Category Archives: Stell Cell Research


Stem Cells Market to Cross US$ 25.68 Bn by 2028, Increasing Demand for Stem Cells in Regenerative Medicines Accelerates Market Growth – BioSpace

Wilmington, Delaware, United States:

According to the report, the global stem cells market was valued at US$ 11.73 Bn in 2020 and is projected to expand at a CAGR of 10.4% from 2021 to 2028. Stem cells are defined as specialized cells of the human body that can develop into various different kinds of cells. Stem cells can form muscle cells, brain cells and all other cells in the body. Stem cells are used to treat various illnesses in the body.

North America was the largest market for stem cells in 2020. The region dominated the global market due to substantial investments in the field, impressive economic growth, increase in incidence of target chronic diseases, and technological progress. Moreover, technological advancements, increase in access to healthcare services, and entry of new manufacturers are the other factors likely to fuel the growth of the market in North America during the forecast period.

Request Sample of Report - https://www.transparencymarketresearch.com/sample/sample.php?flag=S&rep_id=132

Asia Pacific is projected to be a highly lucrative market for stem cells during the forecast period. The market in the region is anticipated to expand at a high CAGR during the forecast period. High per capita income has increased the consumption of diagnostic and therapy products in the region. Rapid expansion of the market in the region can be attributed to numerous government initiatives undertaken to improve the health care infrastructure. The market in Asia Pacific is estimated to expand rapidly compared to other regions due to shift in base of pharmaceutical companies and clinical research industries from developed to developing regions such as China and India. Moreover, changing lifestyles and increase in urbanization in these countries have led to a gradual escalation in the incidence of lifestyle-related diseases such as cancer, diabetes, and heart diseases.

Technological Advancements to Drive Market

Several companies are developing new approaches to culturing or utilizing stem cells for various applications. Stem cell technology is a rapidly developing field that combines the efforts of cell biologists, geneticists, and clinicians, and offers hope of effective treatment for various malignant and non-malignant diseases. The stem cell technology is progressing as a result of multidisciplinary effort, and advances in this technology have stimulated a rapid growth in the understanding of embryonic and postnatal neural development.

Request Brochure of Report - https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=132

Adult Stem Cells Segment to Dominate Global Market

In terms of product type, the global stem cells market has been classified into adult stem cells, human embryonic stem cells, and induced pluripotent stem cells. The adult stem cells segment accounted for leading share of the global market in 2020. The capability of adult stem cells to generate a large number of specialized cells lowers the risk of rejection and enables repair of damaged tissues.

Autologous Segment to Lead Market

Based on source, the global stem cells market has been bifurcated into autologous and allogenic. The autologous segment accounted for leading share of the global market in 2020. Autologous stem cells are used from ones own body to replace damaged bone marrow and hence it is safer and is commonly being practiced.

Request for Analysis of COVID19 Impact on Stem Cells Market - https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=132

Regenerative Medicines to be Highly Lucrative

In terms of application, the global stem cells market has been categorized into regenerative medicines (neurology, oncology, cardiology, and others) and drug discovery & development. The regenerative medicines segment accounted for major share of the global market in 2020, as regenerative medicine is a stem cell therapy and the medicines are made using stem cells in order to repair an injured tissue. Increase in the number of cardiac diseases and other health conditions drive the segment.

Therapeutics Companies Emerge as Major End-users

Based on end-user, the global stem cells market has been divided into therapeutics companies, cell & tissue banks, tools & reagents companies, and service companies. The therapeutics companies segment dominated the global stem cells market in 2020. The segment is driven by increase in usage of stem cells to treat various illnesses in the body. Therapeutic companies are increasing the utilization of stem cells for providing various therapies. However, the cell & tissue banks segment is projected to expand at a high CAGR during the forecast period. Increase in number of banks that carry out research on stem cells required for tissue & cell growth and elaborative use of stem cells to grow various cells & tissues can be attributed to the growth of the segment.

Make an Enquiry Before Buying - https://www.transparencymarketresearch.com/sample/sample.php?flag=EB&rep_id=132

Regional Analysis

In terms of region, the global stem cells market has been segmented into North America, Europe, Asia Pacific, Latin America, and Middle East & Africa. North America dominated the global stem cells market in 2020, followed by Europe. Emerging markets in Asia Pacific hold immense growth potential due to increase in income levels in emerging markets such as India and China leading to a rise in healthcare spending.

Competition Landscape

The global stem cells market is fragmented in terms of number of players. Key players in the global market include STEMCELL Technologies, Inc., Astellas Pharma, Inc., Cellular Engineering Technologies, Inc., BioTime, Inc., Takara Bio, Inc., U.S. Stem Cell, Inc., BrainStorm Cell Therapeutics, Inc., Cytori Therapeutics, Inc., Osiris Therapeutics, Inc., and Caladrius Biosciences, Inc.

More Trending Reports by Transparency Market Research

Regulatory Affairs Outsourcing Market: https://www.transparencymarketresearch.com/global-regulatory-affairs-outsourcing-market.html

Equine Healthcare Market: https://www.transparencymarketresearch.com/equine-healthcare-market.html

Home Healthcare Market: https://www.transparencymarketresearch.com/home-healthcare-market.html

Triclabendazole Market: https://www.transparencymarketresearch.com/triclabendazole-market.html

Brucellosis Vaccine Market: https://www.transparencymarketresearch.com/brucellosis-vaccines-market.html

Solitary Fibrous Tumor Treatment Market: https://www.transparencymarketresearch.com/solitary-fibrous-tumor-treatment-market.html

Post operative Pain Therapeutics Market: https://www.transparencymarketresearch.com/postoperative-pain-therapeutics-market.html

ACL Reconstruction Procedures Market: https://www.transparencymarketresearch.com/acl-reconstruction-procedures-market.html

About Us

Transparency Market Research is a global market intelligence company providing market research reports and services. Our exclusive blend of quantitative forecasting and trends analysis provides forward-looking insights for thousands of decision makers. Our experienced team of Analysts, Researchers, and Consultants use proprietary data sources and various tools & techniques to gather and analyze information.

Our data repository is continuously updated and revised by a team of research experts, so that it always reflects the latest trends and information. With a broad research and analysis capability, Transparency Market Research employs rigorous primary and secondary research techniques in developing distinctive data sets and research material for business reports.

Contact Us

Rohit Bhisey

Transparency Market Research Inc.

CORPORATE HEADQUARTER DOWNTOWN,

1000 N. West Street,

Suite 1200, Wilmington, Delaware 19801 USA

Tel: +1-518-618-1030

USA Canada Toll Free: 866-552-3453

Email: sales@transparencymarketresearch.com

Website: https://www.transparencymarketresearch.com/

Continue reading here:
Stem Cells Market to Cross US$ 25.68 Bn by 2028, Increasing Demand for Stem Cells in Regenerative Medicines Accelerates Market Growth - BioSpace

3D Cell Culture Market to reach 6.47 billion in 2030 with a CAGR of around 16.3% – GlobeNewswire

New York, United States, June 07, 2022 (GLOBE NEWSWIRE) -- 3D cell culture is regarded as an artificially created environment where the biological cells are allowed to grow or interact with their respective surroundings in all three dimensions. In terms of technology,scaffold-based technologyhad thelargest revenue share of more than about 68.96 % in 2020 and it is estimated to maintain its dominance all over the forecasted period of 2020-2030. Moreover, on a regional basis, North America dominated the total 3D Cell Culture Market in 2020, possessing a revenue share of more than 43 %. However, the APAC region is prevised to witness the fastest CAGR within the regional market from 2020 to 2030.

To get a first-hand overview of the report, Request a Sample at

https://www.strategicmarketresearch.com/request-sample/3d-cell-culture-market

The segmentation outlook of the latest report published by Strategic Market Research on3D Cell Culture Market is as follows:

Based on Technology

Based on Application

Based on End-User

Regions

Make a Direct Purchase of the latest Nanodiamonds Market Report published in the month of January 2022. Click the below link to initiate the purchase:

https://www.strategicmarketresearch.com/buy-now/3d-cell-culture-market

The 3D Cell Culture Market is poised to reach a market value of USD 6.47 billion by 2030 from USD 1.43 billion in 2020, at a CAGR of 16.3 % during the forecasted period. Growth in this 3D Cell Culture market is primarily driven by the rise in the focus on new upcoming alternatives for animal testing, increase in the focus on personalized medicine, growing occurence of chronic diseases, and the wide availability of funding for the research purposes. The high utility of 3D models for research purposes about Covid-19 as well as respiratory diseases is prevised to provide massive growth opportunities to the 3D Cell Culture market. Several other vital parameters amplifying the market growth include the introduction of new products and the broad applications of 3D protocols in the field of biological researches.

By Technology, the scaffold-based technologysegment held the largest share of the 3D Cell Culture Market.

In terms of technology,scaffold-based technologyhad thelargest revenue share of more than 68.96 % in 2020.Furthermore, surge in the demand for scaffold-based technology and the rise in the awareness of nanotechnology in the field of biomedical research and its vast applications is prevised to provide ample opportunities for the growth of the segment. The National Institutes of Health declared an investment of around USD 445 Million in nanomedicine in the year 2020. In addition, the National Nanotechnology Initiative got more than USD 1.7 Billionin funding in the year 2021, which in turn will foster the expansion of the 3D cell culture scaffold market.

By Application, the Cancer segment possessed the highest share of the 3D Cell Culture Market.

In terms of Application, the Cancer market segment possessed the maximum portion of the total 3D Cell Culture Market share, accounting for about 24.56 % of the total market revenue, and is previse to expand at a CAGR of 15.4 % in 2020. Growing R&D activities by utilizing spheroids as model systems to create anti-cancer treatments and the rise in the usage of 3-dimensional cellular models are the key drivers that are amplifying the growth of this market segment. As per The National Cancer Institute, it is reported that there were 16.9 million cancer survivors in USA in the year 2020, and by the end of the year 2030, the total number of cancer survivors is projected to reach a landmark of 22.2 million. Furthermore, from 2021 to 2030, the stem cell research market segment is prevised to expand at the fastest CAGR throughout the forecasted timeframe.

By End-User, the Biotechnology and Pharmaceutical industries dominated the entire 3D Cell Culture Market.

In terms of End-user, the entire market is segregated into Biotechnology & Pharmaceutical Industries, Research Laboratories and Institutes, Hospitals and Diagnostic Centers, and Others. Among these segments, the biotechnology and pharmaceutical industries category held the largest revenue share of more than 46% in the year 2020. In comparison to 2D cell culture, the 3D cell culture possesses a wide variety of benefits and advantages in terms of supplying appropriate oxygen content and nutritional gradients and helps to better understand various cell functions like adhesion, proliferation, morphology, viability, microenvironment, and response to drugs. These are some of the key factors that are driving the segments growth.

