Category Archives: Stell Cell Research


Information on Stem Cell Research: National Institute of …

Introduction Stem Cells are unique in that they have the potential to develop into many different cell types in the body, including brain cells, but they also retain the ability to produce more stem cells, a process termed self renewal. There are multiple types of stem cell, such as embryonic stem (ES) cells, induced pluripotent stem (iPS) cells, and adult or somatic stem cells. While various stem cells can share similar properties there are differences as well. For example, ES cells are able to differentiate into any type of cell, whereas adult stem cells are more restricted in their potential. The promise of all stem cells for use in future therapies is exciting, but significant technical hurdles remain that will only be overcome through years of intensive research.

The NINDS supports a diverse array of research on almost all stem cells, from studies of the basic biology of stem cells in the developing and adult mammalian brain to studies focusing on nervous system disorders such as ALS or spinal cord injury. For example, investigators are looking at how ES cells can be used to derive dopamine-producing neurons that might alleviate symptoms in patients with Parkinsons disease or how somatic stem cells can generate myelin producing oligodendrocytes for remyelination following acute and chronic brain injury. Although there is much promise for using stem cells to treat neurological diseases in humans, there is much work to be done before stem cell-based therapies are ready for the clinic.

The NIH Stem Cell Information Web page provides additional information about stem cell research at NIH. Also, see MedlinePlus for more health information regarding stem cells.

To learn more about investigational therapies, including stem cells, one can search the National Institutes of Health (NIH) online clinical trials database, which has information about federally and privately funded clinical research studies on a wide range of diseases and conditions. You can access this database at ClinicalTrials.gov to learn about the location of research studies in need of participants, as well as their purpose and criteria for patient participation. The NIH also maintains a clinical research website that has additional information and can be found here: NIH Clinical Research Trials and You

NINDS Repository The NINDS also supports a repository that offers human induced pluripotent stem cell (iPSC) lines for research on neurological disorders. A list of available cell lines can be found here: Human Induced Pluripotent Stem Cells

NINDS Stem Cell Research on CampusThe Intramural Research Program of NINDS is one of the largest neuroscience research centers in the world. Investigators in the NINDS intramural program conduct research in the basic, translational, and clinical neurosciences. Their specific interests cover a broad range of neuroscience research including stem cell biology. Listings of NINDS intramural researchers by laboratory affiliation and research areas are available online.

NIH Policy and ImplementationThe Director of the NINDS, Dr. Story Landis is the Chair of the NIH Stem Cell Task Force, which was created to enable and accelerate the pace of stem cell research and to seek the advice of scientific leaders in stem cell research. For comprehensive information on NIH policies related to stem cell research, visit the NIH Stem Cell Information web page.

NIH Center for Regenerative Medicine (NIH CRM)NIH CRM is a community resource that works to provide the infrastructure to support and accelerate the clinical translation of stem cell-based technologies, and to develop widely available resources to be used as standards in stem cell research. The Center provides services and information to both the intramural and extramural NIH communities that facilitate the use of stem cell technologies for therapeutic purposes and for screening efforts. Further information about NIH CRM can be found here: NIH Center for Regenerative Medicine

Funding OpportunitiesNINDS supports a wide array of stem cell research, both basic and disease-related. Funding mechanisms supported by NINDS can be found here: Funding Mechanisms

Additionally, those interested in targeted funding solicitations can search the NIH Guide for Grants and Contracts. One can do key word searches for entries such as neurological disease and stem cell or regenerative medicine. A link to the NIH Guide can be found here: NIH Guide for Grants and Contracts

See original here:
Information on Stem Cell Research: National Institute of ...

