Category Archives: Stell Cell Research


International Stem Cell Corporation to Present at American Society …

CARLSBAD, CA(Marketwired May 1, 2013) International Stem Cell Corporation (OTCQB: ISCO) (www.internationalstemcell.com) a California-based biotechnology company developing novel stem cell based therapies announced that Dr. Ruslan Semechkin, VP of Research and Development, will present additional data from the primate study of the use of neuronal cells for the treatment of Parkinsons disease at the 16th Annual Meeting of American Society of Gene and Cell Therapy, May 15-18, 2013 at the Salt Palace Convention Center in Salt Lake City, UT.

The results, including more detailed analysis of the safety and functional activity of the cells, will be presented orally at the following session:

Session: Stem Cell Engineering and Therapy Date: Thursday, May 16, 2013 Time: 2:00 PM Room: Ballroom D Title: Cell Replacement Therapy for Parkinsons Disease with Neuronal Cells Derived from Human Parthenogenetic Stem Cells

In addition ISCO will present two posters detailing progress in our pre-clinical metabolic liver disease program and recent achievements with our safe iPS cells, induced pluripotent stem cells that do not rely on viral vectors for the genetic reprogramming. The posters will be presented on Thursday, May 16, 2013 between 4:00 pm and 6:00 pm in Exhibit Hall C/D.

About International Stem Cell Corporation

International Stem Cell Corporation is focused on the therapeutic applications of human parthenogenetic stem cells (hpSCs) and the development and commercialization of cell-based research and cosmetic products. ISCOs core technology, parthenogenesis, results in the creation of pluripotent human stem cells from unfertilized oocytes (eggs) hence avoiding ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenetic, homozygous stem cell line that can be a source of therapeutic cells for hundreds of millions of individuals of differing genders, ages and racial background with minimal immune rejection after transplantation. hpSCs offer the potential to create the first true stem cell bank, UniStemCell. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology (www.lifelinecelltech.com), and stem cell-based skin care products through its subsidiary Lifeline Skin Care (www.lifelineskincare.com). More information is available at http://www.internationalstemcell.com.

To receive ongoing corporate communications via email, visit: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0

To like our Facebook page or follow us on Twitter for company updates and industry related news, visit: http://www.facebook.com/InternationalStemCellCorporation and http://www.twitter.com/intlstemcell

Read more: International Stem Cell Corporation to Present at American Society of Gene and Cell Therapy 16th Annual Meeting

Continued here:
International Stem Cell Corporation to Present at American Society ...

ViaCord® to Advance Cord Blood Stem Cell Therapy Research …

WALTHAM, Mass.(BUSINESS WIRE)

ViaCord, PerkinElmers family cord blood and tissue preservation business, is collaborating with the Center for International Blood and Marrow Transplant Research (CIBMTR) to collect, maintain and publish research from ViaCords cord blood stem cell transplants. This collaboration will expand knowledge of cord blood-derived stem cell applications throughout the medical and research community. To date, CIBMTRs large network of transplant centers has resulted in the development of a clinical database of more than 30,000 cord blood transplant recipients for clinical decision-making, use in studies, and other research purposes with the goal of making a profound impact on the survival of cord blood transplant patients around the world. CIBMTR will work directly with ViaCord to collect and analyze data to better understand the quality and any outcome metrics of ViaCords released cord blood stem cell units as well as how the units are being used.

Collaborating with CIBMTR, which has established the industry standard for collecting data around hematopoietic cellular therapy and regenerative medicine, allows us to simultaneously gain insights into the effectiveness of the cord blood stem cell units we have released for use as well as outcomes from their clinical application, said Morey Kraus, Chief Scientific Officer, ViaCord. We are then able to incorporate data from our transplanted units into the larger database, which may be accessed for other CIBMTR studies by the medical and scientific community to further their research and understanding of cord blood stem cells.

ViaCord is working with CIBMTR to collect and publish data as well as identify outcomes unique to related or autologous (stem cells from the same patient) transplants. The collaboration will also enable the analysis of umbilical cord units released for potential future use in autologous cell therapy and regenerative medicine clinical trials, including Cerebral Palsy, Type 1 Diabetes and others.