North America held a significant portion of the 3D Cell Culture Market share.

By Region, North America dominated the total 3D Cell Culture Market in 2020, possessing a revenue share of more than 43 %. It is also anticipated that the North American region will maintain its dominance throughout the projected period due to the factors like rise in the private and state financial support for building advanced 3D cell culture models, rise in the healthcare expenditures, and the growing number of research institutes and universities. For example, Inventia Life Science, a global leader in advanced 3D cell culture for clinical and research purposes, has declared the closure of a USD 25 Million Series B funding round which was led by Blackbird Ventures. On the other hand, the APAC/Asia- Pacific region is prevised to witness the fastest CAGR within the regional market from 2021 to 2030. It is primarily due to the rising investments by various multinational corporations in the entire region.

Before initiating a purchase, make a Pre-order inquiry and get a detailed overview of the content of the report. https://www.strategicmarketresearch.com/pre-order-enquiry/3d-cell-culture-market

Pertinent players that are covered in the Global 3D Cell Culture Market report are:

Kindly go through and get access to our comprehensive coverage of a myriad number of Healthcare reports published in the last three months: https://www.strategicmarketresearch.com/reports/healthcare

Recent Developments related to Global 3D Cell Culture Market:

Related Reports

Live Cell Imaging Market

The crucial report on Live Cell Imaging Market Insights & Forecast 2030published by Strategic Market Research offers a concrete understanding of the significant market insights. The market was valued at 1.8 Billion in 2020, and it's prevised to reach up to 4.18 Billion by 2030 with a CAGR of 8.8%. The rise in the demand for various live-cell imaging technologies and the high fatalityrate associated with CVDs are the major amplifiers of the Live Cell Imaging Market. The major market players in the Global Live cell imaging market are Carl Zeiss AG, Nikon Corporation, Olympus Corporation, PerkinElmer, Inc., Sartorius AG, G.E. Healthcare, Bruker Corporation, Thermo Fisher Scientific Inc., Etaluma Inc., Oxford Instruments, BioTek Instruments, CytoSMART Technologies, Danaher Corporation, NanoEnTek Inc., Phase Focus Limited, Tomocube Inc.

Breast Cancer Liquid Biopsy Market

The vital report on Breast Cancer Liquid Biopsy Market Insights & Forecast 2030published by Strategic Market Research deciphers a detailed understanding of the crucial market insights. The market was valued at 104.42 Million in 2020, and it's forecasted to reach a landmark of up to 604.71 Million by 2030 with a comprehensive CAGR value of 19.2%. Significant factors that are augmenting the market growth are the surge in funding for R&D activities in the field of breast liquid biopsy, favourable initiatives undertaken by governments and global health organizations, and the rise in the approvals of breast cancer liquid biopsy reagents. Some of the vital players operating in the Breast Cancer Liquid Biopsy Market include Johnson & Johnson (Janssen Diagnostics), F. Hoffmann-La Roche Ltd, Qiagen, Janssen, Diagnostics, Guardant Health Inc., Myriad Genetics, Adaptive Biotechnologies, Epic Sciences, Fluxion Biosciences Inc., Biodesix, Illumina Inc., Bio-Rad Laboratories, Biocept Inc,

Recombinant Protein Market

The report on Recombinant Protein Market Insights & Forecast 2030published by Strategic Market Research elaborates a clear undertanding about the key market insights. The total market was valued at 1.5 Billion in 2020, and is likely to augment up to 3.93 Billion by 2030 with a healthy CAGR of 10.12%. The growing need to reduce the frequent occurences of viral illnesses, including human papillomavirus, hepatitis B, CoVid-19, and many others, is the key driver that is fostering the market growth significantly. The most crucial players in the Global Recombinant Protein industry are R&D Systems (US), Abcam plc (UK), Merck KGaA (Germany), Thermo Fisher Scientific, Inc. (the US), Proteintech Group, Inc. (the US), Janssen-Cilag Pty Ltd., Aviva Systems Biology, Bio-Techne Corporation (US), Elpiscience BioPharma, Eli Lilly and co., GigaGen Inc.

Protein Expression Market

The report on Protein Expression Market Insights & Forecast 2030published by Strategic Market Research asserts a clear idea regarding the different market insights. The overall market was valued at 2.2 Billion in 2020, and it's anticipated to expand up to 6.47 Bn by the end of the year 2030 with a CAGR of 11.4%. The rising occurrence of target illnesses, greater effectiveness of protein therapies, and surge in the adoption rate are the significant factors that are fostering the market growth. The most vital players in the Global Protein Expression Market are Agilent Technologies Inc., Merck KGaA, Takara Bio Inc, New England Biolabs, GenScript Biotech Corporation, BECTON, DICKINSON AND COMPANY, THERMO FISHER SCIENTIFIC, INC., BIO-RAD LABORATORIES, INC., LifeSensors Inc., Promega Corporation, QIAGEN NV., Oxford Expression Technologies Ltd. and Synthetic Genomics Inc.

Single-use Bioprocessing Market

The vital report on Single-use Bioprocessing Market Insights & Forecast 2030published by Strategic Market Research encompasses a detailed understanding of the various market insights. The market was valued at 12.8 Billion in 2020, and it's poised to grow up to 56 Billion by 2030 with an overall CAGR of 15.86%. The surge in the elderly population, growing demand for biopharmaceuticals, and rising number of biological approvals are the primary drivers of this Single-use Bioprocessing Market. Some of the key players are Catalent, Merck KGaA (Germany), Thermo Fisher Scientific (US), Danaher Corporation (US), Sartorius Stedim Biotech S.A. (France), Getinge AB (Sweden), Eppendorf AG (Germany), Corning (US), Avantor (US), CESCO Bioengineering Co. Ltd. (Taiwan), Entegris (US), Cellexus (UK), Distek, Inc. (US), ABEC, Inc. (US), PBS Biotech, Inc. (US), G&G Technologies (US), take Chemical Equipment Mfg., Ltd. (Japan), Bbi-biotech GmbH (Germany), Pierre Guerin (France), Meissner Filtration Products, Inc. (US), OmniBRx Biotechnologies (India), Kuhner AG (Switzerland), etc.

About Us: Strategic Market Research facilitates the organizations globally in taking pivotal business decisions by furnishing the Syndicated and Customized Research Reports, which are highly precise in terms of market numbers. We believe that every firm, whether it is a startup that is in the Introduction stage of the Product Life cycle or an established one that is at the growth stage, requires market research services in order to streamline its key business blueprint. It may be related to Product Launch, Go to Market strategies, Competitive Analysis or new geographical penetration and expansion.

Contact Us: Strategic Market Research LLP. Sunil Kumar US: +1-8317045538 UK: +441256636046 India: +91-8260836500 Email:info@strategicmarketresearch.com Web:https://www.strategicmarketresearch.com Blog:https://www.strategicmarketresearch.com/blogs/robotics-industry-statistics Press Release:https://www.strategicmarketresearch.com/press-releases

Connect Us: LinkedIn:https://www.linkedin.com/company/strategic-market-research/ Twitter:https://twitter.com/smrstrategic Facebook:https://www.facebook.com/StrategicMarketResearch Instagram:https://www.instagram.com/strategicmarketresearchsmr/

Visit link:
3D Cell Culture Market to reach 6.47 billion in 2030 with a CAGR of around 16.3% - GlobeNewswire

Zernicka-Goetz Receives Honors from the NOMIS Foundation – Caltech

Magdalena Zernicka-Goetz, Bren Professor of Biology and Biological Engineering and affiliated faculty member with Caltech'sTianqiao and Chrissy Chen Institute for Neuroscience, has been awarded the 2022 NOMIS Distinguished Scientist and Scholar Award. Established in 2016, the award is presented to "pioneering scientists and scholars who, through their innovative, groundbreaking research, have made a significant contribution to their respective fields and who inspire the world around them," according to the NOMIS Foundation.

Zernicka-Goetz's research addresses fundamental questions about how life begins, such as: What drives a fertilized egg to divide and grow until it becomes 40 trillion cells, and how do these cells know how to make a person? To address these questions, she has developed methods for tracking living embryos to determine how stem cells are first created, establish their fates, and work together to shape the body. She also pioneered methods to grow embryos beyond implantation, techniques that won the "People's Choice Scientific Breakthrough of the Year" in 2016 inSciencemagazine. Her team used these methods to createthe first complete embryo models from stem cells that develop like natural embryos.

In 2021, the team determined the molecular signals involved in how an embryo becomesasymmetrical and polarizedand how the embryo forms itshead-to-tail body axis.

Zernicka-Goetz received her PhD from Warsaw University and joined the Caltech faculty in 2019. Prior to Caltech, she was professor of mammalian development and stem cell biology at the University of Cambridge, England. She is a fellow of the British Academy of Medical Science, the Polish Academy of Sciences, and a recipient of anNIH Director's Pioneer Award and the 2022 Edwin G. Conklin Medal from the Society for Developmental Biology.

See the original post:
Zernicka-Goetz Receives Honors from the NOMIS Foundation - Caltech

Lokken to retire as vice chancellor for government and community relations – The Source – Washington University in St. Louis

Pamela Lokken, vice chancellor for government and community relations at Washington University in St. Louis, will retire from the university this fall after more than 30 years of service.

We celebrate Pam for her substantial contributions to the Washington University community, both measurable and immeasurable, Chancellor Andrew D. Martin said. She has been instrumental in positioning the university to advance its mission at the national, state and local levels. She has served in this role during several critical junctures in the universitys history collaborating closely with Chancellors Danforth, Wrighton and myself and has done so with her characteristic humility, warmth, humor and common sense. I join with countless others across the university in stating, simply, that we will miss Pam and that we deeply appreciate all she has done to make Washington University a leader in higher education.

Lokken joined Washington University in 1991 and has served in senior leadership roles for over three decades. As vice chancellor, she has led a team that oversees the universitys federal, state and local governmental and community affairs initiatives. Her experience includes extensive engagement at all levels of government and associated legislative bodies, executive branch departments and regulatory agencies. Among her specific areas of public policy expertise are scientific research, health care, higher education and tax policy.

Earlier this year, Lokken was honored by the Association of American Universities (AAU) whose membership is composed of Americas leading research universities with the 2022 Legacy Award, which recognizes career excellence, distinguished contributions to the community and national leadership in the higher education community. An excerpt from the award citation states: By all measures Pam is one of the great leaders in higher education in building trust and alliances with the federal government as well as taking it on, when needed. Pam knows that our work is not about who is in or out in D.C., but about students, teaching, research and patient care and promoting, protecting and providing for Washington University and the St. Louis region.