Stell Cell Research – Stem Cell Cafe

Here at Macleans, we appreciate the written word. And we appreciate you, the reader. We are always looking for ways to create a better user experience for you and wanted to try out a new functionality that provides you with a reading experience in which the words and fonts take centre stage. We believe youll appreciate the clean, white layout as you read our feature articles. But we dont want to force it on you and its completely optional. Click View in Clean Reading Mode on any article if you want to try it out. Once there, you can click Go back to regular view at the top or bottom of the article to return to the regular layout. Scientist Dr. Mark Post poses with samples of in-vitro meat in a laboratory, at the University of Maastricht in the Netherlands on November 9, 2011. (Francois Lenoir/Reuters) Its high time for summer barbecue season. On Aug. 5, as long weekend revelers across Canada throw steaks and sausages on the grill, Dr. Mark Post will be cooking up something very different: a hamburger made of animal stem cells, grown in his lab at Maastricht University in the Netherlands. This one little five-ounce patty has taken him years to perfect, at a cost of 300,000 euros, or over $409,500 (donated by an anonymous investor), making it what must be the most expensive and labour-intensive sandwich patty in history. Some doubted it could be done. As the burger is unveiled in Londonthen bitten, chewed, swallowed and consumed, for all the world to seePosts burger will redefine meat as we know it. This is the food of the future. Post, a medical doctor, has been attempting to create tissues in the lab for almost a decade. The applications are huge: engineered human tissues could be used to test drugs, for example, or to treat many diseases where the body wastes away. To Post, the food application started out as an interesting side project, one that soon stole the spotlight from his other work. Meat for consumption is in theory, much easier to grow, he told Macleans in an interview in 2012. The tissue does not need to physically integrate into the body. I considered it a closer goal to reach, he says, and a very important one. Indeed, the global appetite for meat is growing. Livestock production already takes up 30 per cent of the land surface on our planet, says a 2006 United Nations report, producing more greenhouse gas emissions than all our cars and trucks, combined. According to Patrick O. Brown of Stanford University, eating one four-ounce hamburger is the equivalent of leaving a bathroom faucet running round-the-clock for a week. Developing nations are increasingly emulating the meat-heavy Western diet, and it isnt sustainable. We are heading towards a meat shortage worldwide, Post says. Instead of producing beef, pork and poultry on massive industrial farms, in the near future, he predicts, well be growing it in factories. And while this first hamburger was incredibly expensive to make, as techniques are perfected and lab-grown stem-cell burgers can be mass-produced, the cost will go down; one day it could be lower than the price of traditionally raised meat, which is expected to rise. Of course, growing a minced hamburger pattylet alone a dense, fat-marbled steakisnt a simple task. Post and his team harvested stem cells from a cows muscle tissue, and bathed them in a special formula of nutrients. As these cells start to differentiate into muscle cells, theyre hooked to attachment points (Post has used Velcro) to create tiny strips of tissue, like a tendon. Eventually, they start to contract on their own. The downside for animal lovers is that you still need animals, a donor herd to provide stem cells, Post says. But compared to factory farming today, the number would be very small. If we grew all our meat in a lab, Post believes, the number of livestock worldwide could be reduced by a factor of one millionthe equivalent of reducing 10 billion livestock animals on the planet to 10,000. This would free up land, water, and other resources, while making sure remaining livestock didnt suffer a death fraught with the issues of large-scale slaughter. Other than Post, only a handful of scientists are working on lab-grown meat; others believe the future lies in plant-based substitutes, ones so good they could fool even the most discerning palate, although Post maintains that we humans will always have an appetite for the real thing. Worldwide, the meat-eater population is going to grow. Theres no doubt about that, he says. Posts hamburger is a powerful proof of concept, an important first step. As we begin to unravel the implications of this one burgerfor science, for health care, and for the food supply that feeds everyone on the planetwell be watching on Aug. 5, with bated breath, wondering what, exactly, it tastes like. Anyone who wants to follow along can watch a livestream of the burger consumption on Aug. 5 atculturedbeef.net. Continued here: One lab-grown hamburger, coming up Blog Central, Kate Lunau