The science of cord blood and cord tissue stem cells is growing at a rapid pace, said J. Douglas Rizzo, M.D., M.S., Associate Scientific Director, CIBMTR. We are excited to collaborate with ViaCord to provide data and analytic expertise that will assist the development of the field through research.

ViaCords family cord blood banking services currently offers expectant families the opportunity to preserve their babys umbilical cord blood for potential medical use by the child or a related family member. Families are also preserving their babys umbilical cord tissue because research suggests that one day these special cells may have the potential to treat medical conditions that are untreatable today. ViaCord has preserved the umbilical cord blood of more than 300,000 newborns. Twenty years ago, cord blood stem cells were used to treat just one disease, Fanconis anemia. Today, cord blood stem cells have been used in the treatment of nearly 80 diseases, including cancers, certain blood disorders and immunodeficiencies. Please visit http://www.viacord.com for more information.

Factors Affecting Future Performance This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, including, but not limited to, statements relating to estimates and projections of future earnings per share, cash flow and revenue growth and other financial results, developments relating to our customers and end-markets, and plans concerning business development opportunities and divestitures. Words such as believes, intends, anticipates, plans, expects, projects, forecasts, will and similar expressions, and references to guidance, are intended to identify forward-looking statements. Such statements are based on managements current assumptions and expectations and no assurances can be given that our assumptions or expectations will prove to be correct. A number of important risk factors could cause actual results to differ materially from the results described, implied or projected in any forward-looking statements. These factors include, without limitation: (1) markets into which we sell our products declining or not growing as anticipated; (2) fluctuations in the global economic and political environments; (3) our failure to introduce new products in a timely manner; (4) our ability to execute acquisitions and license technologies, or to successfully integrate acquired businesses and licensed technologies into our existing business or to make them profitable, or successfully divest businesses; (5) our failure to adequately protect our intellectual property; (6) the loss of any of our licenses or licensed rights; (7) our ability to compete effectively; (8) fluctuation in our quarterly operating results and our ability to adjust our operations to address unexpected changes; (9) significant disruption in third-party package delivery and import/export services or significant increases in prices for those services; (10) disruptions in the supply of raw materials and supplies; (11) the manufacture and sale of products exposing us to product liability claims; (12) our failure to maintain compliance with applicable government regulations; (13) regulatory changes; (14) our failure to comply with healthcare industry regulations; (15) economic, political and other risks associated with foreign operations; (16) our ability to retain key personnel; (17) significant disruption in our information technology systems; (18) our ability to obtain future financing; (19) restrictions in our credit agreements; (20) our ability to realize the full value of our intangible assets; (21) significant fluctuations in our stock price; (22) reduction or elimination of dividends on our common stock; and (23) other factors which we describe under the caption Risk Factors in our most recent quarterly report on Form 10-Q and in our other filings with the Securities and Exchange Commission. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this press release.

About the Center for International Blood and Marrow Transplant Research(CIBMTR) A combined research program of the National Marrow Donor Program and the Medical College of Wisconsin, the CIBMTR facilitates critical, cutting-edge research that has led to increased survival and an enriched quality of life for thousands of patients. The CIBMTR collaborates with the global scientific community to advance hematopoietic cell transplantation and cellular therapy research worldwide. The prospective and observational research is accomplished through scientific and statistical expertise, a large network of transplant centers and clinical database of more than 350,000 transplant recipients.

About PerkinElmer, Inc. PerkinElmer, Inc. is a global leader focused on improving the health and safety of people and the environment. The company reported revenue of approximately $2.1 billion in 2012, has about 7,500 employees serving customers in more than 150 countries, and is a component of the S&P 500 Index. Additional information is available through 1-877-PKI-NYSE, or at http://www.perkinelmer.com.

See the original post here: ViaCord to Advance Cord Blood Stem Cell Therapy Research through Collaboration with the Center for International

See original here:
ViaCord® to Advance Cord Blood Stem Cell Therapy Research ...

NeoStem’s Subsidiary, Progenitor Cell Therapy … – Stem Cell Cafe

ALLENDALE, N.J., April 29, 2013 (GLOBE NEWSWIRE) NeoStem, Inc. (NYSE MKT:NBS) and its subsidiary, Progenitor Cell Therapy LLC (PCT), announced today the execution of a Services Agreement with Sentien Biotechnologies, Inc. (Sentien) under which PCT will provide services to support Sentiens development of its cell therapy product, including technology transfer, staff training, and manufacturing.