As a trusted leader, Lokken developed critical relationships to advance meaningful change.Her accomplishments include establishing the National Institute for Food and Agricultural Research at the U.S. Department of Agriculture; transferring federal property to make Washington University the sole owner of the Tyson Research Center; preserving the universitys ROTC program from elimination; protecting stem cell research; and expanding the Missouri Medicaid program. She also was instrumental in the vision and early development of the Danforth Plant Science Center, the expansion of St. Louis public transit system and university-supported development in surrounding communities.

Lokken helped spearhead the creation of several national and statewide advocacy coalitions to protect and advance research being conducted at Washington University and other institutions, including The Science Coalition, the Coalition for the Advancement of Medical Research, Supporters of Agricultural Research, United for Medical Research, Missouri Biotechnology Association and Missouri Cures. She has chaired key committees for the AAU, the American Association of Medical Colleges and the Consortium on Financing Higher Education and has served as a board member of the National Association of Independent Colleges and Universities, Tuition Plan Consortium and the Stowers Institute for Medical Research.

Im immensely proud of the progress the university has made as an engaged partner in community and government affairs over the past three decades. Weve elevated our research profile, expanded our student financial aid, and enhanced our economic and community impact in the St. Louis region, Lokken said. Im honored to have been part of these efforts and I credit so much of the progress to the talented and dedicated team in the Office of Government & Community Relations, with whom Ive had the enormous privilege to work.

Lokkens last day at the university will be Sept. 2. A search for her successor will be announced in coming weeks.

Read more:
Lokken to retire as vice chancellor for government and community relations - The Source - Washington University in St. Louis

Updated Data for Janssen’s Bispecific Teclistamab Suggest Continued Deep and Durable Responses in the Treatment of Patients with Relapsed or…

New teclistamab data presented at the 2022 ASCO Annual Meeting report longer follow-up from Phase 1/2 MajesTEC-1 study evaluating the BCMAxCD3 bispecific antibody, including progression-free survival and subgroup analyses

Data from MajesTEC-1 study published in The New England Journal of Medicine

June 5, 2022, CHICAGO /PRNewswire/ -- The Janssen Pharmaceutical Companies of Johnson & Johnson announced updated efficacy and safety results from the teclistamab Phase 1/2 MajesTEC-1 study. Teclistamab is an investigational, off-the-shelf, T-cell redirecting bispecific antibody targeting B-cell maturation antigen (BCMA), which is being studied in patients with relapsed or refractory multiple myeloma (RRMM) who have received three or more prior lines of therapy.1The data were featured as part of an oral session during the 2022 American Society of Clinical Oncology (ASCO) Annual Meeting. Additional poster presentations featured data on teclistamab as a monotherapy, as well as in combination with DARZALEX FASPRO (daratumumab and hyaluronidase-fihj). Applications seeking approval of teclistamab are currently under health authority review in the U.S. and Europe.

The multicohort, open-label, Phase 1/2 MajesTEC-1 study is investigating the safety and efficacy of teclistamab in patients with RRMM who received at least three prior lines of therapy. As of March 2022, 165 patients were treated with teclistamab at the recommended subcutaneous (SC) Phase 2 dose (RP2D) of 1.5 mg/kg preceded by step-up doses of 0.06 and 0.3 mg/kg across both Phase 1 (NCT03145181) and Phase 2 (NCT04557098)of the study.

Longer Follow-up from MajesTEC-1 Study in Patients with Triple Class Exposed Multiple Myeloma (Abstract #8007)

At a median follow-up of 14.1 months (0.2624.4), an overall response rate (ORR) of 63 percent (95 percent Confidence Interval [CI], range, 55.270.4) was observed in patients with triple class exposed multiple myeloma, with a complete response (CR) or better achieved in 39.4 percent of patients.1 Study participants had three or more prior lines of therapy, with a median of five prior lines, including a prior proteasome inhibitor, immunomodulatory drug and anti-CD38 antibody.1 The majority of patients were triple-class refractory and/or refractory to their last line of treatment.1Although response duration data are not mature, the median duration of response at this time is 18.4 months and has not been reached in patients who achieved a CR or better (95 percent CI, 14.9 not estimable).1 This suggests responses to teclistamab were durable and deepened over time.1 The medium progression-free survival (PFS) was 11.3 months (95 percent CI, 8.817.1).1 Adverse events (AEs) were low-grade for the most part and manageable with no new safety signals seen.1

These results from the MajesTEC-1 study were also simultaneously published online in The New England Journal of Medicine.2

"The MajesTEC-1 study update suggests patients with relapsed or refractory multiple myelomareceiving teclistamab achieved a deep response that was also durable," said Ajay K. Nooka, M.D., MPH, FACP, Associate Professor of Hematology and Medical Oncology at Emory School of Medicine and principal study investigator. "These longer-term data, notably the overall response rate and progression-free survival, are encouraging in this heavily pretreated patient population."

No new safety signals were observed with longer follow-up.1 In 14.1 month follow-up data presented at ASCO 2022, the most common grade 3/4 hematologic AEs were neutropenia (64.2 percent); anemia (37 percent); lymphopenia (32.7 percent) and thrombocytopenia (21.2 percent). Infections occurred in 76.4 percent of patients (44.8 percent grade 3/4).1 The most common nonhematologic AE was cytokine release syndrome (CRS), all of which were grade 1/2 except for 1 transient grade 3 CRS (72.1 percent all grade).1The median time to CRS onset was two days (range, 16) and median duration was two days (range, 19).1 There were five treatment-related deaths, and dose reductions and discontinuations due to AEs were infrequent.1

First Results from Cohort C of the MajesTEC-1 Study of Teclistamab in Patients with RRMM with Prior Exposure to BCMA Targeted Treatment (Abstract #8013)

Initial results were also presented from Cohort C of the MajesTEC-1 study evaluating teclistamab in the treatment of patients with RRMM who had previously been exposed to an anti-BCMA treatment.3 These patients had received a median of six prior lines of therapy, most (85 percent) were triple-class refractory and 35 percent were penta-drug refractory.3The use of teclistamab following prior treatment with chimeric antigen receptor T cell (CAR-T) therapy and/or an antibody drug conjugate (ADC) (e.g., belantamab mafodotin) targeting BCMA resulted in a promising response rate in patients with heavily pretreated RRMM.3At a median follow-up of 12.5 months (0.7-14.4), the ORR was 52.5 percent (95 percent CI, 36.168.5) among 40 patients who received teclistamab in Cohort C.3 Responses to teclistamab occurred early and deepened over time, with comparable response rates in patients previously treated with an ADC and/or CAR-T.3

A tolerable side-effect profile was observed in patients previously treated with anti-BCMA treatment, with no dose reductions or discontinuations due to AEs.3 The safety profile for Cohort C was comparable with that observed in BCMA treatment-naive patients, with no new safety signals.3 In 12.5 month follow-up data, 26 patients (65 percent; 30 percent grade 3/4) had infections.3 The most common AEs (n=40) were CRS (65 percent any grade), with a median time to CRS onset and duration of two days (range, 2-6) and two days (range, 1-4) respectively.3 Cytopenias (grade 3/4) were noted as follows; neutropenia (62.5 percent); thrombocytopenia (30 percent); anemia (35 percent); and lymphopenia (42.5 percent).3

Initial Patient-Reported Health-Related Quality of Life (HRQoL) Outcomes in Patients with RRMM Treated with Teclistamab (Abstract #8033)

Initial results from an analysis of patient-reported health-related quality of life (HRQoL) outcomes following treatment with teclistamab were also shared in a poster session.4 The study analyzed patient-reported assessments of quality of life metrics among patients in the MajesTEC-1 trial who had received their first treatment dose by March 18, 2021.4The metrics analyzed include function (physical, role, emotional, cognitive, social); symptoms (fatigue, nausea/vomiting, pain, appetite loss, constipation, diarrhea); and generic health (mobility, self-care, usual activities, pain/discomfort, anxiety/depression).4 Over 80 percent of the 110 patients included in the patient-reported outcomes (PRO) analysis noted meaningful improvement (percentages of patients with clinically meaningful change from baseline [EORTC QLQ-C30 scales: 10 points]) in at least one of the symptom scales.4 Reduction in pain scores occurred as early as cycle two.4 At the moment, no meaningful improvement was observed in the scales for physical functioning and fatigue.4 These initial PRO results complement recent clinical data and support teclistamab as a potential off-the-shelf, T-cell redirecting therapy for patients with RRMM.4

As of September 7, 2021, median duration of treatment was 5.7 months and median follow-up was 7.8 months.4 Global healthstatus scores significantly improved from baseline (95 percent CIs for least squares mean change did not cross 0) at cycles four, six, and eight; emotional functioning significantly improved at all time points.4 PRO assessments included European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30 item (EORTC QLQ-C30).4 PROs were assessed on day one of each treatment cycle (28 days per cycle).4Additional follow-up is needed to assess the full benefit of meaningful improvement in functional outcomes.4

Two Studies Investigate the Safety and Efficacy of Teclistamab and DARZALEX FASPRO (daratumumab and hyaluronidase-fihj) in Combination for the Treatment of Patients with RRMM

Updated results from the Phase 1 TRIMM-2 study (NCT04108195) were featuredduring a poster session (Abstract #8032) at ASCO 2022, evaluating teclistamab in combination with DARZALEX FASPRO, a CD38-directed monoclonal antibody approved to be given subcutaneously for the treatment of patients with multiple myeloma.5 In the study, patients received a median of five prior lines of therapy; 75.4 percent had prior exposure to anti-CD38 therapies, and 63.1 percent were refractory to anti-CD38 treatment.5 Evaluable patients achieved an ORR of 76.5 percent at a median follow-up of 8.6 months (0.319.6).5

A poster presentation for the ongoing multicenter, open-label, randomized Phase 3 MajesTEC-3 (NCT05083169) study comparing the efficacy of teclistamab in combination with daratumumab versus investigator's choice of daratumumab in combination with pomalidomide and dexamethasone (DPd) or bortezomib and dexamethasone (DVd) (Poster TPS8072)in patients with RRMMwas also presented at ASCO.6

Additional data from both the teclistamab (Abstract #S188) and talquetamab (Abstract #S183) cohorts of the TRIMM-2 study will be featured as oral presentations at the European Hematology Association (EHA) 2022 Congress taking place in Vienna, Austria, June 9-12.7,8

"The updated data presented at ASCO support the ongoing evaluation of teclistamab as a monotherapy and in combination with standard of care treatments," said Yusri Elsayed, M.D., M.HSc., Ph.D., Vice President, Disease Area Leader, Hematologic Malignancies, Janssen Research & Development, LLC. "These resultsunderscore our ongoing commitment to address the unmet need for new therapeutic options and our effort to bring forward novel treatments for multiple myeloma patients in the near future."

