Category Archives: Stell Cell Research


Stem cells in circulating blood affect cardiovascular …

PUBLIC RELEASE DATE:

23-Apr-2014

Contact: Nicanor Moldovan Moldovan.6@osu.edu 614-247-7801 Ohio State University

COLUMBUS, Ohio New research suggests that attempts to isolate an elusive adult stem cell from blood to understand and potentially improve cardiovascular health a task considered possible but very difficult might not be necessary.

Instead, scientists have found that multiple types of cells with primitive characteristics circulating in the blood appear to provide the same benefits expected from a stem cell, including the endothelial progenitor cell that is the subject of hot pursuit.

"There are people who still dream that the prototypical progenitors for several components of the cardiovascular tree will be found and isolated. I decided to focus the analysis on the whole nonpurified cell population the blood as it is," said Nicanor Moldovan, senior author of the study and a research associate professor of cardiovascular medicine at The Ohio State University.

"Our method determines the contributions of all blood cells that serve the same function that an endothelial progenitor cell is supposed to. We can detect the presence of those cells and their signatures in a clinical sample without the need to isolate them."

The study is published in the journal PLOS ONE.

Stem cells, including the still poorly understood endothelial progenitor cells, are sought-after because they have the potential to transform into many kinds of cells, suggesting that they could be used to replace damaged or missing cells as a treatment for multiple diseases.

By looking at gene activity patterns in blood, Moldovan and colleagues concluded that many cell types circulating throughout the body may protect and repair blood vessels a key to keeping the heart healthy.

Here is the original post:
Stem cells in circulating blood affect cardiovascular ...

Scientists use cloning to make stem cells matched to two …

The therapeutic cloning of an adult cell. Photo: Advanced Cell Technology

Scientists have replicated one of the most significant accomplishments in stem cell research by creating human embryos that were clones of two men.

The lab-engineered embryos were harvested within days and used to create lines of infinitely reproducing embryonic stem cells, which are capable of growing into any type of human tissue.

The work, reported in the journal Cell Stem Cell, comes 11 months after researchers in Oregon said they had produced the world's first human embryo clones and used them to make stem cells. Their study, published in Cell, aroused scepticism after critics pointed out multiple errors and duplicated images.

In addition, the entire effort to clone human embryos and then dismantle them in the name of science troubles some people on moral grounds.

The scientists in Oregon and the authors of the new report acknowledged that the clones they created could develop into babies if implanted in surrogate wombs. But like others in the field, they have said reproductive cloning would be unethical and irresponsible.

The process used to create cloned embryos is called somatic cell nuclear transfer, or SCNT. It involves removing the nucleus from an egg cell and replacing it with a nucleus from a cell of the person to be cloned. The same method was used to create Dolly the sheep in 1996, along with numerous animals from other species.

Human cloning was a particular challenge, in part because scientists had trouble getting enough donor eggs to carry out their experiments. Some scientists said SCNT in humans would be impossible.

Dr Robert Lanza, the chief scientific officer for Advanced Cell Technology, has been working on SCNT off and on for about 15 years. He and his colleagues finally achieved success with a modified version of the recipe used by the Oregon team and skin cells donated by two men who were 35 and 75.

After swapping out the nucleus in the egg cell, both groups used caffeine to delay the onset of cell division a technique that has been called "theStarbuckseffect". But instead of waiting 30 minutes to prompt cell division, as was done in the Oregon experiment, Lanza and his team waited two hours.

See the rest here:
Scientists use cloning to make stem cells matched to two ...

Stem-cell Research and the Catholic Church

ORLANDO, Fla. (CNS) Declaring that stem-cell research does not present a conflict between science and religion, the U.S. bishops overwhelmingly approved a statement June 13 calling the use of human embryos in such research "gravely immoral" and unnecessary.

In the last vote of the public session of their June 12-14 spring general assembly in Orlando, the bishops voted 191-1 in favor of the document titled "On Embryonic Stem-Cell Research: A Statement of the U.S. Conference of Catholic Bishops."

"It now seems undeniable that once we cross the fundamental moral line that prevents us from treating any fellow human being as a mere object of research, there is no stopping point," the document said. "The only moral stance that affirms the human dignity of all of us is to reject the first step down this path."

Archbishop Joseph F. Naumann of Kansas City, Kan., introduced the document on behalf of Philadelphia Cardinal Justin Rigali, chairman of the bishops' Committee on Pro-Life Activities, who was not at the Orlando meeting.

Consideration of the stem-cell document came after an intense and complicated debate at the meeting over a 700-page liturgical translation. Archbishop Naumann thanked those involved in the liturgical debate for "making stem-cell research seem simple," which drew laughs from the other bishops.

The seven-page policy statement was approved with little debate and few amendments.

