Category Archives: Stell Cell Research


Regenerative medicine is advancing health care in diverse ways – Hometown Focus

Regenerative medicine contributed to patient care in 2020 more than ever before, bolstered by synergies in research, practice and education. Mayo Clinics Center for Regenerative Medicine is at the forefront of a biotherapy revolution in which health care advances from treating disease to restoring health.

The centrality of the body to regenerate itself is paving the way for new horizons in regenerative care. The triad of protecting against disease, preventing disease progression and promoting healing is at the core of the regenerative vision, says Andre Terzic, M.D., Ph.D., director of Mayo Clinics Center for Regenerative Medicine. To this end, the regenerative toolkit has grown more robust over the past year with new technologies now available to boost the bodys ability to repair and restore health of an organ and importantly of the patient as a whole.

The convergence of research, practice and education, empowered by strong innovation and advanced biomanufacturing, is creating an increased level of readiness for applying validated regenerative science to new areas of health care, Dr. Terzic says.

Practice advancement

A deeper understanding of the biology of health and disease is driving the ongoing regenerative medicine evolution.

The remarkable progress in science that is advancing our fundamental comprehension of both health and disease has guided the informed and responsible development of patient-ready curative strategies, says Dr. Terzic.

New discoveries at Mayo Clinic that may shape future practice include:

Validating safety and efficacy of

stem cell therapy for heart failure. The largest regenerative medicine clinical trial to date for heart failure, spanning 39 medical centers and 315 patients from 10 countries, validated the long-term safety of stem cell therapy. The late-stage research found stem cell therapy shows particular benefit for patients with advanced left ventricular enlargement. This Mayo Clinic-led study offers guidance on which patients are most likely

to respond to stem cell therapy for heart failure.

Uncovering stem cell activation of healing. Mayo Clinic researchers uncovered stem cell-activated molecular mechanisms of healing after a heart attack. Stem cells restored the makeup of failing cardiac muscle back to its condition before the heart attack, providing an intimate blueprint of how they may work to heal diseased tissue. This research offers utility to delineate and interpret complex regenerative outcomes.

Discovering a molecular light switch. Mayo Clinic research discovered a molecular switch that turns on a substance that repairs neurological damage. This early research could bolster a therapy approved by the Food and Drug Administration, and that could lead to new strategies for treating diseases of the central nervous system such as multiple sclerosis.

The federal regulatory environment is making it possible to more seamlessly integrate new discoveries into the practice. The 21st Century Cures Act, for example, seeks to create an accelerated path to market for safe, validated procedures that could provide new therapies for patients with serious conditions.

To read the rest of this article on the Center for Regenerative Medicine blog, visit http://www.regenerativemedicineblog.mayoclinic.org.

Read the original post:
Regenerative medicine is advancing health care in diverse ways - Hometown Focus

Gene Pathway Linked to Development of Schizophrenia – Psychiatric Times

In an award-winning study, researchers from The University of Texas Health Science Center at Houston (UTHealth) discovered a gene signaling pathway linked to a higher risk for developing schizophrenia by observing human-induced pluripotent stem cells created from blood samples of a single family. The pathway, phosphoinositide 3-kinase/glycogen synthase kinase 3 (PI3K/GSK3), contains differentially expressed genes, including serum-glucocorticoid kinase 1 (SGK1). This is an inhibitor of GSK3 beta and has been associated with schizophrenia.1

We believe this has direct implications for the treatment of patients, senior author Consuelo Walss-Bass, PhD, MD, said to the press. There is a new antipsychotic that just received approval from the Food and Drug Administration that directly targets the pathway we identified as dysregulated in neurons from the patients, and several other antipsychotics also target this pathway. This could help pinpoint who may respond better to treatments.2

Walss-Bass, the first author, and postdoctoral research fellow Laura Stertz, PhD, took blood samples from members of a large Costa Rican family with multiple individuals with schizophrenia. The blood cells were changed into stem cells using human-induced pluripotent stem cell (hiPSC) technology. These cells were then redirected to become brain neurons. This allowed them to be studied in a virtual biopsy and compared to neurons from family members who did not have schizophrenia.

In the biopsies, researchers saw 5 schizophrenia candidate genes previously identified by genome association studies. Alterations caused by gene SGK1, which inhibits GSK3 activity, are linked to whether a person has a higher risk of schizophrenia.