About Teclistamab

Teclistamab is an investigational, fully humanized IgG4, T-cell redirecting, bispecific antibody targeting both BCMA (B-cell maturation antigen) and CD3, the T-cell receptor. BCMA is expressed at high levels on multiple myeloma cells.9,10,11,12,13Teclistamab redirects CD3-positive T-cells to BCMA-expressing myeloma cells to induce killing of tumor cells.8

Teclistamab is currently being evaluated in several monotherapy and combination studies. In2020, the European Commission and the U.S. Food and Drug Administration (FDA) each granted teclistamab Orphan Drug Designation for the treatment of multiple myeloma. In January 2021 and June 2021, teclistamab receiveda PRIority MEdicines (PRIME) designation by the European Medicines Agency (EMA) and Breakthrough Therapy Designation (BTD) by the U.S. FDA, respectively. PRIME offers enhanced interaction and early dialogue to optimize drug development plans and speed up evaluation of cutting-edge, scientific advances that target a high unmet medical need.14 The U.S. FDA grants BTD to expedite the development and regulatory review of an investigational medicine that is intended to treat a serious or life-threatening condition and is based on preliminary clinical evidence that demonstrates the drug may have substantial improvement on at least one clinically significant endpoint over available therapy.15 In December 2021, Janssen submitted a Biologics License Application (BLA) to the FDA seeking approval of teclistamab for the treatment of patients with relapsed or refractory multiple myeloma; a marketing authorization application (MAA) was submitted to the EMA for teclistamab approval in January 2022.

About DARZALEX FASPRO

In August 2012, Janssen Biotech, Inc. and Genmab A/S entered into a worldwide agreement, which granted Janssen an exclusive license to develop, manufacture and commercialize daratumumab. DARZALEX FASPRO is the only CD38-directed antibody approved to be given subcutaneously to treat patients with multiple myeloma and now light chain (AL) amyloidosis. DARZALEX FASPRO is co-formulated with recombinant human hyaluronidase PH20 (rHuPH20), Halozyme's ENHANZE drug delivery technology.

DARZALEX FASPRO is indicated for the treatment of adult patients with multiple myeloma:

DARZALEX FASPRO in combination with bortezomib, cyclophosphamide, and dexamethasone is indicated for the treatment of adult patients with newly diagnosed AL amyloidosis. This indication is approved under accelerated approval based on response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in a confirmatory trial(s).

Limitations of Use

DARZALEX FASPRO is not indicated and is not recommended for the treatment of patients with AL amyloidosis who have NYHA Class IIIB or Class IV cardiac disease or Mayo Stage IIIB outside of controlled clinical trials.

Full prescribing information for DARZALEX FASPRO is available here.

DARZALEX FASPROIMPORTANT SAFETY INFORMATION

CONTRAINDICATIONS

DARZALEX FASPROis contraindicated in patients with a history of severe hypersensitivity to daratumumab, hyaluronidase or any of the components of the formulation.

WARNINGS AND PRECAUTIONS

Hypersensitivity and Other Administration Reactions

Both systemic administration-related reactions, including severe or life-threatening reactions, and local injection-site reactions can occur with DARZALEX FASPRO. Fatal reactions have been reported with daratumumab-containing products, including DARZALEX FASPRO.

Systemic Reactions

In a pooled safety population of 898 patients with multiple myeloma (N=705) or light chain (AL) amyloidosis (N=193) who received DARZALEX FASPROas monotherapy or in combination, 9% of patients experienced a systemic administration-related reaction (Grade 2: 3.2%, Grade 3: 1%). Systemic administration-related reactions occurred in 8% of patients with the first injection, 0.3% with the second injection, and cumulatively 1% with subsequent injections. The median time to onset was 3.2 hours (range: 4 minutes to 3.5 days). Of the 140 systemic administration-related reactions that occurred in 77 patients, 121 (86%) occurred on the day of DARZALEX FASPRO administration. Delayed systemic administration-related reactions have occurred in 1% of the patients.

Severe reactions included hypoxia, dyspnea, hypertension and tachycardia. Other signs and symptoms of systemic administration-related reactions may include respiratory symptoms, such as bronchospasm, nasal congestion, cough, throat irritation, allergic rhinitis, and wheezing, as well as anaphylactic reaction, pyrexia, chest pain, pruritis, chills, vomiting, nausea, and hypotension.

Pre-medicate patients with histamine-1 receptor antagonist, acetaminophen and corticosteroids. Monitor patients for systemic administration-related reactions, especially following the first and second injections. For anaphylactic reaction or life-threatening (Grade 4) administration-related reactions, immediately and permanently discontinue DARZALEX FASPRO. Consider administering corticosteroids and other medications after the administration of DARZALEX FASPROdepending on dosing regimen and medical history to minimize the risk of delayed (defined as occurring the day after administration) systemic administration-related reactions.

Local Reactions

In this pooled safety population, injection-site reactions occurred in 8% of patients, including Grade 2 reactions in 0.7%. The most frequent (>1%) injection-site reaction was injection site erythema. These local reactions occurred a median of 5 minutes (range: 0 minutes to 6.5 days) after starting administration of DARZALEX FASPRO. Monitor for local reactions and consider symptomatic management.

Cardiac Toxicity in Patients with Light Chain (AL) Amyloidosis

Serious or fatal cardiac adverse reactions occurred in patients with light chain (AL) amyloidosis who received DARZALEX FASPROin combination with bortezomib, cyclophosphamide and dexamethasone. Serious cardiac disorders occurred in 16% and fatal cardiac disorders occurred in 10% of patients. Patients with NYHA Class IIIA or Mayo Stage IIIA disease may be at greater risk. Patients with NYHA Class IIIB or IV disease were not studied. Monitor patients with cardiac involvement of light chain (AL) amyloidosis more frequently for cardiac adverse reactions and administer supportive care as appropriate.

Neutropenia

Daratumumab may increase neutropenia induced by background therapy. Monitor complete blood cell counts periodically during treatment according to manufacturer's prescribing information for background therapies. Monitor patients with neutropenia for signs of infection. Consider withholding DARZALEX FASPROuntil recovery of neutrophils. In lower body weight patients receiving DARZALEX FASPRO, higher rates of Grade 3-4 neutropenia were observed.

Thrombocytopenia

Daratumumab may increase thrombocytopenia induced by background therapy. Monitor complete blood cell counts periodically during treatment according to manufacturer's prescribing information for background therapies. Consider withholding DARZALEX FASPRO until recovery of platelets.

Embryo-Fetal Toxicity

Based on the mechanism of action, DARZALEX FASPROcan cause fetal harm when administered to a pregnant woman. DARZALEX FASPROmay cause depletion of fetal immune cells and decreased bone density. Advise pregnant women of the potential risk to a fetus. Advise females with reproductive potential to use effective contraception during treatment with DARZALEX FASPROand for 3 months after the last dose.

The combination of DARZALEX FASPROwith lenalidomide is contraindicated in pregnant women, because lenalidomide may cause birth defects and death of the unborn child. Refer to the lenalidomide prescribing information on use during pregnancy.

Interference with Serological Testing

Daratumumab binds to CD38 on red blood cells (RBCs) and results in a positive Indirect Antiglobulin Test (Indirect Coombs test). Daratumumab-mediated positive indirect antiglobulin test may persist for up to 6 months after the last daratumumab administration. Daratumumab bound to RBCs masks detection of antibodies to minor antigens in the patient's serum. The determination of a patient's ABO and Rh blood type are not impacted.

Notify blood transfusion centers of this interference with serological testing and inform blood banks that a patient has received DARZALEX FASPRO. Type and screen patients prior to starting DARZALEX FASPRO.

Interference with Determination of Complete Response

Daratumumab is a human IgG kappa monoclonal antibody that can be detected on both the serum protein electrophoresis (SPE) and immunofixation (IFE) assays used for the clinical monitoring of endogenous M-protein. This interference can impact the determination of complete response and of disease progression in some DARZALEX FASPRO-treated patients with IgG kappa myeloma protein.

ADVERSE REACTIONS

The most common adverse reaction (20%) with DARZALEX FASPRO monotherapy is upper respiratory tract infection. The most common adverse reactions with combination therapy (20% for any combination) include fatigue, nausea, diarrhea, dyspnea, insomnia, pyrexia, cough, muscle spasms, back pain, vomiting, upper respiratory tract infection, peripheral sensory neuropathy, constipation, pneumonia, and peripheral edema.

The most common adverse reactions (20%) in patients with light chain (AL) amyloidosis who received DARZALEX FASPRO are upper respiratory tract infection, diarrhea, peripheral edema, constipation, fatigue, peripheral sensory neuropathy, nausea, insomnia, dyspnea, and cough.

The most common hematology laboratory abnormalities (40%) with DARZALEX FASPRO are decreased leukocytes, decreased lymphocytes, decreased neutrophils, decreased platelets, and decreased hemoglobin.

Please see full Prescribing Information for DARZALEX FASPRO.

About Multiple Myeloma

Multiple myeloma is an incurable blood cancer that affects some white blood cells called plasma cells, which are found in the bone marrow.16 When damaged, these plasma cells rapidly spread and replace normal cells in the bone marrow with tumors. In 2020, worldwide an estimated 176,000 people were diagnosed with multiple myeloma.17 In 2022, it is estimated that more than 34,000 people will be diagnosed with multiple myeloma, and more than 12,000 people will die from the disease in the U.S.18 While some people diagnosed with multiple myeloma initially have no symptoms, most patients are diagnosed due to symptoms that can include bone fracture or pain, low red blood cell counts, tiredness, high calcium levels, kidney problems or infections.19

About the Janssen Pharmaceutical Companies of Johnson & Johnson

At Janssen, we're creating a future where disease is a thing of the past. We're the Pharmaceutical Companies of Johnson & Johnson, working tirelessly to make that future a reality for patients everywhere by fighting sickness with science, improving access with ingenuity, and healing hopelessness with heart. We focus on areas of medicine where we can make the biggest difference: Cardiovascular, Metabolism, & Retina; Immunology; Infectious Diseases & Vaccines; Neuroscience; Oncology; and Pulmonary Hypertension.

Learn more at http://www.janssen.com. Follow us at http://www.twitter.com/JanssenGlobal. Janssen Research & Development, LLC is one of the Janssen Pharmaceutical Companies of Johnson & Johnson.

Dr. Nooka has served as a paid consultant to Janssen; he has not been paid for any media work.