Original post:
Stell Cell Research – Stem Cell Cafe

Embryonic stem cell – Wikipedia, the free encyclopedia

Embryonic stem cells (ES cells) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage embryo.[1] Human embryos reach the blastocyst stage 45 days post fertilization, at which time they consist of 50150 cells. Isolating the embryoblast or inner cell mass (ICM) results in destruction of the fertilized human embryo, which raises ethical issues. Those issues include whether or not human lives at the embryonic stage should be granted the moral status of other human beings.[2][3]

Human ES cells measure approximately 14m while mouse ES cells are closer to 8m.[4]

Embryonic stem cells are distinguished by two distinctive properties:

ES cells are pluripotent, that is, they are able to differentiate into all derivatives of the three primary germ layers: ectoderm, endoderm, and mesoderm. These include each of the more than 220 cell types in the adult body. Pluripotency distinguishes embryonic stem cells from adult stem cells found in adults; while embryonic stem cells can generate all cell types in the body, adult stem cells are multipotent and can produce only a limited number of cell types.

Additionally, under defined conditions, embryonic stem cells are capable of propagating themselves indefinitely. This allows embryonic stem cells to be employed as useful tools for both research and regenerative medicine, because they can produce limitless numbers of themselves for continued research or clinical use.

Because of their plasticity and potentially unlimited capacity for self-renewal, ES cell therapies have been proposed for regenerative medicine and tissue replacement after injury or disease. Diseases that could potentially be treated by pluripotent stem cells include a number of blood and immune-system related genetic diseases, cancers, and disorders; juvenile diabetes; Parkinson's; blindness and spinal cord injuries. Besides the ethical concerns of stem cell therapy (see stem cell controversy), there is a technical problem of graft-versus-host disease associated with allogeneic stem cell transplantation. However, these problems associated with histocompatibility may be solved using autologous donor adult stem cells, therapeutic cloning, stem cell banks or more recently by reprogramming of somatic cells with defined factors (e.g. induced pluripotent stem cells). Other potential uses of embryonic stem cells include investigation of early human development, study of genetic disease and as in vitro systems for toxicology testing.

According to a 2002 article in PNAS, "Human embryonic stem cells have the potential to differentiate into various cell types, and, thus, may be useful as a source of cells for transplantation or tissue engineering."[6]

Current research focuses on differentiating ES into a variety of cell types for eventual use as cell replacement therapies (CRTs). Some of the cell types that have or are currently being developed include cardiomyocytes (CM), neurons, hepatocytes, bone marrow cells, islet cells and endothelial cells.[7] However, the derivation of such cell types from ESs is not without obstacles and hence current research is focused on overcoming these barriers. For example, studies are underway to differentiate ES in to tissue specific CMs and to eradicate their immature properties that distinguish them from adult CMs.[8]

Besides in the future becoming an important alternative to organ transplants, ES are also being used in field of toxicology and as cellular screens to uncover new chemical entities (NCEs) that can be developed as small molecule drugs. Studies have shown that cardiomyocytes derived from ES are validated in vitro models to test drug responses and predict toxicity profiles.[7] ES derived cardiomyocytes have been shown to respond to pharmacological stimuli and hence can be used to assess cardiotoxicity like Torsades de Pointes.[9]

ES-derived hepatocytes are also useful models that could be used in the preclinical stages of drug discovery. However, the development of hepatocytes from ES has proven to be challenging and this hinders the ability to test drug metabolism. Therefore, current research is focusing on establishing fully functional ES-derived hepatocytes with stable phase I and II enzyme activity.[10]

More here:
Embryonic stem cell - Wikipedia, the free encyclopedia

The most expensive burger in history — and what it means for future …

Here at Maclean's, we appreciate the written word. And we appreciate you, the reader. We are always looking for ways to create a better user experience for you and wanted to try out a new functionality that provides you with a reading experience in which the words and fonts take centre stage. We believe you'll appreciate the clean, white layout as you read our feature articles. But we don't want to force it on you and it's completely optional. Click "View in Clean Reading Mode" on any article if you want to try it out. Once there, you can click "Go back to regular view" at the top or bottom of the article to return to the regular layout.