Sentien is developing an allogeneic cell therapy product consisting of bone marrow derived mesenchymal stem cells seeded onto a medical device for critical care indications. Sentien has engaged PCT for manufacture of the final formulation of its cell therapy product and intends to transfer and implement Sentiens master cell bank, product working cell bank and product manufacturing processes to PCT. These cell banks will be prepared according to Good Manufacturing Practices (GMP) guidelines and implemented by PCT to create a cell therapy product for Sentiens Investigational New Drug (IND) submission to the FDA. Upon obtaining an IND, Sentien intends to have PCT manufacture GMP compliant grade materials to support Sentiens Phase I clinical trial.

We are excited to enter into this agreement with Sentien, an innovator for acute organ failure, said Robert A. Preti, PhD, President and Chief Scientific Officer of PCT. PCT is an internationally recognized contract development and manufacturing organization with facilities in Allendale, New Jersey and Mountain View, California. The company has expertise in GMP manufacture for cell therapies, including dendritic cells, stem cells and T cells. Notably, PCT provided manufacturing for the pivotal studies for Dendreons Provenge(R), the first cell therapy approved for cancer treatment.

About NeoStem, Inc.

NeoStem, Inc. (NeoStem or the Company) is a leader in the emerging cellular therapy industry. Our business model includes the development of novel proprietary cell therapy products as well as operating a contract development and manufacturing organization (CDMO) providing services to others in the regenerative medicine industry. The combination of a therapeutic development business and revenue-generating service provider business provides the Company with capabilities for cost effective in-house product development and immediate revenue and cash flow generation. http://www.neostem.com

Forward-Looking Statements for NeoStem, Inc.

This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Forward-looking statements reflect managements current expectations, as of the date of this press release, and involve certain risks and uncertainties. Forward-looking statements include statements herein with respect to the successful execution of the Companys business strategy, including with respect to the Companys research and development and clinical evaluation efforts for cellular therapies, including with respect to AMR-001, the future of the regenerative medicine industry and the role of stem cells and cellular therapy in that industry and the Companys ability to successfully grow its contract development and manufacturing business. The Companys actual results could differ materially from those anticipated in these forward- looking statements as a result of various factors. Factors that could cause future results to materially differ from the recent results or those projected in forward-looking statements include the Risk Factors described in the Companys Annual Report on Form 10-K filed with the Securities and Exchange Commission on March 11, 2013 and in the Companys periodic filings with the Securities and Exchange Commission. The Companys further development is highly dependent on future medical and research developments and market acceptance, which is outside its control.

See the original post: NeoStem's Subsidiary, Progenitor Cell Therapy, Enters Into a Services Agreement With Sentien Biotechnologies, Inc.

Originally posted here:
NeoStem's Subsidiary, Progenitor Cell Therapy ... - Stem Cell Cafe

Clarifying the effect of stem cell therapy on cancer – Stem Cell Cafe

Public release date: 28-Apr-2013 [ | E-mail | Share ]

Contact: Hilary Glover hilary.glover@biomedcentral.com 44-020-319-22370 BioMed Central

Injection of human stem cells into mice with tumors slowed down tumor growth, finds research published in BioMed Centrals open access journal Stem Cell Research & Therapy. Human mesenchymal stem cells (MSC), isolated from bone marrow, caused changes in blood vessels supplying the tumor, and it is this modification of blood supply which seems to impact tumor growth.

The use of stem cells in treating cancer has been controversial, with some studies finding that stem cells force tumors to enter programmed cell death. However other studies find that stem cells actually promote tumor growth by inducing infiltration of new blood vessels. In attempting to sort out this puzzle researchers from INSERM groups at Universit Joseph Fourier in collaboration with CHU de Grenoble investigated the impact of MSC on already established subcutaneous or lung metastasis in mice.

For both the subcutaneous and lung tumors, injection of MSC reduced cell division, consequently slowing the rate of tumor growth. Part of the mode of action of stem cells therefore appears to be due to with angiogenesis, but the mechanism behind this is still unclear.