Cautions Concerning Forward-Looking Statements

This press release contains "forward-looking statements" as defined in the Private Securities Litigation Reform Act of 1995 regarding product development and the potential benefits and treatment impact of teclistamaband DARZALEX FASPRO. The reader is cautioned not to rely on these forward-looking statements. These statements are based on current expectations of future events. If underlying assumptions prove inaccurate or known or unknown risks or uncertainties materialize, actual results could vary materially from the expectations and projections of Janssen Research & Development, LLC or any of the other Janssen Pharmaceutical Companies and/or Johnson & Johnson. Risks and uncertainties include, but are not limited to: challenges and uncertainties inherent in product research and development, including the uncertainty of clinical success and of obtaining regulatory approvals; uncertainty of commercial success; manufacturing difficulties and delays; competition, including technological advances, new products and patents attained by competitors; challenges to patents; product efficacy or safety concerns resulting in product recalls or regulatory action; changes in behavior and spending patterns of purchasers of health care products and services; changes to applicable laws and regulations, including global health care reforms; and trends toward health care cost containment. A further list and descriptions of these risks, uncertainties and other factors can be found in Johnson & Johnson's Annual Report on Form 10-K for the fiscal year ended January 2, 2022, including in the sections captioned "Cautionary Note Regarding Forward-Looking Statements" and "Item 1A. Risk Factors," and in Johnson & Johnson's subsequent Quarterly Reports on Form 10-Q and other filings with the Securities and Exchange Commission. Copies of these filings are available online at http://www.sec.gov, http://www.jnj.com or on request from Johnson & Johnson. None of the Janssen Pharmaceutical Companies nor Johnson & Johnson undertakes to update any forward-looking statement as a result of new information or future events or developments.

______________________________

1 Nooka A et al. Teclistamab, a B-cell maturation antigen (BCMA) x CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM): Updated efficacy and safety results from MajesTEC-1. 2022 ASCO Annual Meeting American Society of Clinical Oncology. June 2022. 2 Moreau P et al. Teclistamab, a BCMAxCD3 antibody, in triple class exposed multiple myeloma. The New England Journal of Medicine, June 2022. 3 Touzeau C et al. Efficacy and safety of teclistamab (tec), a B-cell maturation antigen (BCMA) x CD3 bispecific antibody, in patients (pts) with relapsed/refractory multiple myeloma (RRMM) after exposure to other BCMA-targeted agents. 2022 ASCO Annual Meeting American Society of Clinical Oncology. June 2022. 4 Martin T et al. Health-related quality of life in patients with relapsed/refractory multiple myeloma (RRMM) treated with teclistamab, a B-cell maturation antigen (BCMA) x CD3 bispecific antibody: patient-reported outcomes in MajesTEC-1. 2022 ASCO Annual Meeting American Society of Clinical Oncology. June 2022. 5 Rodriguez-Otero P et al. A novel, immunotherapy-based approach for the treatment of relapsed/refractory multiple myeloma (RRMM): Updated phase 1b results for daratumumab in combination with teclistamab (a BCMA x CD3 bispecific antibody). 2022 ASCO Annual Meeting American Society of Clinical Oncology. June 2022. 6 Mateos M et al. Randomized, phase 3 study of teclistamab plus daratumumab versus investigator's choice of daratumumab, pomalidomide, and dexamethasone or daratumumab, bortezomib, and dexamethasone in patients with relapsed/refractory multiple myeloma. 2022 ASCO Annual Meeting American Society of Clinical Oncology. June 2022. 7 Rodriguez-Otero P et al. A novel, immunotherapy-based approach for the treatment of relapsed/refractory multiple myeloma (RRMM): Updated phase 1b results for daratumumab in combination with teclistamab (a BCMA x CD3 bispecific antibody). EHA 2022 Congress European Hematology Association. June 2022. 8 WJC van de Donk N et al. Novel Combination Immunotherapy for the Treatment of Relapsed/Refractory Multiple Myeloma: Update Phase 1B Results for Talquetamab (A GPRC5D x CD3 Bispecific Antibody) in Combination with Daratumumab. EHA 2022 Congress European Hematology Association. June 2022. 9 Labrijn AF et al. Proc Natl Acad Sci USA. 2013;110:5145. 10 Frerichs KA et al.Clin Cancer Res. 2020; doi: 10.1158/1078-0432.CCR-19-2299. 11 Cancer Research Institute. "Adoptive Cell Therapy: TIL, TCR, CAR T, AND NK CELL THERAPIES." Available at:https://www.cancerresearch.org/immunotherapy/treatment-types/adoptive-cell-therapy. 12 Cho SF et al. Frontiers in Immunology. 2018; 9: 1821. 13 Benonisson H et al. Molecular Cancer Therapeutics. 2019 (18) (2) 312-322. 14 European Medicines Agency. PRIME Factsheet. Available at: https://www.ema.europa.eu/en/human-regulatory/research-development/prime-priority-medicines. Accessed December 2021. 15 The U.S. Food and Drug Administration. "Expedited Programs for Serious Conditions." Available at: https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM358301.pdf. Accessed December 2021. 16 Rajkumar SV. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am J Hematol.2020;95(5):548-5672020;95(5):548-567. http://www.ncbi.nlm.nih.gov/pubmed/32212178 17 Cancer.Net. "Multiple Myeloma: Statistics." Available at:https://www.cancer.net/cancer-types/multiple-myeloma/statistics#:~:text=Worldwide%2C%20an%20estimated%20176%2C404%20people,worldwide%20died%20from%20multiple%20myeloma. Accessed June 3, 2022. 18 American Cancer Society. "Key Statistics About Multiple Myeloma." Available at: https://cancerstatisticscenter.cancer.org/?_ga=2.84250769.967379196.1642100198-1705811479.1642100198#!/. Accessed April 2022. 19 American Cancer Society. "What Is Multiple Myeloma?" Available at: https://www.cancer.org/cancer/multiple-myeloma/about/what-is-multiple-myeloma.html. Accessed January 2022.

Media Contact:Satu Glawe +49 172-294-6264

Bernadette King +1 215-778-3027

Investor Relations:Raychel Kruper +1 732-524-6164

U.S. Medical Inquiries:+1 800-526-7736

SOURCE Janssen Pharmaceutical Companies of Johnson & Johnson

Here is the original post:
Updated Data for Janssen's Bispecific Teclistamab Suggest Continued Deep and Durable Responses in the Treatment of Patients with Relapsed or...

Embryonic Stem Cell Research | Voices in Bioethics

Introduction

In November 1998, two teams of U.S. scientists confirmed successful isolation and growth of stems cells obtained from human fetuses and embryos. Since then, research that utilizes human embryonic cells has been a widely debated, controversial ethical issue. Human embryonic cells possess the ability to become stem cells, which are used in medical research due to two significant features. First, they are unspecialized cells, meaning they can undergo cell division and renew themselves even with long periods of inactivity. Secondly, stem cells are pluripotent, with the propensity to be induced to become specified tissue or any organ-specific cells with special functions depending on exposure to experimental or physiologic conditions, as well as undergo cell division and become cell tissue for different organs.

The origin of stem cells themselves encapsulates the controversy: embryonic stem cells, originate from the inner cell mass of a blastocyst, a 5-day pre-implantation embryo. The principal argument for embryonic stem cell research is the potential benefit of using human embryonic cells to examine or treat diseases as opposed to somatic (adult) stem cells. Thus, advocates believe embryonic stem cell research may aid in developing new, more efficient treatments for severe diseases and ease the pain and suffering of numerous people. However, those that are against embryonic stem cell research believe that the possibility of scientific benefits of research do not outweigh the immoral action of tampering with the natural progression of a fetal development and interfering with the human embryos right to live. In light of these two opposing views, should embryonic stem cells be used in research? It is not ethically permissible to destroy human embryonic life for medical progress.

Personhood and the Scientific Questionability of Embryonic Stem Cell Research

The ethics behind embryonic stem cell research are controversial because the criteria of personhood is notoriously unclear. Personhood is defined as the status of being a person, entitled to moral rights and legal protections that are higher than living things that are not classified as persons. Thus, this issue touches on existential questions such as: When does life begin? and What is the moral status that an embryo possesses? There is a debate on when exactly life begins in embryonic development and when the individual receives moral status. For example, some may ascribe life starting from the moment of fertilization, others may do so after implantation or the beginning of organ function. However, since the zygote is genetically identical to the embryo, which is also genetically identical to the fetus, and, by extension, identical to the baby, inquiring the beginning of personhood can lead to an occurrence of the Sorites paradox, also acknowledged as the paradox of the heap.

The paradox of the heap arises from vague predicates in philosophy. If there is a heap of sand and a grain is taken away from that heap one by one, at what point will it no longer be considered a heap what classifies it as a heap? The definition of life is similarly arbitrary. When, in the development of a human being, is an embryo considered a person with moral standing? The complexity of the ethics of embryonic stem cell research, like the Sorites paradox, demonstrates there is no single, correct way to approach a problem; thus, there may be multiple different solutions that are acceptable. Whereas the definition of personhood cannot be completely resolved on a scientific basis, it serves a central role in the religious, political, and ethical differences within the field of embryonic stem cell research. Some ethicists attempt to determine what or who is a person by setting boundaries (Baldwin & Capstick, 2007).

Utilizing a functionalist approach, supporters of embryonic stem cell research argue that to qualify as a person, the individual must possess several indicators of personhood, including capacity, self-awareness, a sense of time, curiosity, and neo-cortical function. Proponents argue that a human embryo lacks these criteria, thereby is not considered a person and thus, does not have life and cannot have a moral status. Supporters of stem cell research believe a fertilized egg is just a part of another persons body until the cell mass can survive on its own as a viable human. They further support their argument by noting that stem cell research uses embryonic tissue before its implantation into the uterine wall. Researchers invent the term pre-embryo to distinguish a pre-implantation state in which the developing cell mass does not have the full respects of an embryo in later stages of embryogenesis to further support embryonic stem cell research. Based on this reductionist view of life and personhood, utilitarian advocates argue that the result of the destruction of human embryos to harvest stem cells does not extinguish a life. Further, scientists state that any harm done is outweighed by the potential alleviation of the suffering enduring by tremendous numbers of people with varying diseases. This type of reasoning, known as Benthams Hedonic (moral) calculus, suggests that the potential good of treating or researching new cures for ailments such as Alzheimers disease, Parkinsons disease, certain cancers, etc. outweighs any costs and alleviate the suffering of persons with those aliments. Thus, the end goal of stem cell use justifies sacrificing human embryos to produce stem cells, even though expending life is tantamount to murder. Opponents of embryonic stem cell research would equate the actions done to destroy the embryos as killing. Killing, defined as depriving their victims of life, will therefore reduce their victims to mere means to their own ends. Therefore, this argument touches on the question: if through the actions of embryotic stem cell research is morally indistinguishable from murder? (Outka, 2013). The prohibition of murder extends to human fetuses and embryos considering they are potential human beings. And, because both are innocent, a fetus being aborted and an embryo being disaggregated are direct actions with the intention of killing. Violating the prohibition of murder is considered an intolerable end. We should not justify this evil even if it achieves good. Under the deontological approach, whether a situation is good or bad depends on whether the action that brought it about was right or wrong, hence the ends do not justify the means. Therefore, under this feeble utilitarian approach, stem cell research proceeds at the expense of human life than at the expense of personhood.