Scientist Dr. Mark Post poses with samples of in-vitro meat in a laboratory, at the University of Maastricht in the Netherlands on November 9, 2011. (Francois Lenoir/Reuters)

As long weekend revelers across Canada throw steaks and sausages on the grill, Dr. Mark Post was cooking up something different: a hamburger made of animal stem cells, grown in his lab at Maastricht University in the Netherlands.

The one little five-ounce patty took him years to perfect, at a cost of 300,000 euros, or more than $409,500 (donated by an anonymous investor), making it what must be the most expensive and labour-intensive sandwich patty in history. Some doubted it could be done. As the burger was unveiled in Londonthen bitten, chewed, swallowed and consumed, for all the world to seePosts burger was redefining meat as we know it. This is the food of the future.

Post, a medical doctor, has been attempting to create tissues in the lab for almost a decade. The applications are huge: engineered human tissues could be used to test drugs, for example, or to treat many diseases where the body wastes away.

To Post, the food application started out as an interesting side project, one that soon stole the spotlight from his other work. Meat for consumption is in theory, much easier to grow, he told Macleans in an interview in 2012. The tissue does not need to physically integrate into the body. I considered it a closer goal to reach, he says, and a very important one.

Indeed, the global appetite for meat is growing.

Livestock production already takes up 30 per cent of the land surface on our planet, says a 2006 United Nations report, producing more greenhouse gas emissions than all our cars and trucks, combined. According to Patrick O. Brown of Stanford University, eating one four-ounce hamburger is the equivalent of leaving a bathroom faucet running round-the-clock for a week. Developing nations are increasingly emulating the meat-heavy Western diet, and it isnt sustainable. We are heading towards a meat shortage worldwide, Post says. Instead of producing beef, pork and poultry on massive industrial farms, in the near future, he predicts, well be growing it in factories. And while this first hamburger was incredibly expensive to make, as techniques are perfected and lab-grown stem-cell burgers can be mass-produced, the cost will go down; one day it could be lower than the price of traditionally raised meat, which is expected to rise.

Of course, growing a minced hamburger pattylet alone a dense, fat-marbled steakisnt a simple task. Post and his team harvested stem cells from a cows muscle tissue, and bathed them in a special formula of nutrients. As these cells start to differentiate into muscle cells, theyre hooked to attachment points (Post has used Velcro) to create tiny strips of tissue, like a tendon. Eventually, they start to contract on their own. The downside for animal lovers is that you still need animals, a donor herd to provide stem cells, Post says. But compared to factory farming today, the number would be very small. If we grew all our meat in a lab, Post believes, the number of livestock worldwide could be reduced by a factor of one millionthe equivalent of reducing 10 billion livestock animals on the planet to 10,000. This would free up land, water, and other resources, while making sure remaining livestock didnt suffer a death fraught with the issues of large-scale slaughter.

Other than Post, only a handful of scientists are working on lab-grown meat; others believe the future lies in plant-based substitutes, ones so good they could fool even the most discerning palate, although Post maintains that we humans will always have an appetite for the real thing.

Read the original post:
The most expensive burger in history — and what it means for future ...

One lab-grown hamburger, coming up – Blog Central, Kate Lunau …

Here at Macleans, we appreciate the written word. And we appreciate you, the reader. We are always looking for ways to create a better user experience for you and wanted to try out a new functionality that provides you with a reading experience in which the words and fonts take centre stage. We believe youll appreciate the clean, white layout as you read our feature articles. But we dont want to force it on you and its completely optional. Click View in Clean Reading Mode on any article if you want to try it out. Once there, you can click Go back to regular view at the top or bottom of the article to return to the regular layout.

Scientist Dr. Mark Post poses with samples of in-vitro meat in a laboratory, at the University of Maastricht in the Netherlands on November 9, 2011. (Francois Lenoir/Reuters)

Its high time for summer barbecue season. On Aug. 5, as long weekend revelers across Canada throw steaks and sausages on the grill, Dr. Mark Post will be cooking up something very different: a hamburger made of animal stem cells, grown in his lab at Maastricht University in the Netherlands.

