation of existing cells could further reduce the need for any stem-cell research involving human embryos, according to leading ethicists.

Although the process has only been tested in mice, two studies published Jan. 29 in the journal Nature detailed research showing success with a process called stimulus-triggered acquisition of pluripotency, or STAP.

Scientists from Japan's RIKEN research institute and Harvard's Brigham and Women's Hospital in Boston were able to reprogram blood cells from newborn mice by placing them in a low-level acidic bath for 30 minutes. Seven to 9 percent of the cells subjected to such stress returned to a state of pluripotency and were able to grow into other types of cells in the body.

"If this technology proves feasible with human cells, which seems likely, it will offer yet another alternative for obtaining highly flexible stem cells without relying on the destructive use of human embryos," said Father Tadeusz Pacholczyk, director of education at the National Catholic Bioethics Center in Philadelphia. "This is clearly a positive direction for scientific research."

Father Pacholczyk, a priest of the Diocese of Fall River, Mass., who holds a doctorate in neuroscience from Yale University, said the only "potential future ethical issue" raised by the new STAP cells would be if scientists were to coax them into "a new degree of flexibility beyond classical pluripotency," creating cells "with essential characteristics of embryos and the propensity to develop into the adult organism."

"Generating human embryos in the laboratory, regardless of the specific methodology, will always raise significant ethical red flags," he said.

The Catholic Church opposes any research involving the destruction of human embryos to create stem cells.

Richard Doerflinger, associate director of the U.S. bishops' Secretariat for Pro-Life Activities, said if the new method were used to create stem cells so versatile that they could form placenta tissue and make human cloning easier, "then we would have serious moral problems with that." But there is no indication so far that the scientists could or would do so, he added.

See the original post:
CNS STORY: New stem-cell method offers another alternative ...

New stem cell research removes reliance on human and …

A new study, published today in the journal Applied Materials & Interfaces, has found a new method for growing human embryonic stem cells, that doesn't rely on supporting human or animal cells.

Traditionally, these stem cells are cultivated with the help of proteins from animals, which rules out use in the treatment of humans. Growing stem cells on other human cells risks contamination with pathogens that could transmit diseases to patients.

The team of scientists led by the University of Surrey and in collaboration with Professor Peter Donovan at the University of California have developed a scaffold of carbon nanotubes upon which human stem cells can be grown into a variety of tissues. These new building blocks mimic the surface of the body's natural support cells and act as scaffolding for stem cells to grow on. Cells that have previously relied on external living cells can now be grown safely in the laboratory, paving the way for revolutionary steps in replacing tissue after injury or disease.

Dr Alan Dalton, senior lecturer from the Department of Physics at the University of Surrey said: "While carbon nanotubes have been used in the field of biomedicine for some time, their use in human stem cell research has not previously been explored successfully."

"Synthetic stem cell scaffolding has the potential to change the lives of thousands of people, suffering from diseases such as Parkinson's, diabetes and heart disease, as well as vision and hearing loss. It could lead to cheaper transplant treatments and could potentially one day allow us to produce whole human organs without the need for donors."

Story Source:

The above story is based on materials provided by University of Surrey. Note: Materials may be edited for content and length.

Read this article:
New stem cell research removes reliance on human and ...

How stem cells can fight obesity – Sacramento Holistic …

Otttawa scientists have discovered a trigger that turns muscle stem cells into brown fat, a form of good fat that could play a critical role in the fight against obesity. Fighting fat with fat? The recent stem cell discovery identified a potential obesity treatment, says research from the Ottawa Hospital Research Institute. The study is a collaboration that included researchers from the Ottawa Hospital Research Institute, University of Ottawa, University of Ottawa Heart Institute, Nordion, Erasmus Medical Centre in the Netherlands and University of Copenhagen.

The findings from Dr. Michael Rudnicki's lab, based at the Ottawa Hospital Research Institute, were published online ahead of print on February 5, 2013 in the prestigious journal Cell Metabolism. You can check out the abstract of the study, "MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16."

"This discovery significantly advances our ability to harness this good fat in the battle against bad fat and all the associated health risks that come with being overweight and obese," says Dr. Rudnicki, according to the February 5, 2013 news release, "Fighting fat with fat: Stem cell discovery identifies potential obesity treatment."

