Apperley, L. J. & Ng, S. M. Increased insulin requirement may contribute to risk of obesity in children and young people with type 1 diabetes mellitus. Diabetes Metabol. Syndrome-Clin. Res. Rev. 13, 492495. https://doi.org/10.1016/j.dsx.2018.11.005 (2019).
Article Google Scholar
Scherm, M. G. et al. Beta cell and immune cell interactions in autoimmune type 1 diabetes: How they meet and talk to each other. Mol. Metab. 2022, 101565. https://doi.org/10.1016/j.molmet.2022.101565 (2022).
CAS Article Google Scholar
Tisch, R. & McDevitt, H. Insulin-dependent diabetes mellitus. Cell 85, 291297. https://doi.org/10.1016/s0092-8674(00)81106-x (1996).
CAS Article PubMed Google Scholar
Shao, L. et al. The role of adipose-derived inflammatory cytokines in type 1 diabetes. Adipocyte 5, 270274. https://doi.org/10.1080/21623945.2016.1162358 (2016).
CAS Article PubMed PubMed Central Google Scholar
Viehmann-Milam, A. A. et al. A humanized mouse model of autoimmune insulitis. Diabetes 63, 17121724. https://doi.org/10.2337/db13-1141 (2014).
CAS Article PubMed PubMed Central Google Scholar
Martins, C. P. et al. Glycolysis inhibition induces functional and metabolic exhaustion of CD4(+) T cells in type 1 diabetes. Front. Immunol. 12, 669456. https://doi.org/10.3389/fimmu.2021.669456 (2021).
CAS Article PubMed PubMed Central Google Scholar
Lichtnekert, J., Kawakami, T., Parks, W. C. & Duffield, J. S. Changes in macrophage phenotype as the immune response evolves. Curr. Opin. Pharmacol. 13, 555564. https://doi.org/10.1016/j.coph.2013.05.013 (2013).
CAS Article PubMed PubMed Central Google Scholar
Sugg, K. B., Lubardic, J., Gumucio, J. P. & Mendias, C. L. Changes in macrophage phenotype and induction of epithelial-to-mesenchymal transition genes following acute Achilles tenotomy and repair. J. Orthopaed. Res. 32, 944951. https://doi.org/10.1002/jor.22624 (2014).
CAS Article Google Scholar
Saltiel, A. R. & Olefsky, J. M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Investig. 127, 14. https://doi.org/10.1172/jci92035 (2017).
Article PubMed PubMed Central Google Scholar
Coope, A., Torsoni, A. S. & Velloso, L. A. Metabolic and inflammatory pathways on the pathogenesis of type 2 diabetes. Eur. J. Endocrinol. 174, R175R187. https://doi.org/10.1530/eje-15-1065 (2016).
CAS Article PubMed Google Scholar
Zhang, C. et al. Circular RNA circPPM1F modulates M1 macrophage activation and pancreatic islet inflammation in type 1 diabetes mellitus. Theranostics 10, 1090810924. https://doi.org/10.7150/thno.48264 (2020).
CAS Article PubMed PubMed Central Google Scholar
Calderon, B., Suri, A. & Unanue, E. R. In CD4+ T-cell-induced diabetes, macrophages are the final effector cells that mediate islet beta-cell killing: Studies from an acute model. Am. J. Pathol. 169, 21372147. https://doi.org/10.2353/ajpath.2006.060539 (2006).
CAS Article PubMed PubMed Central Google Scholar
Wang, F. et al. Loss of ubiquitin-conjugating enzyme E2 (Ubc9) in macrophages exacerbates multiple low-dose streptozotocin-induced diabetes by attenuating M2 macrophage polarization. Cell Death Dis. 10, 892. https://doi.org/10.1038/s41419-019-2130-z (2019).
CAS Article PubMed PubMed Central Google Scholar
Arnush, M., Scarim, A. L., Heitmeier, M. R., Kelly, C. B. & Corbett, J. A. Potential role of resident islet macrophage activation in the initiation of autoimmune diabetes. J. Immunol. 160, 26842691 (1998).
CAS PubMed Google Scholar
Apaolaza, P. S., Petropoulou, P. I. & Rodriguez-Calvo, T. Whole-slide image analysis of human pancreas samples to elucidate the immunopathogenesis of type 1 diabetes using the QuPath software. Front. Mol. Biosci. 8, 689799. https://doi.org/10.3389/fmolb.2021.689799 (2021).
CAS Article PubMed PubMed Central Google Scholar
Willcox, A., Richardson, S. J., Bone, A. J., Foulis, A. K. & Morgan, N. G. Analysis of islet inflammation in human type 1 diabetes. Clin. Exp. Immunol. 155, 173181. https://doi.org/10.1111/j.1365-2249.2008.03860.x (2009).
CAS Article PubMed PubMed Central Google Scholar
Wherrett, D. K. et al. Defining pathways for development of disease-modifying therapies in children with type 1 diabetes: A consensus report. Diabetes Care 38, 19751985. https://doi.org/10.2337/dc15-1429 (2015).