This one little five-ounce patty has taken him years to perfect, at a cost of 300,000 euros, or over $409,500 (donated by an anonymous investor), making it what must be the most expensive and labour-intensive sandwich patty in history. Some doubted it could be done. As the burger is unveiled in Londonthen bitten, chewed, swallowed and consumed, for all the world to seePosts burger will redefine meat as we know it. This is the food of the future.

Post, a medical doctor, has been attempting to create tissues in the lab for almost a decade. The applications are huge: engineered human tissues could be used to test drugs, for example, or to treat many diseases where the body wastes away. To Post, the food application started out as an interesting side project, one that soon stole the spotlight from his other work. Meat for consumption is in theory, much easier to grow, he told Macleans in an interview in 2012. The tissue does not need to physically integrate into the body. I considered it a closer goal to reach, he says, and a very important one.

Indeed, the global appetite for meat is growing. Livestock production already takes up 30 per cent of the land surface on our planet, says a 2006 United Nations report, producing more greenhouse gas emissions than all our cars and trucks, combined. According to Patrick O. Brown of Stanford University, eating one four-ounce hamburger is the equivalent of leaving a bathroom faucet running round-the-clock for a week. Developing nations are increasingly emulating the meat-heavy Western diet, and it isnt sustainable. We are heading towards a meat shortage worldwide, Post says. Instead of producing beef, pork and poultry on massive industrial farms, in the near future, he predicts, well be growing it in factories. And while this first hamburger was incredibly expensive to make, as techniques are perfected and lab-grown stem-cell burgers can be mass-produced, the cost will go down; one day it could be lower than the price of traditionally raised meat, which is expected to rise.

Of course, growing a minced hamburger pattylet alone a dense, fat-marbled steakisnt a simple task. Post and his team harvested stem cells from a cows muscle tissue, and bathed them in a special formula of nutrients. As these cells start to differentiate into muscle cells, theyre hooked to attachment points (Post has used Velcro) to create tiny strips of tissue, like a tendon. Eventually, they start to contract on their own. The downside for animal lovers is that you still need animals, a donor herd to provide stem cells, Post says. But compared to factory farming today, the number would be very small. If we grew all our meat in a lab, Post believes, the number of livestock worldwide could be reduced by a factor of one millionthe equivalent of reducing 10 billion livestock animals on the planet to 10,000. This would free up land, water, and other resources, while making sure remaining livestock didnt suffer a death fraught with the issues of large-scale slaughter.

Other than Post, only a handful of scientists are working on lab-grown meat; others believe the future lies in plant-based substitutes, ones so good they could fool even the most discerning palate, although Post maintains that we humans will always have an appetite for the real thing. Worldwide, the meat-eater population is going to grow. Theres no doubt about that, he says. Posts hamburger is a powerful proof of concept, an important first step. As we begin to unravel the implications of this one burgerfor science, for health care, and for the food supply that feeds everyone on the planetwell be watching on Aug. 5, with bated breath, wondering what, exactly, it tastes like.

Anyone who wants to follow along can watch a livestream of the burger consumption on Aug. 5 atculturedbeef.net.

Continued here: One lab-grown hamburger, coming up Blog Central, Kate Lunau

Continued here:
One lab-grown hamburger, coming up – Blog Central, Kate Lunau ...

One lab-grown hamburger, coming up – Blog Central, Kate Lunau …

Here at Maclean's, we appreciate the written word. And we appreciate you, the reader. We are always looking for ways to create a better user experience for you and wanted to try out a new functionality that provides you with a reading experience in which the words and fonts take centre stage. We believe you'll appreciate the clean, white layout as you read our feature articles. But we don't want to force it on you and it's completely optional. Click "View in Clean Reading Mode" on any article if you want to try it out. Once there, you can click "Go back to regular view" at the top or bottom of the article to return to the regular layout.