Walss-Bass had this to say on the discovery: Mental health research has lagged behind because we don't know what is happening biologically. We are diagnosing people based on what they are telling us. Even postmortem, the brain tissue in mental health disorders looks perfectly fine. In Alzheimer disease, you can see a difference compared to controls. But not in psychiatric disorders. Now by studying virtual brain biopsies, we can tell what is happening biologically.2

Walss-Bass also said that identifying patients with specific biological pathway markers could identify them as the best candidates for medications. This pre-emptive, personal pharmacology may be what is needed to best treat psychiatric disorders.

We were able to find significant, meaningful differences with a small control group, Walss-Bass said. Neurons of patients with schizophrenia had alterations in the signaling pathway. This research may help to understand how or why some antipsychotics targeting GSK3 work and also to develop other target-specific medications.2

References

1. Stertz L, Di Re J, Pei G, Fries G, et al. Convergent genomic and pharmacological evidence of PI3K/GSK3 signaling alterations in neurons from schizophrenia patients. Neuropsychopharmacol. 2020;46:673682.

2. University of Texas Health Science Center at Houston. Gene pathway linked to schizophrenia identified through stem cell engineering. News release. Science Daily. December 21, 2020. https://www.sciencedaily.com/releases/2020/12/201221134136.htm

See the article here:
Gene Pathway Linked to Development of Schizophrenia - Psychiatric Times

Humanigen Announces the Addition of BARDA and Expansion of CRADA with the US Government to Develop Lenzilumab for COVID-19 – BioSpace

Jan. 22, 2021 12:00 UTC

BURLINGAME, Calif.--(BUSINESS WIRE)-- Humanigen, Inc.(NASDAQ:HGEN) (Humanigen), a clinical stage biopharmaceutical company focused on preventing and treating an immune hyper-response called cytokine storm with its lead drug candidate lenzilumab, today announced an expansion to the Cooperative Research and Development Agreement (CRADA) that the company had previously entered into with the Department of Defense Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), to gain access to manufacturing capacity reserved by the Biomedical Advanced Research and Development Authority (BARDA), part of the Office of the Assistant Secretary for Preparedness and Response (ASPR) at the U.S. Department of Health and Human Services. The agreement supports development of lenzilumab in advance of a potential Emergency Use Authorization (EUA) for COVID-19.

The amended CRADA, now co-signed by BARDA, provides Humanigen with access to manufacturing capacity reserved by BARDA for fill-finish product to accelerate the drug product manufacturing of lenzilumab. The initial agreement, originally signed in November 2020, complements Humanigens development efforts for lenzilumab by providing access to a full-scale, integrated team of manufacturing and regulatory subject matter experts and statistical support in anticipation of applying for EUA and subsequently a Biologics License Application (BLA) for lenzilumab as a potential treatment for COVID-19. Lenzilumab is currently in a Phase 3 clinical trial evaluating patients hospitalized with COVID-19.

It has been an honor to have the integrated expert team at BARDA prioritize lenzilumab research and development during this critical time, said Cameron Durrant, MD, MBA, chief executive officer of Humanigen. As we move closer to filing a potential EUA, the integrated support of BARDA and JPEO helps us with manufacturing capabilities as we ready operations to support access to lenzilumab.

Humanigen's investigational treatment lenzilumab, a proprietary Humaneered anti-human granulocyte macrophage-colony stimulating factor (GM-CSF) monoclonal antibody, is designed to prevent and treat an immune hyper-response called cytokine storm, a complication considered to be a leading cause of COVID-19 death. Data showed that up to 89 percent of hospitalized patients with COVID-19 are at risk of this immune hyper-response, which is believed to trigger the acute respiratory distress syndrome in severe cases of COVID-19.

More details on Humanigens programs in COVID-19 can be found on the companys website under the COVID-19 tab. Details on the U.S. Phase 3 lenzilumab clinical trial can be found at clinicaltrials.gov using Identifier NCT04351152. Details on ACTIV-5/BET can be found at clinicaltrials.gov using Identifier NCT04583969.

About Humanigen, Inc.