Claire Rome who led this study explained, We found that MSC altered vasculature inside the tumor although new blood vessels were generated, overall they were longer and fewer than in untreated tumors. This could be restricting the oxygen and nutrients to the tumor, limiting cell division. She continued, Our study confirms others which propose that stem cells, in particular MSC, might be one way forwards in treating cancer.

Commenting on this study Celia Gomes, from the University of Coimbra, said, One of the interesting questions this study raises is when MSC promote tumor growth and when they restrict it. The answer seems to be timing this study looks at already established tumors, while others, which find that MSC increase growth, tend to be investigating new tumors. This is a first step in the path to identifying exactly which patients might benefit from stem cell therapy and who will not.

###

Media Contact

Dr Hilary Glover Scientific Press Officer, BioMed Central Tel: +44 (0) 20 3192 2370 Mob: +44 (0) 778 698 1967 Email: hilary.glover@biomedcentral.com

Read more from the original source:
Clarifying the effect of stem cell therapy on cancer – Stem Cell Cafe

Stemedica Issued U.S. Patent For Ectodermal Stem Cells – Stem …

San Diego, CA (PRWEB) April 30, 2013

Stemedica Cell Technologies, Inc., a leading manufacturer of adult allogeneic stem cells and stem cell factors announced that the Company has been issued keystone Patent No. 8,420,394 titled Culturing Ectodermal Cells Under Reduced Oxygen Tension by the United States Patent and Trademark Office (USPTO). This patent broadly covers Stemedicas proprietary manufacturing process for enhancing the proliferation and differentiation potential of ectodermal cells of any origin. The ectodermal layer gives rise to the cells of the skin and nervous system. The patented process provides Stemedica exclusivity for expanding and manufacturing ischemia tolerant ectodermal cells under reduced oxygen tension.

Nikolai Tankovich, MD, PhD, FASLMS, President and Chief Medical Officer of Stemedica noted, We are pleased that the USPTO recognizes the uniqueness of the technology and processes to manufacture ectodermal cell of any origin. This includes, but is not limited to: allogeneic and autologous adult, embryonic, parthenogenic and iPS sources of stem cells. When compared to stem cells expanded in normal oxygen, Stemedica cells exhibit superior migratory and engraftment properties, enhanced gap junction formation and a unique gene profile. These critical cell characteristics are the direct result of Stemedicas proprietary technology and expansion methodology.

Alex Kharazi, MD, PhD, Chief Technology Officer at Stemedica noted that, We recently published data from the spinal cord injury study in rats done by Ivan Cheng, MD, at Stanford University showing significant efficacy of Stemedicas neural stem cells injected intrathecally both distally and at the site of injury. We also anticipate publishing extremely promising data in the application of our neural stem cells, mesenchymal stem cells and combined treatment in a mouse model of Alzheimers disease. This large scale animal study was funded by the Swiss government and examines both young and older mice for anatomical and biomarker changes in beta amyloid and tau proteins and brain re-perfusion.

Maynard Howe, PhD, Vice Chairman and Chief Executive Officer of Stemedica commented, While we are pleased to have added another patent to our growing portfolio of intellectual property, we are extremely excited to be issued this keystone patent. It represents the culmination of our research and development, coupled with our cGMP manufacturing processes and our license to make these cells broadly available.

About Stemedica Cell Technologies, Inc. http://www.stemedica.com Stemedica Cell Technologies, Inc. is a specialty bio-pharmaceutical company committed to the manufacturing and development of best-in-class allogeneic adult stem cells and stem cell factors for use by approved research institutions and hospitals for pre-clinical and clinical (human) trials. The company is a government licensed manufacturer of clinical grade stem cells and is approved by the FDA for its clinical trials for ischemic stroke, acute myocardial infarction, and cutaneous photoaging. Stemedica is currently developing regulatory pathways for a number of medical indications using adult allogeneic stem cells. The Company is headquartered in San Diego, California.

For more information please contact Dave McGuigan at dmcguigan (at) stemedica (dot) com

Here is the original post: Stemedica Issued U.S. Patent For Ectodermal Stem Cells

More:
Stemedica Issued U.S. Patent For Ectodermal Stem Cells – Stem ...