CAS Article PubMed PubMed Central Google Scholar
Mahon, J. L. et al. The TrialNet natural history study of the development of type 1 diabetes: Objectives, design, and initial results. Pediatr. Diabetes 10, 97104. https://doi.org/10.1111/j.1399-5448.2008.00464.x (2009).
Article PubMed Google Scholar
Bang, J. I. et al. Blood pool activity on F-18 FDG PET/CT as a possible imaging biomarker of metabolic syndrome. Sci. Rep. 10, 17367. https://doi.org/10.1038/s41598-020-74443-9 (2020).
ADS CAS Article PubMed PubMed Central Google Scholar
Luo, B. et al. Characterization and immunological activity of polysaccharides from Ixeris polycephala. Int. J. Biol. Macromol. 113, 804812. https://doi.org/10.1016/j.ijbiomac.2018.02.165 (2018).
CAS Article PubMed Google Scholar
Yang, H. et al. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-B/TNF- pathway. Mol. Metabol. 23, 2436. https://doi.org/10.1016/j.molmet.2019.02.007 (2019).
CAS Article Google Scholar
Zhao, N. et al. Molecular network-based analysis of guizhi-shaoyao-zhimu decoction, a TCM herbal formula, for treatment of diabetic peripheral neuropathy. Acta Pharmacol. Sin. 36, 716723. https://doi.org/10.1038/aps.2015.15 (2015).
CAS Article PubMed PubMed Central Google Scholar
Gao, P. et al. Risk variants disrupting enhancers of T(H)1 and T(REG) cells in type 1 diabetes. Proc. Natl. Acad Sci. USA 116, 75817590. https://doi.org/10.1073/pnas.1815336116 (2019).
CAS Article PubMed PubMed Central Google Scholar
Yu, H., Hu, W., Song, X. & Zhao, Y. Immune modulation of platelet-derived mitochondria on memory CD4(+) T cells in humans. Int. J. Mol. Sci. 2020, 21. https://doi.org/10.3390/ijms21176295 (2020).
CAS Article Google Scholar
Qi, Z. et al. Characterization of susceptibility of inbred mouse strains to diabetic nephropathy. Diabetes 54, 26282637. https://doi.org/10.2337/diabetes.54.9.2628 (2005).
CAS Article PubMed Google Scholar
Zhou, D. et al. Critical involvement of macrophage infiltration in the development of Sjgrens syndrome-associated dry eye. Am. J. Pathol. 181, 753760. https://doi.org/10.1016/j.ajpath.2012.05.014 (2012).
CAS Article PubMed PubMed Central Google Scholar
Frikke-Schmidt, H. et al. Weight loss independent changes in adipose tissue macrophage and T cell populations after sleeve gastrectomy in mice. Mol. Metabol. 6, 317326. https://doi.org/10.1016/j.molmet.2017.02.004 (2017).
CAS Article Google Scholar
Mndez-Snchez, N. et al. The cellular pathways of liver fibrosis in non-alcoholic steatohepatitis. Ann. Transl. Med. 8, 400. https://doi.org/10.21037/atm.2020.02.184 (2020).
CAS Article PubMed PubMed Central Google Scholar
Felton, J. L., Conway, H. & Bonami, R. H. B Quiet: Autoantigen-specific strategies to silence raucous B lymphocytes and halt cross-talk with T cells in type 1 diabetes. Biomedicines 9, 42. https://doi.org/10.3390/biomedicines9010042 (2021).
CAS Article PubMed PubMed Central Google Scholar
Kakoola, D. N., Lenchik, N. I., Curcio-Brint, A. & Gerling, I. C. Transcriptional profiling of CD4 T-lymphocytes reveals abnormal gene expression in young prediabetic NOD mice. BMC Bioinform. 10, A15. https://doi.org/10.1186/1471-2105-10-s7-a15 (2009).
Article Google Scholar
Enk, J. & Mandelboim, O. The role of natural cytotoxicity receptors in various pathologies: Emphasis on type I diabetes. Front. Immunol. 5, 4. https://doi.org/10.3389/fimmu.2014.00004 (2014).
CAS Article PubMed PubMed Central Google Scholar
Pichler, R., Afkarian, M., Dieter, B. P. & Tuttle, K. R. Immunity and inflammation in diabetic kidney disease: Translating mechanisms to biomarkers and treatment targets. Am. J. Physiol. Renal Physiol. 312, F716-f731. https://doi.org/10.1152/ajprenal.00314.2016 (2017).
CAS Article PubMed Google Scholar
Zhang, H., Shih, D. Q. & Zhang, X. Mechanisms underlying effects of 1,25-Dihydroxyvitamin D3 on the Th17 cells. Eur. J. Microbiol. Immunol. 3, 237240. https://doi.org/10.1556/EuJMI.3.2013.4.1 (2013).