One can reject the asserted utilitarian approach to stem cell research as a reductionist view of life because the argument fails to raise ethical concerns regarding the destruction embryonic life for the possibility of developing treatments to end certain diseases. The utilitarian approach chooses potential benefits of stem cell research over the physical lives of embryos without regard to the rights an embryo possesses. Advocates of embryonic stem cell research claim this will cure diseases but there is a gap in literature that confirms how many diseases these cells can actually cure or treat, what diseases, and how many people will actually benefit. Thus, killing human embryos for the potentiality of benefiting sick people is not ethically not ethically permissible.

Where the argument of personhood is concerned, the development from a fertilized egg (embryo) to a baby is a continuous process. Any effort to determine when personhood begins is arbitrary. If a newborn baby is a human, then surely a fetus just before birth is a human; and, if we extend a few moments before that point, we would still have a human, and so on all the way back to the embryo and finally to the zygote. Although an embryo does not possess the physiognomies of a person, it will nonetheless become a person and must be granted the respect and dignity of a person. Thus, embryotic stem cell research violates the Principle of Full Human Potential, which states: Every human being [] deserves to be valued according to the full level of human development, not according to the level of development currently achieved. As technology advances, viability outside the womb inches ever closer to the point of inception, making the efforts to identify where life begins after fertilization ineffectual. To complicate matters, as each technological innovation arrives, stem-cell scientists will have to re-define the start of life as many times as there are new technological developments, an exhausting and never-ending process that would ultimately lead us back to moment of fertilization. Because an embryo possesses all the necessary genetic information to develop into a human being, we must categorically state that life begins at the moment of conception. There is a gap in literature that deters the formation of a clear, non-arbitrary indication of personhood between conception and adulthood. Considering the lack of a general consensus of when personhood begins, an embryo should be referred to as a person and as morally equivalent to a fully developed human being.

Having concluded that a human embryo has the moral equivalent of a fully-fledged human being, this field of research clearly violates the amiable rights of personhood, and in doing so discriminates against pre-born persons. Dr. Eckman asserts that every human being has a right to be protected from discrimination. Thus, every human, and by extension every embryo, has the right to life and should not be discriminated against their for developmental immaturity. Therefore, the field of embryonic stem cell research infringes upon the rights and moral status of human embryos.

Principle of Beneficence in Embryonic Stem Cell Research

The destruction of human embryos for research is not ethically permissible because the practice violates the principle of beneficence depicted in the Belmont Report, which outlines the basic ethical principles and guidelines owed to human subjects involved in research. Stem cell researchers demonstrate a lack of respect for the autonomy and welfare of the human embryos sacrificed in stem cell research.

While supporters of embryonic stem cell research under the utilitarian approach argue the potential benefits of the research, the utilitarian argument however violates the autonomy of the embryo and its human rights, as well as the autonomy of the embryo donors and those that are Pro-Life. Though utilitarian supporters argue on the basis of rights, they exclusively refer to the rights of sick individuals. However, they categorically ignore the rights of embryos that they destroy to obtain potential disease curing stem cells. Since an embryo is regarded as a human being with morally obligated rights, the Principle of Beneficence is violated, and the autonomy and welfare of the embryo is not respected due to the destruction of an embryo in stem cell research. Killing embryos to obtain stem cells for research fails to treat embryos as ends in an of themselves. Yet, every human ought to be regarded as autonomous with rights that are equal to every other human being. Thus, the welfare of the embryo is sacrificed due to lack of consent from the subject.

The Principle of Beneficence is violated when protecting the reproductive interests of women in infertility treatment, who are dependent on the donations of embryos to end their infertility. Due to embryonic stem cell research, these patients prospects of reproductive success may be compromised because there are fewer embryos accessible for reproductive purposes. The number of embryos necessary to become fully developed and undergo embryonic stem cell research will immensely surpass the number of available frozen embryos in fertility clinic, which also contributes to the lack of embryos available for women struggling with infertility. Therefore, the basis of this research violates womens reproductive autonomy, thus violating the Principle of Beneficence.

It is also significant to consider the autonomy and welfare of the persons involved. The autonomous choice to donate embryos to research necessitates a fully informed, voluntary sanction of the patient(s), which poses difficulty due to the complexity of the human embryonic stem cell research. To use embryos in research, there must be a consensus of agreement from the mother and father whose egg and sperm produced the embryo. Thus, there has to be a clear indication between the partners who has the authority or custody of the embryos, as well as any third party donors of gametes that could have been used to produce the embryo because these parties intentions for those gametes may solely have been for reproductive measures only. Because the researchers holding dispositional authority over the embryos may exchange cell lines and its derivatives (i.e., genetic material and information) with other researchers, they may misalign interests with the persons whose gametes are encompassed within the embryo. This mismatch of intent raises complications in confidentiality and autonomy.

Lastly, more ethical complications arise in the research of embryonic stem cells because of the existence viable alternatives that to not destroy human embryos. Embryonic stem cells themselves pose as a higher health risk than adult stem cells. Embryonic stem cells have a higher risk of causing tumor development in the patients body once the cells are implanted due to their abilities to proliferate and differentiate. Embryonic stem cells also have a high risk of immunorejection, where a patients immune system rejects the stem cells. Since the embryonic stem cells are derived from embryos that underwent in vitro fertilization, when implanted in the body, the stem cells marker molecules will not be recognized by the patients body, resulting in the destruction of the stem cells as a defensive response to protect the body (Cahill, 2002). With knowledge of embryonic stem cells having higher complications than the viable adult stem cells continued use of embryonic stem cells violates the Principle of Beneficence not only for the embryos but for the health and safety of the patients treated with stem cells. Several adult stem cell lines (undifferentiated cells found throughout the body) exist and are widely used cell research. The use of adult stem cells represents research that does not treat human beings as means to themselves, thus, complying with the Principle of Beneficence. This preferable alternative considers the moral obligation to discover treatments, and cures for life threating diseases while avoiding embryo destruction.

Conclusion

It is not ethically permissible to destroy human embryonic life for medical progress due to the violations of personhood and human research tenets outlined in the Belmont Report. It is significant to understand the ethical implications of this research in order to respect the autonomy, welfare, beneficence, and basic humanity afforded to all parties involved. Although embryonic stem cell research can potentially provide new medical advancements to those in need, the harms outweigh the potential, yet ill-defined benefits. There are adult stem cell alternatives with equivalent viability that avoid sacrificing embryos. As society further progresses, humans must be cautious of compromising moral principles that human beings are naturally entitled to for scientific advancements. There are ethical boundaries that are crossed when natural processes of life are altered or manipulated. Though there are potential benefits to stem cell research, these actions are morally and ethically questionable. Thus, it is significant to uphold ethical standards when practicing research to protect the value of human life.

References

Shamblott, M. J., J. Axelman, S. Wang, E. M. Bugg, J. W. Littlefield, P. J. Donovan, P. D. Blumenthal, G. R. Huggins, and J. D. Gearhart. Derivation of Pluripotent Stem Cells from Cultured Human Primordial Germ Cells. Proceedings of the National Academy of Sciences 95, no. 23 (November 10, 1998): 1372631. doi:10.1073/pnas.95.23.13726.

National Institutes of Health, U.S. Department of Health and Human Services. Stem Cell Basics I. Stem Cell Information, 2016. https://stemcells.nih.gov/info/basics/1.htm.

Kitwood, Thomas Marris., Clive Baldwin, and Andrea Capstick. Tom Kitwood on Dementia: A Reader and Critical Commentary. Maidenhead, Berkshire: McGraw-Hill/Open University Press, 2007.

University of Michigan. Stem Cell Research: Frequently Asked Questions, 2013. http://www.stemcellresearch.umich.edu/overview/faq.html#section2.

EuroStemCell. Origins, Ethics and Embryos: The Sources of Human Embryonic Stem Cells, 2016. https://www.eurostemcell.org/origins-ethics-and-embryos-sources-human-embryonic-stem-cells.

Perry, David L. Some Issues in Contemporary Neurological Science and Technology, 2011. https://www.scu.edu/ethics/focus-areas/bioethics/resources/ethics-and-personhood/.

Swirsky, E. Week Fourteen Unit: Minute Paper 5 [Blackboard Assignment], 2018.

OMathna, DP. Personhood in Bioethics and Biomedical Research. Research Practitioner 7 (2006): 16774.

Grobstein, C. External Human Fertilization. Scientific American 240, no. 6 (June 1979): 5767.

Mastin, L. Deontology, 2009. https://www.philosophybasics.com/branch_deontology.html.

Spitzer, Robert. Introduction and Principles of Ethics. In Ten Universal Principles: A Brief Philosophy of the Life Issues, xixii, 1-3, 20-29. San Fransisco, CA: Ignatius Press, 2011. https://www.catholiceducation.org/en/religion-and-philosophy/philosophy/introduction-amp-principles-of-ethics.html.

Eckman, Jim. Human Embryonic Stem Cell Research. Issues In Perspective, 2011. https://graceuniversity.edu/iip/2011/05/14-2/.; Eckman, Jim. The Devaluing of Life in America. Issues In Perspective, 2015. https://graceuniversity.edu/iip/2015/09/the-devaluing-of-life-in-america/.

Outka, Gene (2009) "The Ethics of Embryonic Stem Cell Research and the Principle of "Nothing is Lost","Yale Journal of Health Policy, Law, and Ethics: Vol. 9 : Iss. 3 , Article 7.

Curzer, Howard. The Ethics Of Embryonic Stem Cell Research. The Journal of Medicine and Philosophy 29, no. 5 (October 1, 2004): 53362. doi:10.1080/03605310490514225.

Lo, Bernard, and Lindsay Parham. Ethical Issues in Stem Cell Research. Endocrine Reviews 30, no. 3 (May 2009): 20413. doi:10.1210/er.2008-0031.

Hubbard, James. Embryonic Stem-Cell Research: Experts Debate Pros and Cons. The Survival Doctor, 2013. http://thesurvivaldoctor.com/2013/02/14/doctors-debate-embryonic-stem-cell-research-pros-and-cons/.

Koch, Valerie Gutmann, Beth E. Roxland, Barbara Pohl, and Sarah K. Keech. Contemporary Ethical Issues in Stem Cell Research. In Stem Cells Handbook, 2937. New York, NY: Springer New York, 2013. doi:10.1007/978-1-4614-7696-2_2.

Cahill, Lisa Sowle. "Holland, Suzanne, Karen Lebacqz, and Laurie Zoloth, Eds. The Human Embryonic Stem Cell Debate: Science, Ethics, and Public Policy." The National Catholic Bioethics Quarterly 2, no. 3 (2002): 559-62. doi:10.5840/ncbq20022344.

Devolder, Katrien. The Ethics of Embryonic Stem Cell Research. Oxford University Press, 2015. doi:10.1093/acprof:oso/9780199547999.001.0001.