Adults lack stem cells for making new eggs, research shows – Stem …

Javascript is currently disabled in your web browser. For full site functionality, it is necessary to enable Javascript. In order to enable it, please see these instructions. 9 hours ago

Mammalian females ovulate periodically over their reproductive lifetimes, placing significant demands on their ovaries for egg production. Whether mammals generate new eggs in adulthood using stem cells has been a source of scientific controversy. If true, these germ-line stem cells might allow novel treatments for infertility and other diseases. However, new research from Carnegies Lei Lei and Allan Spradling demonstrates that adult mice do not use stem cells to produce new eggs. Their work is published by the Proceedings of the National Academy of Sciences the week of April 29.

Before birth, mouse and human ovaries contain an abundant supply of germ cells, some of which will develop into the eggs that will ultimately be released from follicles during ovulation. Around the time of birth these germ cells have formed a large reserve of primordial follicleseach containing a single immature egg. Evidence of new follicle production is absent after birth, so it has long been believed that the supply of follicles is fixed at birth and eventually runs out, leading to menopause.

During the last decade, some researchers have claimed that primordial follicles in adult mouse ovaries turn over and that females use adult germ-line stem cells to constantly resupply the follicle pool and sustain ovulation. These claims were based on subjective observations of ovarian tissue and on the behavior of extremely rare ovarian cells following extensive growth in tissue culture, a procedure that is capable of reprogramming cells.

Lei and Spradling used a technique that allows individual cells and their progeny within a living animal to be followed over time by marking the cells with a new gene. This general approach, known as lineage-tracing, has been a mainstay of classical developmental biology research and has greatly clarified knowledge of tissue stem cells during the last decade.

Their research showed that primordial follicles are highly stable, and that germ-line stem cell activity cannot be detected, even in response to the death of half the existing follicles. The research placed a stringent upper limit on the stem cell activity that could exist in the mouse ovary and escape detectionone stem cell division every two weeks, which is an insignificant level.

What about the rare stem-like cells generated in cultures of ovarian cells? According to Spradling, these cells likely arise by dedifferentiation in culture, and the same safety and reliability concerns would apply as to any laboratory-generated cell type that lacks a normal counterpart in the body.

Related: Do ovaries continue to produce eggs during adulthood?

More information: Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles, PNAS, http://www.pnas.org/cgi/doi/10.1073/pnas.1306189110

Researchers have found a way to turn mouse embryonic stem cells into sperm. This finding, reported in the journal Cell in a special online release on August 4th, opens up new avenues for infertility research and treatment. A Kyo

Read this article:
Adults lack stem cells for making new eggs, research shows – Stem ...

Study confirms that mesenchymal stem cells may help treat cancer …

Apr 30

Published on April 29, 2013 at 1:17 AM

Injection of human stem cells into mice with tumors slowed down tumor growth, finds research published in BioMed Centrals open access journal Stem Cell Research & Therapy. Human mesenchymal stem cells (MSC), isolated from bone marrow, caused changes in blood vessels supplying the tumor, and it is this modification of blood supply which seems to impact tumor growth.

The use of stem cells in treating cancer has been controversial, with some studies finding that stem cells force tumors to enter programmed cell death. However other studies find that stem cells actually promote tumor growth by inducing infiltration of new blood vessels. In attempting to sort out this puzzle researchers from INSERM groups at Universit- Joseph Fourier in collaboration with CHU de Grenoble investigated the impact of MSC on already established subcutaneous or lung metastasis in mice.

For both the subcutaneous and lung tumors, injection of MSC reduced cell division, consequently slowing the rate of tumor growth. Part of the mode of action of stem cells therefore appears to be due to with angiogenesis, but the mechanism behind this is still unclear.

Claire Rome who led this study explained, We found that MSC altered vasculature inside the tumor although new blood vessels were generated, overall they were longer and fewer than in untreated tumors. This could be restricting the oxygen and nutrients to the tumor, limiting cell division. She continued, Our study confirms others which propose that stem cells, in particular MSC, might be one way forwards in treating cancer.

Commenting on this study Celia Gomes, from the University of Coimbra, said, One of the interesting questions this study raises is when MSC promote tumor growth and when they restrict it. The answer seems to be timing this study looks at already established tumors, while others, which find that MSC increase growth, tend to be investigating new tumors. This is a first step in the path to identifying exactly which patients might benefit from stem cell therapy and who will not.