Scientist Dr. Mark Post poses with samples of in-vitro meat in a laboratory, at the University of Maastricht in the Netherlands on November 9, 2011. (Francois Lenoir/Reuters)

Its high time for summer barbecue season. On Aug. 5, as long weekend revelers across Canada throw steaks and sausages on the grill, Dr. Mark Post will be cooking up something very different: a hamburger made of animal stem cells, grown in his lab at Maastricht University in the Netherlands.

This one little five-ounce patty has taken him years to perfect, at a cost of 300,000 euros, or over $409,500 (donated by an anonymous investor), making it what must be the most expensive and labour-intensive sandwich patty in history. Some doubted it could be done. As the burger is unveiled in Londonthen bitten, chewed, swallowed and consumed, for all the world to seePosts burger will redefine meat as we know it. This is the food of the future.

Post, a medical doctor, has been attempting to create tissues in the lab for almost a decade. The applications are huge: engineered human tissues could be used to test drugs, for example, or to treat many diseases where the body wastes away. To Post, the food application started out as an interesting side project, one that soon stole the spotlight from his other work. Meat for consumption is in theory, much easier to grow, he told Macleans in an interview in 2012. The tissue does not need to physically integrate into the body. I considered it a closer goal to reach, he says, and a very important one.

Indeed, the global appetite for meat is growing. Livestock production already takes up 30 per cent of the land surface on our planet, says a 2006 United Nations report, producing more greenhouse gas emissions than all our cars and trucks, combined. According to Patrick O. Brown of Stanford University, eating one four-ounce hamburger is the equivalent of leaving a bathroom faucet running round-the-clock for a week. Developing nations are increasingly emulating the meat-heavy Western diet, and it isnt sustainable. We are heading towards a meat shortage worldwide, Post says. Instead of producing beef, pork and poultry on massive industrial farms, in the near future, he predicts, well be growing it in factories. And while this first hamburger was incredibly expensive to make, as techniques are perfected and lab-grown stem-cell burgers can be mass-produced, the cost will go down; one day it could be lower than the price of traditionally raised meat, which is expected to rise.

Of course, growing a minced hamburger pattylet alone a dense, fat-marbled steakisnt a simple task. Post and his team harvested stem cells from a cows muscle tissue, and bathed them in a special formula of nutrients. As these cells start to differentiate into muscle cells, theyre hooked to attachment points (Post has used Velcro) to create tiny strips of tissue, like a tendon. Eventually, they start to contract on their own. The downside for animal lovers is that you still need animals, a donor herd to provide stem cells, Post says. But compared to factory farming today, the number would be very small. If we grew all our meat in a lab, Post believes, the number of livestock worldwide could be reduced by a factor of one millionthe equivalent of reducing 10 billion livestock animals on the planet to 10,000. This would free up land, water, and other resources, while making sure remaining livestock didnt suffer a death fraught with the issues of large-scale slaughter.

Other than Post, only a handful of scientists are working on lab-grown meat; others believe the future lies in plant-based substitutes, ones so good they could fool even the most discerning palate, although Post maintains that we humans will always have an appetite for the real thing. Worldwide, the meat-eater population is going to grow. Theres no doubt about that, he says. Posts hamburger is a powerful proof of concept, an important first step. As we begin to unravel the implications of this one burgerfor science, for health care, and for the food supply that feeds everyone on the planetwell be watching on Aug. 5, with bated breath, wondering what, exactly, it tastes like.

Anyone who wants to follow along can watch a livestream of the burger consumption on Aug. 5 atculturedbeef.net.

See original here:
One lab-grown hamburger, coming up - Blog Central, Kate Lunau ...

Researchers reveal location of human blood stem cells that may …

Published on August 2, 2013 at 4:29 AM

McMaster University researchers have revealed the location of human blood stem cells that may improve bone marrow transplants. The best stem cells are at the ends of the bone.