Humanigen, Inc. is developing its portfolio of clinical and pre-clinical therapies for the treatment of cancers and infectious diseases via its novel, cutting-edge GM-CSF neutralization and gene-knockout platforms. Humanigen believes that its GM-CSF neutralization and gene-editing platform technologies have the potential to reduce the inflammatory cascade associated with coronavirus infection. Humanigens immediate focus is to prevent or minimize the cytokine release syndrome that precedes severe lung dysfunction and ARDS in serious cases of SARS-CoV-2 infection. Humanigen is also focused on creating next-generation combinatory gene-edited CAR-T therapies using strategies to improve efficacy while employing GM-CSF gene knockout technologies to control toxicity. In addition, Humanigen is developing its own portfolio of proprietary first-in-class EphA3-CAR-T for various solid cancers and EMR1-CAR-T for various eosinophilic disorders. Humanigen is also exploring the effectiveness of its GM-CSF neutralization technologies (either through the use of lenzilumab as a neutralizing antibody or through GM-CSF gene knockout) in combination with other CAR-T, bispecific or natural killer (NK) T cell engaging immunotherapy treatments to break the efficacy/toxicity linkage, including to prevent and/or treat graft-versus-host disease (GvHD) in patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT). Additionally, Humanigen and Kite, a Gilead Company, are evaluating lenzilumab in combination with Yescarta (axicabtagene ciloleucel) in patients with relapsed or refractory large B-cell lymphoma in a clinical collaboration. For more information, visit http://www.humanigen.com and follow Humanigen on LinkedIn, Twitter and Facebook.

Forward-Looking Statements

This press release contains forward-looking statements. Forward-looking statements reflect management's current knowledge, assumptions, judgment and expectations regarding future performance or events. Although Humanigen management believes that the expectations reflected in such statements are reasonable, they give no assurance that such expectations will prove to be correct and you should be aware that actual events or results may differ materially from those contained in the forward-looking statements. Words such as "will," "expect," "intend," "plan," "potential," "possible," "goals," "accelerate," "continue," and similar expressions identify forward-looking statements, including, without limitation, statements regarding the use of lenzilumab to treat patients hospitalized with COVID-19, Humanigens expectations regarding the timeline to file for and obtain EUA, as well as a potential BLA filing, statements regarding Humanigens ability to attain necessary manufacturing support, and statements regarding Humanigens beliefs relating to any of the other technologies in Humanigens current pipeline. These forward-looking statements are subject to a number of risks and uncertainties including, but not limited to, the risks inherent in Humanigens lack of profitability and need for additional capital to grow Humanigens business; Humanigens dependence on partners to further the development of Humanigens product candidates; the uncertainties inherent in the development, attainment of the requisite regulatory approvals or authorization for emergency or broader patient use for the product candidate and launch of any new pharmaceutical product; the outcome of pending or future litigation; and the various risks and uncertainties described in the "Risk Factors" sections and elsewhere in the Humanigen's periodic and other filings with the Securities and Exchange Commission.

All forward-looking statements are expressly qualified in their entirety by this cautionary notice. You should not place undue reliance on any forward-looking statements, which speak only as of the date of this release. Humanigen undertakes no obligation to revise or update any forward-looking statements made in this press release to reflect events or circumstances after the date hereof or to reflect new information or the occurrence of unanticipated events, except as required by law.

View source version on businesswire.com: https://www.businesswire.com/news/home/20210122005079/en/

Link:
Humanigen Announces the Addition of BARDA and Expansion of CRADA with the US Government to Develop Lenzilumab for COVID-19 - BioSpace

Cell Sorting Market Size to Reach USD 805.1 Million By 2027 | Expanding Biotechnology And Pharmaceutical Industries will be the Major Factor Driving…

Advancements in technology and increased funding for research and development of cell sorting are key factors driving growth of the cell sorting market.

New York, Jan. 20, 2021 (GLOBE NEWSWIRE) -- The global cell sorting market is projected to reach a market size of USD 805.1 Million by 2027 and register a high revenue CAGR during the forecast period, according to a latest report by Reports and Data. Global cell sorting market revenue growth is expected to be driven by expansions and developments in biotechnology and pharmaceutical industries, and rising investment in research & development initiatives and projects.

Increase in healthcare budgets in developing economies and rise in need for development of targeted therapies are other key factors driving growth of the cell sorting market. Advancements in biotechnology and increase in adoption of cell sorters for research and development activities are also expected to fuel growth of the market over the forecast period. The global cell sorting market is consolidated and complex in nature, with major international players accounting for a significant market revenue share. This also limits entry of new players into the market. In addition, emergence of microfluidics technology for cell sorting is expected to open up new and more lucrative opportunities for companies operating in this market.