Source: BioMed Central

The rest is here: Study confirms that mesenchymal stem cells may help treat cancer

The rest is here:
Study confirms that mesenchymal stem cells may help treat cancer ...

Stem Cell Therapy Market in Asia-Pacific to 2018 … – Stem Cell Cafe

NEW YORK, April 24, 2013 /PRNewswire/ Reportlinker.com announces that a new market research report is available in its catalogue:

Stem Cell Therapy Market in Asia-Pacific to 2018 Commercialization Supported by Favorable Government Policies, Strong Pipeline and Increased Licensing Activity

http://www.reportlinker.com/p01075729/Stem-Cell-Therapy-Market-in-Asia-Pacific-to-2018Commercialization-Supported-by-Favorable-Government-Policies-Strong-Pipeline-and-Increased-Licensing-Activity.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Biological_Therapy

Stem Cell Therapy Market in Asia-Pacific to 2018 Commercialization Supported by Favorable Government Policies, Strong Pipeline and Increased Licensing Activity

Summary

GBI Research, the leading business intelligence provider, has released its latest research Stem Cell Therapy Market in Asia-Pacific to 2018 Commercialization Supported by Favorable Government Policies, Strong Pipeline and Increased Licensing Activity. The report provides an in-depth analysis on stem cell research and development in India, China, Japan, South-Korea and Singapore. The report market analysis and forecasts for CABG, LSCT, Type 1 DM, Type 2 DM, Hearticellgram, Cerecellgram, Cartistem and Cupistem. The report also provides information on trends and pipelines. In addition to this, the report covers market drivers and challenges for stem cell research market.

This report is built using data and information sourced from proprietary databases, primary and secondary research and in-house analysis by GBI Researchs team of industry experts.

GBI Research analysis finds the stem cell therapy market was valued at $545m in 2012, and is projected to grow at a Compound Annual Growth Rate (CAGR) of 10% from 2012 to 2018, to attain a value of $972m in 2018. The market is poised for significant growth in the forecast period due to the anticipated launch of JCR Pharmaceuticals JR-031 (2014) in Japan and FCB Pharmicells Cerecellgram (CCG) (2015) in South Korea. The research is mainly in early stages, with the majority of the molecules being in early stages of development (Phase I/II and Phase II). Phase I/II and Phase II contribute 67% of the pipeline. Stem cell research is dominated by hospitals/universities/institutions, which contribute 63% of the molecules in the pipeline. The dominance of institutional research is attributable to uncertain therapeutic outcomes in stem cell research.The major companies conducting research in India include Reliance Life Sciences and Stempeutics Research Pvt Ltd, among others. The major institutions include PGIMER and AIIMS.

Scope

Country analysis of regulatory framework of India, China, South-Korea, Japan and Singapore In-depth information and analysis on the pipeline products expected to bring a shift to the market positions of the leading manufacturers. Market characterization data for stem cell research for CABG, LSCT, Type 1 DM, Type 2 DM, Hearticellgram, Cerecellgram, Cartistem and Cupistem. Key drivers and restraints that have a significant impact on the market. Competitive landscape of stem cell research in Asia-Pacific. The key companies discussed in this report are Stempeutics, Reliance Lifesciences, International Stem cell services, Shenzhen Beike Biotechnology, JCR Pharmaceuticals, ES Cells International, Stem Cell Technologies i, Pharmicell and Medipost Key M&A activities, licensing agreements, that have taken place between stem cell companies in 2007 till date.

Read this article:
Stem Cell Therapy Market in Asia-Pacific to 2018 ... - Stem Cell Cafe

German stem cells give new life to cancer patient in Gujarat – Stem …

Apr 28

AHMEDABAD: Just over a fortnight ago, a German man took eight injections and got hooked up to a machine for five-odd hours while peripheral blood stem cells were collected. These were put on a flight and sent to the city-based Gujarat Cancer Research Institute (GCRI) to give a 50-year-old housewife Kesar Devi a fresh lease life.

Even as news of an Indian donor ditching Stanford University professor Nalini Ambady, battling for life after a leukemia relapse, hit the headlines recently, Gujarat has recorded its first matched unrelated donor transplantation using stems cells of an international donor.