Rudnicki is a senior scientist and director for the Regenerative Medicine Program and Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute. He's also a Canada Research Chair in Molecular Genetics and professor in the Faculty of Medicine at the University of Ottawa.

Globally, obesity is the fifth leading risk for death, with an estimated 2.8 million people dying every year from the effects of being overweight or obese, according to the World Health Organization

The Public Health Agency of Canada estimates that 25% of Canadian adults are obese. In 2007, Dr. Rudnicki led a team that was the first to prove the existence of adult skeletal muscle stem cells. In the paper published today, Dr. Rudnicki now shows (again for the first time) that these adult muscle stem cells not only have the ability to produce muscle fibres, but also to become brown fat. Brown fat is an energy-burning tissue that is important to the body's ability to keep warm and regulate temperature. In addition, more brown fat is associated with less obesity.

Perhaps more importantly, the paper identifies how adult muscle stem cells become brown fat. The key is a small gene regulator called microRNA-133, or miR-133. When miR-133 is present, the stem cells turn into muscle fibre; when reduced, the stem cells become brown fat.

The recent study reveals how adult muscle stem cells become brown fat

Dr. Rudnicki's lab showed that adult mice injected with an agent to reduce miR-133, called an antisense oligonucleotide or ASO, produced more brown fat, were protected from obesity and had an improved ability to process glucose. In addition, the local injection into the hind leg muscle led to increased energy production throughout the bodyan effect observed after four months.

Using an ASO to treat disease by reducing the levels of specific microRNAs is a method that is already in human clinical trials. However, a potential treatment using miR-133 to combat obesity is still years away.

Excerpt from:
How stem cells can fight obesity - Sacramento Holistic ...

Stem cell – Wikipedia, the free encyclopedia

Stem cells are undifferentiated biological cells that can differentiate into specialized cells and can divide (through mitosis) to produce more stem cells. They are found in multicellular organisms. In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing adult tissues. In a developing embryo, stem cells can differentiate into all the specialized cellsectoderm, endoderm and mesoderm (see induced pluripotent stem cells)but also maintain the normal turnover of regenerative organs, such as blood, skin, or intestinal tissues.

There are three accessible sources of autologous adult stem cells in humans:

Stem cells can also be taken from umbilical cord blood just after birth. Of all stem cell types, autologous harvesting involves the least risk. By definition, autologous cells are obtained from one's own body, just as one may bank his or her own blood for elective surgical procedures.

Adult stem cells are frequently used in medical therapies, for example in bone marrow transplantation. Stem cells can now be artificially grown and transformed (differentiated) into specialized cell types with characteristics consistent with cells of various tissues such as muscles or nerves. Embryonic cell lines and autologous embryonic stem cells generated through therapeutic cloning have also been proposed as promising candidates for future therapies.[1] Research into stem cells grew out of findings by Ernest A. McCulloch and James E. Till at the University of Toronto in the 1960s.[2][3]

The classical definition of a stem cell requires that it possess two properties:

Two mechanisms exist to ensure that a stem cell population is maintained:

Potency specifies the differentiation potential (the potential to differentiate into different cell types) of the stem cell.[4]

In practice, stem cells are identified by whether they can regenerate tissue. For example, the defining test for bone marrow or hematopoietic stem cells (HSCs) is the ability to transplant the cells and save an individual without HSCs. This demonstrates that the cells can produce new blood cells over a long term. It should also be possible to isolate stem cells from the transplanted individual, which can themselves be transplanted into another individual without HSCs, demonstrating that the stem cell was able to self-renew.

Properties of stem cells can be illustrated in vitro, using methods such as clonogenic assays, in which single cells are assessed for their ability to differentiate and self-renew.[7][8] Stem cells can also be isolated by their possession of a distinctive set of cell surface markers. However, in vitro culture conditions can alter the behavior of cells, making it unclear whether the cells will behave in a similar manner in vivo. There is considerable debate as to whether some proposed adult cell populations are truly stem cells.