However, lack of awareness regarding cell sorting is expected to limit adoption in developing economies to a certain extent in the near future.

Get FREE Sample Copy with TOC of the Report to understand the structure of the complete report@ https://www.reportsanddata.com/sample-enquiry-form/3748

The COVID-19 Impact:

During the COVID-19 pandemic, demand for cell sorting surged at a rapid rate. The need to develop an efficient and cost-effective vaccine and therapy for COVID-19 has driven demand for cell sorting in clinical research to a new high. Investments in research to develop an effective vaccine for COVID-19 continue to rise, which is expected to support market growth going ahead.

Story continues

Further Key Findings from the Report Suggest

The cell sorters segment accounted for the largest revenue share in the global cell sorting market in 2019. Emergence of advanced cell sorters has enabled resolving several issues related to cell sorting procedures, resulting in quicker decisions. .

The micro-electro mechanical system (MEMS) technology, which comprises nano-imprint, lithography, and dry and wet etching, is employed to manufacture microfluidic devices with a wide range of substrate materials such as glass, silicon, metals, and polymers. Growing application of the technology in wells, nozzles, channels, and jets, is expected to drive growth of the MEMS segment over the forecast period.

Increase in cellular analysis activities in the fields of stem cells research, cancer research, cell engineering, drug discovery, and protein engineering boosted revenue growth of the research application segment in 2019.

Revenue from the Asia Pacific cell sorting market is growing at the highest rate currently, and can be attributed to rising prevalence of cancer among individuals in countries in the region. Additionally, growth of pharmaceutical and biotechnology industries in the region is also propelling growth of the cell sorting market.

Key participants include Bio-Rad Laboratories, Inc., Becton, Dickinson and Company, Miltenyi Biotec GmbH, Sysmex Partec GmbH, Beckman Coulter, Inc., On-Chip Biotechnologies Co., Ltd., Sony Biotechnology Inc., Affymetrix, Inc., Thermo Fisher Scientific, Inc., and Union Biometrica, Inc.

Buy Your Copy Now (Customized Report Delivered as per Your Specific Requirement)@ https://www.reportsanddata.com/checkout-form/3748

For the purpose of this report, Reports and Data has segmented the global cell sorting market on the basis of product and services, technology, application, end-use, and region:

Product and Services Outlook (Revenue, USD Million; 2017-2027)

Cell Sorters

Reagents & Consumables

Services

Technology Outlook (Revenue, USD Million; 2017-2027)

Application Outlook (Revenue, USD Million; 2017-2027)

Clinical

Research

Stem Cell Research

Immunology & Cancer Research

Drug Discovery

Others

End-use Outlook (Revenue, USD Million; 2017-2027)

Medical Schools & Academic Institutions

Research Institutions

Hospitals & Clinical Testing Laboratories

Pharmaceutical and Biotechnology Companies

Click on the link to read key highlights of the report and look at projected trends for years to come: https://www.reportsanddata.com/report-detail/cell-sorting-market

Take a Look at our Related Reports:

Bioprosthetics Market: The increasing prevalence of rheumatoid heart disease, coronary and peripheral artery diseases, and other cardiovascular diseases have led to the increasing demand for long-term treatment and relief, factors that are anticipated to drive bioprosthetics market growth.

Stone Treatment Devices Market: Factors such as mounting geriatric populace, an expansion in the frequencies of stone formation, upsurge in the recurrence of the stone after a medical procedure, a tendency towards minimally invasive procedures are expected to propel the industry in the coming years.

Automated Insulin Delivery Systems Market: Automated Insulin Delivery Systems is an user friendly technology that regulate blood glucose level with the help of continuous glucose monitoring.

Cerebrospinal Fluid (CSF) Management Market: The unique nature of cerebrospinal fluid dynamics in each patient has challenged neurologists, neurosurgeons, and medical device developers. This has led to cumulative demand for advanced cerebral spinal fluid (CSF) management devices.

Sacral Neuromodulation Market: A rise in the prevalence of overactive bladder & urge continence among masses along with the expansion of the geriatric population base across the globe is the key factor driving the market growth.