Article Google Scholar
Sadeqi Nezhad, M. et al. Chimeric antigen receptor based therapy as a potential approach in autoimmune diseases: How close are we to the treatment?. Front. Immunol. 11, 603237. https://doi.org/10.3389/fimmu.2020.603237 (2020).
CAS Article PubMed PubMed Central Google Scholar
Cho, H. J. & Cheong, J. Y. Role of immune cells in patients with hepatitis B virus-related hepatocellular carcinoma. Int. J. Mol. Sci. 22, 8011. https://doi.org/10.3390/ijms22158011 (2021).
CAS Article PubMed PubMed Central Google Scholar
Zhao, Y., Xie, Y. & Li, W. Liraglutide exerts potential anti-inflammatory effect in type 1 diabetes by inhibiting IFN- production via suppressing JAK-STAT pathway. Endocr. Metab. Immune Disord. Drug Targets 19, 656664. https://doi.org/10.2174/1871530319666190301115654 (2019).
CAS Article PubMed Google Scholar
Shao, F., Zheng, P., Yu, D., Zhou, Z. & Jia, L. Follicular helper T cells in type 1 diabetes. FASEB J. 34, 3040. https://doi.org/10.1096/fj.201901637R (2020).
CAS Article PubMed Google Scholar
Ye, L. et al. Immune response after autologous hematopoietic stem cell transplantation in type 1 diabetes mellitus. Stem Cell Res. Ther. 8, 90. https://doi.org/10.1186/s13287-017-0542-1 (2017).
CAS Article PubMed PubMed Central Google Scholar
Kornete, M. et al. Th1-Like ICOS+ Foxp3+ Treg cells preferentially express CXCR3 and home to -islets during pre-diabetes in BDC25 NOD mice. PLoS ONE 10, e0126311. https://doi.org/10.1371/journal.pone.0126311 (2015).
CAS Article PubMed PubMed Central Google Scholar
Qiao, Y. C. et al. Changes of regulatory T cells, transforming growth factor-beta and interleukin-10 in patients with type 1 diabetes mellitus: A systematic review and meta-analysis. Clin. Immunol. (Orlando, Fla) 170, 6169. https://doi.org/10.1016/j.clim.2016.08.004 (2016).
CAS Article Google Scholar
Prasanna, S. J., Gopalakrishnan, D., Shankar, S. R. & Vasandan, A. B. Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS ONE 5, e9016. https://doi.org/10.1371/journal.pone.0009016 (2010).
ADS CAS Article PubMed PubMed Central Google Scholar
Li, R. et al. PD-L1-driven tolerance protects neurogenin3-induced islet neogenesis to reverse established type 1 diabetes in NOD mice. Diabetes 64, 529540. https://doi.org/10.2337/db13-1737 (2015).
CAS Article PubMed Google Scholar
Fiorina, P. et al. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J. Immunol (Baltim., Md.: 1950) 183, 9931004. https://doi.org/10.4049/jimmunol.0900803 (2009).
CAS Article Google Scholar
Zazzeroni, L., Lanzoni, G., Pasquinelli, G. & Ricordi, C. Considerations on the harvesting site and donor derivation for mesenchymal stem cells-based strategies for diabetes. CellR4 Repair Replace. Regener. Reprogram. 5, 6 (2017).
Google Scholar
Guillot, A. & Tacke, F. Liver macrophages: Old dogmas and new insights. Hepatol. Commun. 3, 730743. https://doi.org/10.1002/hep4.1356 (2019).
Article PubMed PubMed Central Google Scholar
Shao, B. Y., Zhang, S. F., Li, H. D., Meng, X. M. & Chen, H. Y. Epigenetics and inflammation in diabetic nephropathy. Front. Physiol. 12, 649587. https://doi.org/10.3389/fphys.2021.649587 (2021).
Article PubMed PubMed Central Google Scholar
Guo, J. et al. Accelerated kidney aging in diabetes mellitus. Oxid. Med. Cell. Longev. 2020, 1234059. https://doi.org/10.1155/2020/1234059 (2020).
CAS Article PubMed PubMed Central Google Scholar
Tesch, G. H. Diabetic nephropathyis this an immune disorder?. Clin. Sci. (Lond. Engl. 1979) 131, 21832199. https://doi.org/10.1042/cs20160636 (2017).
CAS Article Google Scholar
Qian, J. et al. An Indole-2-carboxamide derivative, LG4, alleviates diabetic kidney disease through inhibiting MAPK-mediated inflammatory responses. J. Inflamm. Res. 14, 16331645. https://doi.org/10.2147/jir.S308353 (2021).
Article PubMed PubMed Central Google Scholar
Lv, J., Chen, J., Wang, M. & Yan, F. Klotho alleviates indoxyl sulfate-induced heart failure and kidney damage by promoting M2 macrophage polarization. Aging (Albany NY) 12, 91399150. https://doi.org/10.18632/aging.103183 (2020).
CAS Article Google Scholar
Read more:
Changes of macrophage and CD4+ T cell in inflammatory response in type 1 diabetic mice | Scientific Reports - Nature.com