Archbishop Naumann said it would be issued in an "attractive educational brochure" intended for the "broadest possible distribution."

Also coming out this summer, he said, are three educational resources on the medical advances being made with adult stem cells: a 16-minute DVD called "Stem-Cell Research: Finding Cures We Can All Live With"; an updated parish bulletin insert on the topic; and a brochure on "Stem Cells and Hope for Patients," which will be part of the bishops' annual Respect Life observance.

Although the U.S. bishops have been active in the national debate on stem cells, individually and collectively, this marks the first time they have addressed the issue in a document "devoted exclusively" to that topic, Archbishop Naumann said.

View post:
Stem-cell Research and the Catholic Church

What Is Stem Cell Research? (with pictures)

anon357394 Post 155

Obviously, some of you dont have kids. The life of a child is worth so much more than any adult. You got to live. What if that embryo happened to be you? Would you then feel that it is OK to conduct this research?

I am a mother of two, soon to be three. I don't care about any of that just long as my kids at least get a chance at living and there is a God. I had a 50 percent chance of having babies because of a huge benign tumor that grew on my left ovary and killed my left fallopian tube.

I prayed for my babies and got them every time. Besides that, everybody has their beliefs. My thing is your children. Would you put them through this? My mom had a number of health issues. She died after I had my daughter. I would have given anything to keep her alive, but not my baby. I understand it could save lives, but you cannot stop the inevitable science or not. It has been proven that if it is meant to be, it will. I am also researching for a school project and I am a little more against it than for it. I would much prefer the umbilical research, then the embryo research. I know the parent of the child has donated it, but don't you think in some way that this person could be desperate or misled in a way and doesn't know where to turn?

I watched this gruesome abortion video and the lady was 12 weeks along. You could see the child trying to fight for its life. Murder is murder. Helping to save other people or not -- that's like you seeing a man trying to rape a woman and you shoot him dead. It's the same if you were trying to save her life but you get persecuted and convicted for taking matters into your own hands. I am sorry for those people who are sick and have sick babies. I know what it is like to lose loved ones over untreatable diseases. Im against embryo research and I'm not thinking about me. It is about a baby. Sure, it isnt completely formed, but it's still a child, or at least will grow into one, I wish harm on nobody. There is no harm meant and Im not trying to make someone mad. Im just trying to throw some new views into the situation.

Stem cell research can only benefit society and advance us as a species. If your argument is religious, the you are not thinking. You are letting your emotions and beliefs speak for you, not your logic or common sense. A bunch of cells is not a baby, and helping the living is not against "God's will". This is a good thing and it will continue regardless of religious views, because it makes sense.

I'm still kind of learning about this topic, but abortion is something I feel strongly against, but if a baby was taken from it's mother with the mother's okay and they were trying to save people's lives, I would be completely okay with that.

I believe that God does not exist, and that stem cell research is truly phenomenal. This research should not be controversial, nor should it be banned; it is helping the living.

Most of the people who say that stem cell research is bad are religious, but people living in the real world and believe in this thing called 'science' actually make a difference. Religion has only held back society and science. I wonder how many religious people would get angry if they knew that I was a homosexual, atheist physicist who believes in evolution and the big bang theory.

I am writing a persuasive essay on whether stem cell research should be legal or not (even though it already is in the U.S.). I was never a really religious person and stuck mainly to things that I knew for sure were happening. The thing is, most of the stem cells they are using for research are going to be discarded anyway. No one is claiming them, no one is caring about them, and they are just going to be thrown away. It is better for them to be used for a greater cause than just being thrown away and losing the chance to create treatments and cures for cancer and neurodegenerative diseases.

See more here:
What Is Stem Cell Research? (with pictures)

Cloning advance using stem cells from human adult reopens …

Scientists have grown stem cells from adults using cloning techniques for the first time bringing them closer to developing patient-specific lines of cells that can be used to treat a whole host of ailments, from heart disease to blindness.

The research, described in Thursdays online edition of the journal Cell Stem Cell, is a controversial advance likely to reopen the debate over the ethics of human cloning.

The scientists technique was similar to the one used in the first clone of a mammal, Dolly the sheep, which was created in 1996.

They reprogrammed an egg cell by removing its DNA and replaced it with that of an adult donor. Scientists then zapped the cell with electricity, which made it divide and multiply. The resulting cells were identical in DNA to the donor.

The first success in humans was reported last year by scientists at the Oregon Health & Science University and the Oregon National Primate Research Center. But they used donor cells from infants. In this study, the cells came from two men, a 35-year-old and a 75-year-old.

Paul Knoepfler, an associate professor at the University of California at Davis who studies stem cells, called the new research exciting, important, and technically convincing.

In theory you could use those stem cells to produce almost any kind of cell and give it back to a person as a therapy, he said.