It is hoped this discovery will lead to lowering the amount of bone marrow needed for a donation while increasing regeneration and lessening rejection in the recipient patients, says principal investigator Mick Bhatia, professor and scientific director of the McMaster Stem Cell and Cancer Research Institute.

In a paper published online today by the journal Cell Stem Cell, his team reports that human stem cells (HSC) residing in the end (trabecular region) of the bones display the highest regenerative ability of the blood and immune system.

Like the best professional hockey players, our findings indicate blood stem cells are not all equal, said Bhatia. We now reveal the reason why its not the players themselves, but the effect the arena has on them that makes them the highest scorers.

Bone marrow transplants have been done for more than 50 years and are routine in most hospitals, providing a life saving treatment for cancer and other diseases including leukemia, anemia, and immune disorders.

Bhatia, who also holds a Canada Research Chair in Human Stem Cell Biology, said that cells surrounding the best blood stem cells are critically important, as these stem cell neighbors at the end of the bone provide the unique instructions that give these human blood stem cells their superior regenerative abilities.

The research was funded by the Canadian Institutes of Health Research and Ontario Cancer Research Institute.

Source:McMaster University

333931f7-6453-4c81-8792-98f789099e30|0|.0

Read more:
Researchers reveal location of human blood stem cells that may ...

Stem cells in the aesthetic industry: an interview with Dr. Norma …

Interview conducted by April Cashin-Garbutt, BA Hons (Cantab)

Stem Cells are special master cells in your body. Stem cells are the building blocks that can replicate into other kinds of cells like blood cells, heart, muscle, blood vessels and cartilage.

Every day, your stem cells repair tissue in your body, but as one grows older the stem cell number and potency decreases.

First isolated in bone marrow, stem cells have been used for decades to regenerate healthy blood and immune cells in cancer patients through a stem cell transplant.

There are a few different types of stem cells that have been discovered and exist in umbilical cord blood and adipose tissue [fat].

Today, doctors have successfully used a patients own stem cells in a new field of medicine called regenerative medicine, to grow new cartilage in their knee, regenerate heart muscle after a heart attack, and even engineer new tracheas and bladders for patients with disease or injury.

According to statistics put forth by the National Institute of Health, the United States is spending nearly $1 billion a year on Stem cell research, and, as so far, these expenditures have resulted in incredible findings that have begun revolutionizing the medical field.

Research using mouse models has suggested that stem cells may hold the secret to curing epilepsy, boost the immune system, and even restore memorysomething that doctors have been working on for years.

On top of this, research at the Mayo Clinic has shown stem cell therapy to delay or even eliminate joint replacement procedures, a revelation discovered through the stem cells ability to repair damaged cartilage in the hips and knees.

Read the original post: Stem cells in the aesthetic industry: an interview with Dr. Norma Kassardjian

The rest is here:
Stem cells in the aesthetic industry: an interview with Dr. Norma ...

Groundbreaking stem cell research requires legal certainty (Other …

By Denver Post Editorial Board

Medical advances come so fast and furious these days, it might be easy to lose perspective as to how transformative these discoveries can be.

Limb and even face transplants are possible, as is tissue regeneration. And joint replacement well, that has become almost routine.

Against this backdrop, its understandable to perhaps have overlooked an announcement last week that researchers found no detectable HIV virus levels in two stem-cell transplant patients who had previously tested positive for HIV.

Its too early to use the word cure, but the implications are breath-taking. At the very least, the findings could be an important stepping stone on the path to a cure for a virus that has led to more than 30 million deaths worldwide.

The life-changing potential of the discovery brings to mind the need for federal lawmakers to pass legislation cementing into law the Obama administrations rules on embryonic stem-cell research. As it stands, these sensible rules could be modified by a successive administration.

U.S. Rep. Diana DeGette, D-Colo., reintroduced such a measure several weeks ago, and we hope it passes. Congress passed similar measures twice before, but they were vetoed by then-President George W. Bush.