Kesar Devi was diagnosed with blood cancer last year. After chemotherapy, her cancer resurfaced recently. Stem cell transplantation was the next line of treatment. Unfortunately, both her brother and sister did not turn out to be a perfect match as donors.

No donor was found on the two Indian registries, which has 20,000 donors each. Since GCRI had registered with German bone marrow donor registry DKMS, her data was uploaded. She found a single match in the German man who donated his stem cells. In fact, two other blood cancer patients have also found their matching donors in the German registry.

On Saturday, it was Day 16 after the stem cell transplant where Kesars diseases blood cells were destroyed with chemotherapy and the German mans stem cells infused into her bloodstream. The hope was that she would get a 50% chance at life again. Kesar is doing well and is likely to be discharged on Monday.

International donors are a significant development given that siblings of many patients decline to be donors. At least two out of 10 patients siblings refuse to become donors, said Dr Sandip Shah, director of the bone marrow transplant department at GCRI.

People here either fear they will invite disease if they donate marrow or blood stem cells or are restrained by relatives. Peripheral blood stem cells regenerate within 48 hours of donation, Shah added.

Germans offer subsidized donor marrow and stem cell at Rs 6 lakh while the same sourced from the US can cost between Rs 20 lakh and Rs 30 lakh.

Go here to read the rest: German stem cells give new life to cancer patient in Gujarat

Continue reading here:
German stem cells give new life to cancer patient in Gujarat – Stem ...

AKC Canine Health Foundation Releases Webinar … – Stem Cell Cafe

Free Webinar on the Use of Regenerative Medicine to Treat Orthopedic Injuries in Dogs

Raleigh, NC (PRWEB) April 25, 2013

In this free, 40-minute webinar, Dr. Canapp discusses the recent progress in the use of regenerative medicine to treat orthopedic injuries in dogs and also identifies areas where further research is needed. Designed for both lay and scientific audiences, Dr. Canapp explains the different types of therapy that fall under the category of regenerative medicine, while presenting the stories of three canine clients whose lives were drastically improved through this exciting and innovative treatment.

Regenerative medicine has extraordinary potential to change the way we treat both acute injury and chronic disease in dogs. Early evidence shows these techniques have real promise in helping canine patients recover from injury. Our job as a foundation is to fund research that will provide owners and veterinarians with solid evidence-based medicine, said Dr. Shila Nordone, CHF Chief Scientific Officer. We are pleased to partner with Dr. Canapp to share the emerging technology available to dog lovers throughout the world, and we look forward to a long-term research partnership with Dr. Canapp and collaborators to firmly establish best practices with regenerative medicine technology.

For the two week period following the release of the webinar, CHF will be compiling viewer questions which will be answered by Dr. Canapp and posted to the website.

In 2012, CHF established the Canine Athlete Initiative (CAI) which focuses on the health needs of active dogs. The CAI fund provides grants for cutting-edge research into orthopedic concerns, proper nutrition and conditioning to achieve maximum performance while preventing injury, and innovative rehabilitation techniques. Through the CAI, the foundation also educates the public on the joys of participating in canine athletic events, as well as the value of preventive examinations and optimal nutrition to keep all dogs at the top of their game.

Dr. Canapp completed a combined DVM and Masters of Clinical Science in Surgery at Kansas State University. He is a Diplomate of the American College of Veterinary Surgeons and is certified in Canine Rehabilitation, stem cell therapy and tibial-plateau-leveling osteotomy or TPLO surgery. To date, he has performed more than 2000 TPLO procedures to stabilize the stifle joint after ruptures of the cranial cruciate ligament. Dr. Canapp has been named a charter Diplomate in the newly recognized American College of Veterinary Sports Medicine and Rehabilitation (ACVSMR).

CHF HealthE-Barks webinars are released several times each year and feature key opinion leaders in various fields of canine health. To download the free webinar Regenerative Medicine for Canine Orthopedic Conditions, visit http://www.akcchf.org/webinars, or to make a donation to support this and other canine health research, visit http://www.akcchf.org/donate.

CHF is a non-profit organization dedicated to funding research to prevent, treat and cure canine disease. Like CHF on Facebook, follow CHF on Twitter @CanineHealthFnd, or connect with CHF on LinkedIn.

# # #

Original post:
AKC Canine Health Foundation Releases Webinar ... - Stem Cell Cafe