In their paper, Young Gie Chung from the Research Institute for Stem Cell Research for CHA Health Systems in Los Angeles, Robert Lanza from Advanced Cell Technology in Marlborough, Mass., and their co-authors emphasized the promise of the technology for new therapies. What they didnt mention but was clear to those working with stem cells was that their work was also an important discovery for human cloning.

While the research published Thursday involves cells that are technically an early stage embryo, the intention is not to try to grow them into a fully formed human. However the techniques in theory could be a first step toward creating a baby with the same genetic makeup as a donor.

Bioethicists call this the dual-use dilemma.

Excerpt from:
Cloning advance using stem cells from human adult reopens ...

Stem Cell Research – Pros and Cons – explorable

The debate of the pros and cons of stem cell research clearly illustrate the difficult ethics evaluations researchers sometimes must do.

All scientists must consider whether the positive effects from their research are likely to be significantly higher than the negative effects.

Stem Cells are crucial to develop organisms. They are nonspecialized cells which have the potential to create other types of specific cells, such as blood-, brain-, tissue- or muscle-cells.

Stem cells are in all of our body and lives, but are far more potent in a fetus (also spelled foetus, ftus, faetus, or ftus) than in an adult body.

Some types of stem cells may be able to create all other cells in the body. Others have the potential to repair or replace damaged tissue or cells.

Embryonic Stem Cells are developed from a female egg after it is fertilized by sperm. The process takes 4-5 days.

Stem cell research is used for investigation of basic cells which develop organisms. The cells are grown in laboratories where tests are carried out to investigate fundamental properties of the cells.

There are stem cells in the both placenta and blood contained in the placenta. Also the primary source of stem cells is from blastocysts. These are fertilized human eggs that were not implanted into a woman.

The controversy surrounding stem cell research led to an intense debate about ethics. Up until the recent years, the research method mainly focused on Embryonic Stem Cells, which involves taking tissue from an aborted embryo to get proper material to study. This is typically done just days after conception or between the 5th and 9th week.

See more here:
Stem Cell Research - Pros and Cons - explorable

First stem cell study of bipolar disorder offers hope for …

When it comes to understanding bipolar disorder, many questions remain unanswered such as what truly causes the condition and why finding proper treatments is so difficult.

But now, researchers have taken a huge step towards solving some of the disorders complex mysteries.

Through groundbreaking stem cell research, scientists from the University of Michigan Medical School and the Heinz C. Prechter Bipolar Researcher Fund transformed skin cells from people with bipolar disorder into neurons that mimicked those found in their brains. They were then able to compare these nerve stem cells with cells derived from people without bipolar disorder and study how the neurons responded to medications for the condition.

Detailed in the journal Translational Psychiatry, this study marks the first time researchers have derived a stem cell line specific to bipolar disorder.

Once we have derived nerve cells, were able to study those cells and determine how they behave compared to other cells and how they behave in response to medications, principal investigator Dr. Melvin McInnis, of the Prechter Bipolar Research Fund, told FoxNews.com. So if we can understand the basic biological problems with these cells, we can potentially identify interventions that further how we understand the illness and how we treat it.

Also known as manic-depressive illness, bipolar disorder is a brain condition characterized by intense shifts in mood alternating between periods of high energy and mania to periods of severe anxiety and depression. While the condition is known to run in families, scientists still arent fully certain what causes its development, believing it to be a combination of genetics and other factors.

Additionally, the most common form of treatment for the disorder, lithium, is also somewhat of a mystery.

We really do not know and understand what drives these fluctuations in moods; we dont understand how the medications truly work that help individuals with variability in their moods, McInnis said. We dont know why an individual will become ill at a particular time. All we know is really at an observational level.

In order to better understand what is happening in the bipolar mind, McInnis and his team took small samples of skin from individuals who had been diagnosed with bipolar disorder. These samples were then exposed to specific growth factors, which coaxed the cells into becoming induced pluripotent stem cells (iPSCs) meaning they had the ability to turn into any type of cell. Subsequently, the cells were exposed to an additional set of growth factors, which coaxed them into becoming neurons.

This process has also been used to better understand other complex brain disorders, such as schizophrenia and conditions that cause seizures. According to McInnis, the technique allows researchers to examine how cells behave as they develop into a whole new type of cell, as well as how they function when they finally become neurons.

See original here:
First stem cell study of bipolar disorder offers hope for ...

First stem cell study of bipolar disorder yields promising …

PUBLIC RELEASE DATE:

25-Mar-2014

Contact: Kara Gavin kegavin@umich.edu 734-764-2220 University of Michigan Health System

ANN ARBOR, Mich. What makes a person bipolar, prone to manic highs and deep, depressed lows? Why does bipolar disorder run so strongly in families, even though no single gene is to blame? And why is it so hard to find new treatments for a condition that affects 200 million people worldwide?