ScienceDaily. Adult Stem Cell, 2018. https://www.sciencedaily.com/terms/adult_stem_cell.htm.

The rest is here:
Embryonic Stem Cell Research | Voices in Bioethics

Researchers Share Insights about Mechanisms of Human Embryo and Create Method to Develop Transcriptionally Similar Cells in Tissue Culture – Newswise

UNDER EMBARGO UNTIL APRIL 28, 2022 at 11:00 AM E

Paper Title: Identification of a retinoic acid-dependent hemogenic endothelial progenitor from human pluripotent stem cells

Journal: Nature Cell Biology

Authors:Christopher Sturgeon, PhD, Associate Professor of Cell, Developmental & Regenerative Biology and Medicine, Hematology & Medical Oncology in the Black Family Stem Cell Institute at the Icahn School of Medicine at Mount Sinai, and other coauthors.

Bottom Line:Blood-forming stem cells found in bone marrow are the life-saving component used in bone marrow transplants. However, suitable donors often cannot be found in many cases. This study reveals how the human embryo develops the precursor to blood-forming stem cells, which researchers say can be used in the novel method they developed to generate blood-forming stem cells from cells in tissue culture.

The studyled by researchers from Mount Sinai and the San Raffaele Telethon Institute for Gene Therapy in Milan Italyconfirms many aspects of cell development, including origins and regulation, which are known to occur within both the mouse and human embryo. In the mammalian embryo, blood-forming stem cells emerge from a specialized cell type called hemogenic endothelium. These cells develop in response to a critical signal pathway known as retinoic acid, which is essential for growth. Their analysis found that stem cell populations derived from human pluripotent stem cells were transcriptionally similar to cells in the early human embryo.

Results: For years, researchers in the field of regenerative medicine have been able to obtain hemogenic endothelium from embryonic stem cells, but these cells do not produce blood-forming stem cells. In the embryo, blood-forming stem cell development requires signaling by retinoic acid. But, current state-of-the-art methods for deriving blood progenitors from human pluripotent stem cells do so in the absence of retinoic acid. In this latest study, researchers examined the dependence on retinoic acid in early cell types derived from human pluripotent stem cells. They performed single cell RNA sequencing of stem cells in vitro to better understand patterns of mesodermal cell types during early development. The research team identified a new strategy to obtain cells that are transcriptionally similar to those hemogenic endothelial cells found in the human embryo by stimulating a very discrete original population with retinoic acid.

Why the Research Is Interesting:This new method brings researchers and scientists closer to developing blood-forming stem cells in tissue culture, but also provides a pathway to establishing specialized blood cell types for transfusions and other treatments for cancer since the new method makings it possible to obtain the same original cells in adult blood that are found in a developing embryo.

Said Mount Sinai's Dr. Christopher Sturgeon of the research: We have made a major breakthrough in our ability to direct the development of stem cells in a tissue culture dish into cells that have the same gene expression signature as the immediate progenitor of a blood-forming stem cell found in the developing embryo. With this, now we can focus our efforts at understanding how to capture embryonic blood-forming stem cells, with the goal of using them as a substitute for bone marrow.

Researchers from the Washington University School of Medicine in St. Louis, MO contributed to this study.

###

See the rest here:
Researchers Share Insights about Mechanisms of Human Embryo and Create Method to Develop Transcriptionally Similar Cells in Tissue Culture - Newswise

Development and regulation of stem cellbased therapies in China – Newswise

Background

Clinical researches of stem cell-based therapies are highly active in China, while it was arduous to determine the most effective way of clinical translation of those advanced therapies.

This article briefly introduced the regulatory framework development, the progress in stem cell clinical researches and clinical trials of commercially developed stem cell-based products, as well as the clinical review concerns of stem cell-based products in China.

The current regulatory framework of stem cell clinical researches in China was launched in 2015, when regulatory authorities issued Administrative Measures on Stem Cell Clinical Research (AMSCCR) detailing the rules of stem cell clinical research. Thereafter, the rapidly growing stem cell clinical researches were rigorously managed and clinical use of stem cell therapy was halted. Meanwhile, commercially developed stem cell-based products are supervised by Drug Administration Law (DAL).

The regulatory framework of stem cell-based therapy in China has progressed in the last few decades, which is currently regulated according to AMSCCR and DAL. Well-designed and patient-focused clinical trial is required for commercially developed stem cell-based products, and definite clinical benefit evidence is crucial to obtain marketing authorization.

Read more:
Development and regulation of stem cellbased therapies in China - Newswise

Highland Therapeutics Announces Appointment of Stephanie C. Read as President/CEO, Changes to Board of Directors – BioSpace

TORONTO--(BUSINESS WIRE)-- Highland Therapeutics Inc., a privately held pharmaceutical company that through its wholly owned subsidiary, Ironshore Pharmaceuticals Inc., is focused on the commercialization of JORNAY PM (methylphenidate HCl) extended-release capsules (CII) for patients with ADHD, today announced the appointment of Stephanie C. Read as President/Chief Executive Officer, the appointment of Scott Myers as Chair of the Board and the additions of Kevin Bain and Ildiko Mehes as independent members of the Board of Directors. Stefan Antonsson, who has been serving as interim CEO will return to his role as an independent director.

It is my pleasure to congratulate Ms. Read in her transition from the Board of Directors to President/CEO, said Scott Myers, recently appointed Chair of the Board. Ms. Reads leadership in product development, corporate strategy, business development and specialty care commercialization will be key to driving sustainable growth with JORNAY PM, while enabling diversification into new therapeutic areas. I look forward to working closely with her to create value for patients, our employees and stakeholders."

The Board is grateful to interim CEO Stefan Antonsson for providing strategic direction and leadership continuity as we completed the financial restructuring of the company. After a brief transition, Stefan will return to his role as an independent member of the Board of Directors.

Commenting on her appointment, Ms. Read said, Highland and its subsidiaries are a rare instance of a privately held company with an exciting commercial product and experiencing rapid growth. I am pleased to join this seasoned executive team who have been successful in developing and launching JORNAY PM. With new capital from our shareholders and fresh perspectives from the new Board, we have the opportunity to continue to develop our products, people, processes and culture as we explore additional populations who may benefit from JORNAY PM."

Board of Directors:

Scott Myers, Chair of Board

Mr. Myers is a proven executive who brings nearly three decades of global pharmaceutical and medical technology most recently as CEO of AMAG, sold to Covis Pharmaceuticals, SA in November of 2020. Mr. Myers is a serial CEO, serving as Chairman and Chief Executive Officer of Rainier Therapeutics, a clinical-stage biotechnology company focused on metastatic bladder cancer that was purchased by Fusion Pharmaceuticals in March of 2020. Prior to joining Rainier, Mr. Myers served as Chief Executive Officer, President and as a director of Cascadian Therapeutics Inc. prior to its acquisition by SeaGen in March of 2018. Mr. Myers also served as Chief Executive Officer of Aerocrine AB, a medical device company from 2011 to 2015 prior to its acquisition by Circassia. Mr. Myers is currently an independent director of Selecta Biosciences where he serves as the Chair of the Compensation and Benefits Committee, as well as a member of the Nominating and Governance Committee. Mr. Myers also serves as the Chairman of the Board and Chairman of the Nomination and Governance committees and is a member of the Audit Committee for Harpoon Therapeutics, a clinical stage oncology company. Mr. Myers is also Chairman of the Board for Sensorion, SA, a gene therapy company focused on inner ear diseases. Mr. Myers is also Chairman of the Board of Dynavax Technologies, a Hepatitis B vaccine and COVID Adjuvant commercial stage company.

Stefan Antonsson, Independent Director

Mr. Antonsson has over 30 years of commercial experience in the pharmaceutical industry, primarily as a senior marketing executive, and he has established a proven track record of contributing to the success of rapidly growing pharmaceutical companies. Stefan was a key member of the Richwood/Shire senior management team and played a leadership role in launching Adderall and developing Adderall XR, acquiring and launching Carbatrol, and initiating the development of Intuniv. Stefan has also held senior marketing positions with Pharmacia and Forest Laboratories and executive positions with Vela Pharmaceuticals and Xanodyne Pharmaceuticals. Stefan has also been involved in several entrepreneurial ventures which successfully developed, licensed, and commercialized CNS products. Stefan also completed a long-term consulting assignment as Senior Vice-President of Marketing for Supernus Pharmaceuticals where he was part of the senior management team that established the commercial function for the company and successfully launched two anti-epilepsy drugs. Stefan earned his BA from Columbia College and MBA from The Stern School of Business, NYU.

Kevin Bain, Independent Director and Chair of Audit Committee

Mr. Bain is currently Chief Corporate Development Officer of Cell Research Corporation, a Singapore-based biologics company. This is a clinical-stage company developing a platform of products using stem cells from the umbilical cord lining membrane. From early 2006 through mid-2020, Kevin worked in the generic pharmaceutical and biosimilar business in companies founded and led by Robert Wessman. Kevin joined Alvogen in August 2009 as Chief Financial Officer, with responsibility for all Finance and Information Technology functions for the global Alvogen business. In November 2015, Kevin moved to a sister company named Alvotech as Chief Financial Officer. He has led several financing rounds, raising more than $1.5 billion in total value. Prior to joining Alvogen and Alvotech he spent almost four years with Actavis as Vice President of Finance for the US business of Actavis. From mid-2001 to early 2006, Mr. Bain was VP of Finance with a division of Danaher Corporation. From 1979 to 2001, Mr. Bain held positions of increasing responsibility within the finance organization of the Johnson & Johnson Family of Companies in both Canada and the US, including Vice President of Finance for J&J Medical Products. Mr. Bain graduated from the Accounting program at Fanshawe College in London, Ontario, Canada, and later earned his Certified Management Accountant (CMA) designation. Kevin is currently a Board member and Chair of the Audit Committee of Akorn Pharmaceuticals, a leading US-based specialty pharmaceuticals company.

Ildiko Mehes, Independent Director

Ms. Mehes is an advisor to investment management firms, consulting firms and pharmaceutical companies about a wide range of risks and opportunities in the pharmaceutical industry. She previously spent 12 years at Teva Pharmaceuticals in a variety of business and legal roles including, most recently, Senior Vice President & General Counsel. Her areas of responsibility in the U.S. and Canada spanned New Product & Portfolio, R&D, Regulatory Affairs, and Legal Affairs. She has extensive expertise in intellectual property, including related to ADHD drugs, and also has significant pharmaceutical M&A experience. Prior to Teva, Ildiko was a pharmaceutical patent and commercial litigator. Ildiko is admitted to the Bars of Massachusetts and Ontario, Canada. She is also the recipient of several awards, including the National Post/ ZSA Canadian General Counsel Award for Litigation Management and the Association of Corporate Counsels Global Award for Litigation Management. Ildiko holds a B.A. (Honors) in Economics from Queens University, a J.D. from Osgoode Hall Law School, both in Canada, and completed the Advanced Management Program at the Wharton Business School.