Embryonic stem (ES) cells are stem cells derived from the inner cell mass of a blastocyst, an early-stage embryo.[9] Human embryos reach the blastocyst stage 45 days post fertilization, at which time they consist of 50150 cells. ES cells are pluripotent and give rise during development to all derivatives of the three primary germ layers: ectoderm, endoderm and mesoderm. In other words, they can develop into each of the more than 200 cell types of the adult body when given sufficient and necessary stimulation for a specific cell type. They do not contribute to the extra-embryonic membranes or the placenta.

The rest is here:
Stem cell - Wikipedia, the free encyclopedia

2013: Stem cell research’s new partnership of science and …

The year just ended saw some major developments in medicine, not the least of which involved the consolidation of trends in the controversial area of stem cell research. And the big news isthat this research is rapidly evolving, in ways quite different from what experts predicted just a decade ago.

Insofar as the general public is aware of stem cells, it is most likely to be of embryonic stem cells. For more than a decade these stem cells obtained by destroying living, human embryos have been heralded for their supposedly miraculous potential to cure any number of diseases and conditions. Celebrities such as Michael J. Fox, Kevin Kline, Mary Tyler Moore, and the late Christopher Reeve all went to Capitol Hill to promote federal funding of such ethically contentious research because, they claimed, it was the research most likely to help millions suffering from disease and disabilities. One prominent senator heralded these cells as a veritable fountain of youth.

But in the time since President George W. Bush first authorized limited federal funding for human embryonic stem cell research (hESCR) in 2001, and especially since President Obama lifted the Bush restrictions in 2009, something very different from these predictions and promises has occurred. Programs established for the express purpose of funding hESCR are more and more directing resources to pursuing adult stem cells and other alternatives, such as induced pluripotent stem cell (iPSC) research.

A look at the California Institute for Regenerative Medicine (CIRM) itself is instructive. Established by voter referendum in 2004, CIRM had an initial mission of giving priority funding to hESCR and Somatic Cell Nuclear Transfer (SCNT), i.e., human cloning for research. CIRMs budget for funding stem cell research was $3 billion over 10 years.

In its first year of funding, 2007, CIRM was true to this mission. In two rounds of grants that year, CIRM funded just over 100 research projects; three involved SCNT and all of the rest went to research involving hESCs.

In 2009, CIRM revised its strategic plan to give funding priority to projects deemed most likely to actually lead to clinical trials and not just to those that involve hESCs. The resulting grants showed a startling turn. In one round of grants, hESCR projects received a total of $35 million in funding, but CIRM now seemed also to embrace the alternatives, as non-hESCR projects received almost as much $33 million.

A subsequent round of grants that year showed an even more dramatic turn away from hESCR. Of 14 grants awarded, only four went to hESCR, totaling $71.5 million. The remaining 10 grants all went to projects involving adult stem cells, iPSCs or other non-embryonic avenues of research and totaled just over $158 million.

Even the media, which so heavily favored hESCR in their reporting and editorials, took note. For 3 1/2 years, the agency focused on the basic groundwork needed to someday use human embryonic stem cells to replace body parts damaged by injury or disease. Such cures are still far in the future, The Los Angeles Times reported. Now the institute has a more immediate goal: boosting therapies that are much further along in development and more often rely on less glamorous adult stem cells.

In something of an irony, little of it is going to the reason the institute exists to work with human embryonic stem cells, the Knight Science Journalism Tracker commented.

And the New York Times characterized this round of grants as a tacit acknowledgment that the promise of human embryonic stem cells is still far in the future.

Read more from the original source:
2013: Stem cell research's new partnership of science and ...

Pros And Cons Of Stem Cell Research – AllAboutPopularIssues.org

You are here: Popular Issues >> Pros And Cons Of Stem Cell Research

Pros and Cons of Stem Cell Research - What are Stem Cells? There has been much controversy in the press recently about the pros and cons of stem cell research. What is the controversy all about? "Stem" cells can be contrasted with "differentiated" cells. They offer much hope for medical advancement because of their ability to grow into almost any kind of cell. For instance, neural cells in the brain and spinal cord that have been damaged can be replaced by stem cells. In the treatment of cancer, cells destroyed by radiation or chemotherapy can be replaced with new healthy stem cells that adapt to the affected area, whether it be part of the brain, heart, liver, lungs, or wherever. Dead cells of almost any kind, no matter the type of injury or disease, can be replaced with new healthy cells thanks to the amazing flexibility of stem cells. As a result, billions of dollars are being poured into this new field.