New stem cell research published by scientists from the University of Michigan Medical School, and fueled by the Heinz C. Prechter Bipolar Research Fund, may help scientists find answers to these questions.

The team used skin from people with bipolar disorder to derive the first-ever stem cell lines specific to the condition. In a new paper in Translational Psychiatry, they report how they transformed the stem cells into neurons, similar to those found in the brain and compared them to cells derived from people without bipolar disorder.

The comparison revealed very specific differences in how these neurons behave and communicate with each other, and identified striking differences in how the neurons respond to lithium, the most common treatment for bipolar disorder.

It's the first time scientists have directly measured differences in brain cell formation and function between people with bipolar disorder and those without.

The researchers are from the Medical School's Department of Cell & Developmental Biology and Department of Psychiatry, and U-M's Depression Center.

Stem cells as a window on bipolar disorder

Link:
First stem cell study of bipolar disorder yields promising ...

Stem Cell Research – Journal – Elsevier

Stem Cell Research is dedicated to publishing high-quality manuscripts focusing on the biology and applications of stem cell research. Submissions to Stem Cell Research, may cover all aspects of stem cells, including embryonic stem cells, tissue-specific stem cells, cancer stem cells, developmental studies, stem cell genomes, and translational research. Stem Cell Research publishes 6 issues a year.

The journal publishes

Original articles Short reports Review articles Communications Methods and reagents articles

Stem Cell Research collaborates with journals published by Cell Press. Our editorial board is happy to consider submissions reviewed at Cell Stem Cell or other Cell Press journals which are considered to be scientifically sound, but not impactful enough for the readership of Cell Press journals. Authors should include their Cell Press reviews (which will be confirmed by Cell Press) for fast-track consideration. In SCR's fast track system, the SCR office will inform you within 3-5 days if the manuscript warrants further consideration for publication. The editors reserve the right to (a) reject the manuscript, (b) accept the manuscript with no further review, (c) send the manuscript out for further review, (d) require revisions based on the Cell Press or further reviews.

Continue reading here:
Stem Cell Research - Journal - Elsevier

Stem Cells – Research | ucsf.edu

Since the success in 1998 by the University of Wisconsins James Thomson in deriving human embryonic stem cells from embryos, the stem cell research field has exploded.

The discovery by Japans Shinya Yamanaka, MD, PhD,in 2006, of how to transform ordinary adult skin cells into cells that, like embryonic stem cells, are capable of developing into any cell in the human body, has revolutionized stem cell research.

At top, Robert Blelloch, MD, PhD, performs stem cell research. Above,Shinya Yamanaka, MD, PhD, a scientist at the UCSF-affiliated Gladstone Institutes, UCSF and Kyoto University, was recognized for a revolutionary achievement in the field of stem cell science with a Nobel Prize in Medicine in 2012.

In between and since, there has been major progress in scientists understanding of stem cells. Today, fueled in part by the robust research enterprise at UCSF, the field is burgeoning.Yamanaka, a senior investigator at the UCSF-affiliated Gladstone Institutes and a professor of anatomy at UCSF, shared the Nobel Prize in Physiology and Medicine with John B. Gurdon of the Gurdon Institute in Cambridge, England, in 2012.

In about 125 labs of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF one of the largest such programs in the country scientists are carrying out the basic research needed to understand how stem cells could be manipulated to treat diseases, to translate these findings into clinical research and to develop novel therapies.

In studies conducted in the culture dish and in animals, scientists are learning how to prompt stem cells to develop into specialized cells of tissues such as the heart, pancreas and brain. The ultimate goal is to transplant these cells into patients to regenerate damaged tissues.

The scientists also are exploring the use of stem cells as vehicles for delivering drugs into diseased tissues, and are using specialized cells produced by stem cells, such as liver and heart muscle cells, to test the effectiveness of experimental drugs in the culture dish. In addition, they are studying the role of stem cells in generating many forms of cancer, an important first step for targeting the cells for therapies.

The center is structured along seven research pipelines aimed at driving discoveries from the lab bench to clinical care. Each pipeline focuses on a different organ system: the blood, pancreas and liver, heart, reproductive organs, nervous system, musculoskeletal tissues and skin. And each pipeline is overseen by two leaders of international standing one representing the basic sciences and one representing clinical research. The approach has proven successful in the private sector for driving the development of new therapies.

Among the basic science studies being conducted by UCSF investigators are:

Exploring a novel stem cell strategy for treating brain diseases Five UCSF labs are pioneering a novel approach to treating brain diseases and injuries, using a particular type of embryonic stem cell to manipulate the brains neural circuitry. They recently reported the first use of the cells, which mature into neurons, in creating a new period of plasticity, or capacity to change, in the brains of rodents.

See original here:
Stem Cells - Research | ucsf.edu