Stephanie C. Read, Chief Executive Officer

In addition to serving as the newly appointed President/CEO, Stephanie will continue to have a seat on the Board of Directors. Ms. Read also serves as a Non-Executive Director on the Board of ALSP Orchid Acquisition Corporation I. Ms. Read's 24-year biopharmaceutical career spans Global Research and Development, Medical Affairs, Alliance Management, Commercial and Business Development and Equity Investing. All leadership roles have included driving transformational change within organizations to accelerate top- and bottom-line growth, and diversification of company portfolios. Ms. Read's therapy area expertise includes Psychiatry (inventorship of MYDAYIS), Gastroenterology, Oncology & Pain, Infectious Disease, Immunology and Rare Diseases. Ms. Read's industry appointments include the last 6.5 years with CSL as global VP, Corporate Strategy and Business Development, 7.5 years with AstraZeneca/MedImmune in a variety of Medical Affairs, Commercial and Business Development roles, and over six years with Shire PLC in R&D and Global Medical Affairs (including inventing, developing and launching new treatments for ADHD). Stephanie holds a M.Sc. in Biotechnology from The Johns Hopkins University and a B.Sc. in Biology from Virginia Tech.

WARNING: ABUSE AND DEPENDENCE

See full prescribing information for complete boxed warning.

See additional important safety information below.

IMPORTANT SAFETY INFORMATION

WARNING: ABUSE AND DEPENDENCE

CNS stimulants, including JORNAY PM, other methylphenidate-containing products, and amphetamines, have a high potential for abuse and dependence. Assess the risk of abuse prior to prescribing and monitor for signs of abuse and dependence while on therapy.

CONTRAINDICATIONS

WARNINGS AND PRECAUTIONS

ADVERSE REACTIONS

PREGNANCY AND LACTATION

Please visit http://ironshorepharma.com/labeling.pdf for additional important safety information and the Full Prescribing Information, including Boxed Warning, for JORNAY PM.

About Highland Therapeutics Inc.

Highland Therapeutics Inc. is a pharmaceutical company whose mission is to develop and commercialize innovative, patient-centric treatment options. Based in North Carolina, subsidiary Ironshore Pharmaceuticals Inc. is responsible for the sales, marketing and distribution of pharmaceutical products within the US. Based in Grand Cayman, subsidiary Ironshore Pharmaceuticals & Development, Inc. develops novel therapeutics by leveraging its proprietary drug-delivery technology.

Forward-Looking Statements

This press release contains forward-looking information, which reflects the companys current expectations regarding future events. Forward-looking information is based on a number of assumptions and is subject to a number of risks and uncertainties, many of which are beyond the companys control that could cause actual results and events to differ materially from those that are disclosed in or implied by such forward-looking information. These forward-looking statements are made as of the date of this press release and, except as expressly required by applicable law, the company assumes no obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise.

View source version on businesswire.com: https://www.businesswire.com/news/home/20220426006027/en/

View post:
Highland Therapeutics Announces Appointment of Stephanie C. Read as President/CEO, Changes to Board of Directors - BioSpace

Cellectis Receives $20 Million Convertible Note Under Collaboration Agreement with its Partner … – The Bakersfield Californian

Cellectis is developing custom TALEN for Cytovia to develop gene-edited iPSC-derived Natural Killer cellsCytovia and Isleworth Healthcare Acquisition Corp. announce business combination agreementand combined company is expected to be listed on NASDAQ under the ticker symbol INKC$20 million noterepresents upfrontcollaboration consideration and would convert into common stock upon completion of the business combination

NEW YORK, April 27, 2022 (GLOBE NEWSWIRE) -- Cellectis (the Company) (Euronext Growth: ALCLS - NASDAQ: CLLS), a clinical-stage biotechnology company using its pioneering gene-editing platform to develop life-saving cell and gene therapies, announces today that its partner Cytovia Therapeutics, LLC (Cytovia), a biopharmaceutical company empowering natural killer (NK) cells to fight cancer through stem cell engineering and multispecific antibodies, entered into a definitive business combination agreement with Isleworth Healthcare Acquisition Corp. (NASDAQ: ISLE) (Isleworth), a Special Purpose Acquisition Company (SPAC).

Concurrent with the business combination agreement, Cellectis received a $20 million convertible note in payment of the upfront collaboration consideration provided for pursuant to the research collaboration and non-exclusive license agreement entered between Cellectis and Cytovia in February 2021. The terms of the note provide for conversion into common stock of the combined company upon completion of the business combination, which is subject to the satisfaction or waiver of customary closing conditions. In connection with this convertible note, Cellectis received a warrant to purchase additional shares of the combined company representing up to 35% of the shares issued upon conversion of the note at a predetermined exercise price, with the number of shares issuable upon exercise and the exercise subject to certain adjustments.

We are impressed by the progress Cytovia has accomplished in the past months. Cytovia shares Cellectis mission to provide life-saving off-the-shelf allogeneic cell therapies to patients, and we are excited to be providing them with best-in-class TALEN gene editing for cell therapy applications. Congratulations to the Cytovia team for this transaction, which is an important milestone as they continue their journey to progress gene-edited NK therapeutics towards a cure for cancer! said Andr Choulika, CEO of Cellectis.

Cellectis and Cytovias research and development collaboration:

In February 2021, Cellectis and Cytovia entered into a strategic research and development collaboration to develop TALEN gene-edited iPSC NK and CAR-NK cells. In November 2021, Cellectis and Cytovia extended their collaboration to include new CAR target and development in China by Cytovias strategic partner, CytoLynx Therapeutics.

Financial terms of the collaboration include the $20 million convertible note as well as up to $805 million of development, regulatory, and sales milestones and single-digit royalty payments on the net sales of all partnered products commercialized by Cytovia.

Cellectis is developing custom TALEN, which Cytovia uses to edit iPSCs. Cytovia is responsible for the differentiation and expansion of the gene-edited iPSC master cell bank into NK cells and is conducting the pre-clinical evaluation, clinical development, and commercialization of the mutually-agreed-upon selected therapeutic candidates. Cellectis has granted Cytovia a worldwide license under the patent rights over which Cellectis has control in this field, including in China, in order for Cytovia to modify NK cells to address multiple gene-targets for therapeutic use in several cancer indications.

About Cellectis

Cellectis is a clinical-stage biotechnology company using its pioneering gene-editing platform to develop life-saving cell and gene therapies. Cellectis utilizes an allogeneic approach for CAR-T immunotherapies in oncology, pioneering the concept of off-the-shelf and ready-to-use gene-edited CAR T-cells to treat cancer patients, and a platform to make therapeutic gene editing in hemopoietic stem cells for various diseases. As a clinical-stage biopharmaceutical company with over 22 years of expertise in gene editing, Cellectis is developing life-changing product candidates utilizing TALEN, its gene editing technology, and PulseAgile, its pioneering electroporation system to harness the power of the immune system in order to treat diseases with unmet medical needs. Cellectis headquarters are in Paris, France, with locations in New York, New York and Raleigh, North Carolina. Cellectis is listed on the Nasdaq Global Market (ticker: CLLS) and on Euronext Growth (ticker: ALCLS).

For more information, visit http://www.cellectis.com. Follow Cellectis on social media: @cellectis, LinkedIn and YouTube.

Forward-looking Statements

This press release contains forward-looking statements within the meaning of applicable securities laws, including the Private Securities Litigation Reform Act of 1995. Forward-looking statements may be identified by words such as anticipate, believe, intend, expect, plan, scheduled, could and will, or the negative of these and similar expressions. These forward-looking statements, which are based on our managements current expectations and assumptions and on information currently available to management. Forward-looking statements include statements about the business combination of Cytovia and Isleworth, the conversion of the convertible note, the progress and advancement of the research collaboration with Cytovia, and the receipt by Cellectis of development, regulatory, and sales milestones and royalty payments from Cytovia. These forward-looking statements are made in light of information currently available to us and are subject to numerous risks and uncertainties, including with respect to the numerous risks associated with biopharmaceutical product candidate development, market conditions, and the ability of Cytovia and Isleworth to satisfy the conditions of the business combination agreement. Furthermore, many other important factors, including those described in our Annual Report on Form 20-F and the financial report (including the management report) for the year ended December 31, 2021 and subsequent filings Cellectis makes with the Securities and Exchange Commission from time to time, as well as other known and unknown risks and uncertainties may adversely affect such forward-looking statements and cause our actual results, performance or achievements to be materially different from those expressed or implied by the forward-looking statements. Except as required by law, we assume no obligation to update these forward-looking statements publicly, or to update the reasons why actual results could differ materially from those anticipated in the forward-looking statements, even if new information becomes available in the future.

About Cytovia

Cytovia aims to accelerate patient access to transformational cell therapies and immunotherapies, addressing several of the most challenging unmet medical needs in cancer. Cytovia focuses on harnessing the innate immune system by developing complementary and disruptive NK-cell and NK-engager antibody platforms. Cytovia is developing three types of iPSC-derived (or iNK) cells: unedited iNK cells, TALEN gene-edited iNK cells with improved function and persistence, and TALEN gene-edited iNK cells with chimeric antigen receptors (CAR-iNKs) to improve tumor-specific targeting. The second complementary cornerstone technology is a quadrivalent multifunctional antibody platform designed to engage natural killer cells by targeting NKp46 using Cytovias proprietary Flex-NK technology.

These two technology platforms are being used to develop treatment of patients with solid tumors such as HCC and Glioblastoma as well as hematological malignancies such as Refractory Multiple Myeloma.

Headquartered in Aventura, FL, Cytovia has research and development laboratories in Natick, MA, and a GMP cell manufacturing facility in Puerto Rico. The companys own R&D work is augmented through scientific partnerships with Cellectis, CytoImmune, the Hebrew University of Jerusalem, INSERM, the New York Stem Cell Foundation and the University of California San Francisco (UCSF).

Cytovia has a strategic partnership with CytoLynx Therapeutics, which is focused on research and development, manufacturing, and commercialization activities in Greater China and beyond.

For further information on Cellectis, please contact:

Media contacts: Pascalyne Wilson,Director,Communications,+33 (0)7 76 99 14 33, media@cellectis.com Margaret Gandolfo, Senior Manager, Communications, +1 (646) 628 0300

Investor Relation contact: Arthur Stril, Chief Business Officer, +1 (347) 809 5980, investors@cellectis.com Ashley R. Robinson, LifeSci Advisors, +1 617430 7577

Attachment

Read more:
Cellectis Receives $20 Million Convertible Note Under Collaboration Agreement with its Partner ... - The Bakersfield Californian