To be clear, the type of stem-cell therapy used in the HIV research a bone marrow transplant is different from embryonic stem-cell research and doesnt typically spark the kind of controversy that embryonic stem-cell research engenders. And thank goodness.

But the potential for medical breakthroughs from embryonic stem-cell research that could help people suffering from debilitating diseases and conditions such as Parkinsons Disease and juvenile diabetes is similarly inspiring.

As research institutions consider investing in the human capital and infrastructure necessary to carry out embryonic stem-cell research, having legislative clarity would make those expenditures more palatable.

See the article here:
Groundbreaking stem cell research requires legal certainty (Other ...

Microparticles create localized control of stem cell differentiation

Javascript is currently disabled in your web browser. For full site functionality, it is necessary to enable Javascript. In order to enable it, please see these instructions. Jul 09, 2013 Georgia Tech/Emory University Associate Professor Todd McDevitt and graduate student Anh Nguyen make microparticles to be used for delivering growth factors to stem cells. Credit: Rob Felt

Before scientists and engineers can realize the dream of using stem cells to create replacements for worn out organs and battle damaged body parts, they'll have to develop ways to grow complex three-dimensional structures in large volumes and at costs that won't bankrupt health care systems.

Researchers are now reporting advances in these areas by using gelatin-based microparticles to deliver growth factors to specific areas of embryoid bodies, aggregates of differentiating stem cells. The localized delivery technique provides spatial control of cell differentiation within the cultures, potentially enabling the creation of complex three-dimensional tissues. The local control also dramatically reduces the amount of growth factor required, an important cost consideration for manufacturing stem cells for therapeutic applications.

The microparticle technique, which was demonstrated in pluripotent mouse embryonic cells, also offers better control over the kinetics of cell differentiation by delivering molecules that can either promote or inhibit the process. Based on research sponsored by the National Institutes of Health and the National Science Foundation, the developments were reported online July 1 in the journal Biomaterials and were presented at the 11th Annual International Society for Stem Cell Research meeting held in Boston June 12-15, 2013.

"By trapping these growth factors within microparticle materials first, we are concentrating the signal they provide to the stem cells," said Todd McDevitt, an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. "We can then put the microparticle materials physically inside the multicellular aggregate system that we use for differentiation of the stem cells. We have good evidence that this technique can work, and that we can use it to provide advantages in several different areas."

The differentiation of stem cells is largely controlled by external cues, including morphogenic growth factors, in the three-dimensional environment that surrounds the cells. Most stem cell researchers currently deliver the growth factors into liquid solutions surrounding the stem cell cultures with a goal of creating homogenous cultures of cells. Delivering the growth factors from microparticles, however, provides better control of the spatial and temporal presentation of the molecules that govern the growth and differentiation of the stem cells, potentially allowing formation of heterogeneous structures formed from different cells.

Groups of stem cells stick together as they develop, forming multicellular aggregates that form spheroids as they grow. The researchers took advantage of that by driving microparticles containing growth factor BMP4 or noggin which inhibits BMP4 signaling into layers of stem cells using centrifugation. When the cell aggregates formed, the microparticles became trapped inside.

The researchers used confocal imaging and flow cytometry to observe the differentiation process and found that growth factors in the microparticles directed the cells toward mesoderm and ectoderm tissues just as they do in solution-based techniques. But because the BMP4 and noggin molecules were directly in contact with the cells, much less growth factor was needed to spur the differentiation approximately 12 times less than what would be required by conventional solution-based techniques.

"One of the major advantages, in a practical sense, is that we are using much less growth factor," said McDevitt, who is also director of the Stem Cell Engineering Center at Georgia Tech. "From a bioprocessing standpoint, a lot of the cost involved in making stem cell products is related to the cost of the molecules that must be added to make the stem cells differentiate."

Beyond more focused signaling, the microparticles also provided a localized control not available through any other technique. That allowed the researchers to create spatial differences in the aggregates a possible first step toward forming more complex structures with different tissue types such as vasculature and stromal cells.

See more here:
Microparticles create localized control of stem cell differentiation