Pros and Cons of Stem Cell Research - Where Do They Come From? To understand the pros and cons of stem cell research, one must first understand where stem cells come from. There are three main sources for obtaining stem cells - adult cells, cord cells, and embryonic cells. Adult stem cells can be extracted either from bone marrow or from the peripheral system. Bone marrow is a rich source of stem cells. However, some painful destruction of the bone marrow results from this procedure. Peripheral stem cells can be extracted without damage to bones, but the process takes more time. And with health issues, time is often of the essence. Although difficult to extract, since they are taken from the patient's own body, adult stem cells are superior to both umbilical cord and embryonic stem cells. They are plentiful. There is always an exact DNA match so the body's immune system never rejects them. And as we might expect, results have been both profound and promising.

Stem cells taken from the umbilical cord are a second very rich source of stem cells. Umbilical cells can also offer a perfect match where a family has planned ahead. Cord cells are extracted during pregnancy and stored in cryogenic cell banks as a type of insurance policy for future use on behalf of the newborn. Cord cells can also be used by the mother, the father or others. The more distant the relationship, the more likely it is that the cells will be rejected by the immune system's antibodies. However, there are a number of common cell types just as there are common blood types so matching is always possible especially where there are numerous donors. The donation and storage process is similar to blood banking. Donation of umbilical cells is highly encouraged. Compared to adult cells and embryonic cells, the umbilical cord is by far the richest source of stem cells, and cells can be stored up in advance so they are available when needed. Further, even where there is not an exact DNA match between donor and recipient, scientists have developed methods to increase transferability and reduce risk.

Pros and Cons of Stem Cell Research - Embryonic Cells The pros and cons of stem cell research come to the surface when we examine the third source of stem cells - embryonic cells. Embryonic stem cells are extracted directly from an embryo before the embryo's cells begin to differentiate. At this stage the embryo is referred to as a "blastocyst." There are about 100 cells in a blastocyst, a very large percentage of which are stem cells, which can be kept alive indefinitely, grown in cultures, where the stem cells continue to double in number every 2-3 days. A replicating set of stem cells from a single blastocyst is called a "stem cell line" because the genetic material all comes from the same fertilized human egg that started it. President Bush authorized federal funding for research on the 15 stem cell lines available in August 2001. Other stem cell lines are also available for research but without the coveted assistance of federal funding.

So what is the controversy all about? Those who value human life from the point of conception, oppose embryonic stem cell research because the extraction of stem cells from this type of an embryo requires its destruction. In other words, it requires that a human life be killed. Some believe this to be the same as murder. Against this, embryonic research advocates argue that the tiny blastocyst has no human features. Further, new stem cell lines already exist due to the common practice of in vitro fertilization. Research advocates conclude that many fertilized human cells have already been banked, but are not being made available for research. Advocates of embryonic stem cell research claim new human lives will not be created for the sole purpose of experimentation.

Others argue against such research on medical grounds. Mice treated for Parkinson's with embryonic stem cells have died from brain tumors in as much as 20% of cases.1 Embryonic stem cells stored over time have been shown to create the type of chromosomal anomalies that create cancer cells.2 Looking at it from a more pragmatic standpoint, funds devoted to embryonic stem cell research are funds being taken away from the other two more promising and less controversial types of stem cell research mentioned above.

Learn More Now!

Footnotes 1 The Real Promise of Stem Cell Research Dr. David Prentice, HealthNewsDigest.com 2 Derivation of Human Stem-Cell Lines from Human Blastocysts, C. A. Cowan and others. March 25, 2004, New England Journal of Medicine, p.1355 with secondary reference to footnotes 13-17 p.1356.

Like this information? Help us by sharing it with others using the social media buttons below. What is this?

Follow this link:
Pros And Cons Of Stem Cell Research - AllAboutPopularIssues.org