Central Venous Catheters Market: Catheters are an efficient delivery mechanism for surgical procedures. These are medical devices, which are used for the treatment of a large number of cardiovascular diseases and other chronic disorders.

About Reports and Data

Reports and Data is a market research and consulting company that provides syndicated research reports, customized research reports, and consulting services. Our solutions purely focus on your purpose to locate, target and analyze consumer behavior shifts across demographics, across industries and help clients make a smarter business decision. We offer market intelligence studies ensuring relevant and fact-based research across a multiple industries including Healthcare, Technology, Chemicals, Power, and Energy. We consistently update our research offerings to ensure our clients are aware about the latest trends existent in the market. Reports and Data has a strong base of experienced analysts from varied areas of expertise.

Contact Us:

John W

Head of Business Development

Reports And Data | Web: http://www.reportsanddata.com

Direct Line: +1-212-710-1370

E-mail: sales@reportsanddata.com

LinkedIn | Twitter | Blogs

Read Full Press Release@ https://www.reportsanddata.com/press-release/global-cell-sorting-market

Original post:
Cell Sorting Market Size to Reach USD 805.1 Million By 2027 | Expanding Biotechnology And Pharmaceutical Industries will be the Major Factor Driving...

BrainStorm’s Covid-19 ARDS treatment improves lung function in study – Clinical Trials Arena

BrainStorm Cell Therapeutics has announced that its NurOwn (MSC-NTF cell) derived exosomes provided significant improvement in lung function and histology in an acute respiratory distress syndrome (ARDS) mouse model, in a preclinical study.

Mesenchymal stem cell (MSC)-derived exosomes can penetrate deep into tissues and deliver immunomodulatory molecules effectively.

A type of respiratory failure, ARDS is linked to Covid-19 and is mediated by dysregulated cytokine production.

Intratracheal administration of NurOwn derived exosomes provided a statistically significant reduction in lung disease severity score, the study data showed.

Furthermore, improvements in lipopolysaccharide (LPS)-induced ARDS markers like lung function, fibrin presence, neutrophil accumulation, cytokine expression and oxygenation levels in the blood, were observed.

These improvements were significantly superior to those noticed following nave MSC-derived exosome administration.

BrainStorm Research and Development vice-president Dr Revital Aricha said: These exciting preclinical data suggest that NurOwn derived exosomes have the potential to treat Covid-19-induced ARDS or other severe respiratory complications and that they are more effective than exosomes isolated from nave MSCs at combatting the various symptoms of the syndrome.

This publication in a highly regarded journal provides important validation for the scientific advances and significance of BrainStorms preclinical research programs, including on our exosome-based technology platform.

The NurOwn technology platform (autologous MSC-NTF cells) represents a promising investigational therapeutic approach to targeting disease pathways important in neurodegenerative disorders.

GlobalData's TMT Themes 2021 Report tells you everything you need to know about disruptive tech themes and which companies are best placed to help you digitally transform your business.

MSC-NTF cells are made from autologous, bone marrow-derived MSCs expanded and separated ex vivo.

Brainstorm CEO Chaim Lebovits said: While our primary focus is on advancing NurOwn towards regulatory approval in ALS, we continue to evaluate the potential of our exosome-based platform to address unmet medical needs.

In December 2019, the company received a recommendation from the independent Data Safety Monitoring Board (DSMB) to continue the Phase II clinical trial of NurOwn in progressive multiple sclerosis patients.

Electronic Data Capture Solutions for Clinical Trials

28 Aug 2020

Contract Manufacturing Organisation and Pharmaceutical Supply Services

28 Aug 2020

Visit link:
BrainStorm's Covid-19 ARDS treatment improves lung function in study - Clinical Trials Arena

Impact of Covid-19 on Automated Cell Culture Market Influencing the Industry Development and Forecast | BD, Tecan Trading, Sartorius, TAP Biosystems,…

Reports Monitor has recently added a new report to its vast depository titledGlobal Automated Cell Culture Market. The report studies vital factors about theGlobal Automated Cell Culture Marketthat are essential to be understood by existing as well as new market players. The report highlights the essential elements such as market share, profitability, production, sales, manufacturing, advertising, technological advancements, key market players, regional segmentation, and many more crucial aspects related to theGlobal Automated Cell Culture Market.

A holistic study of the market is made by considering a variety of factors, from demographics conditions and business cycles in a particular country to market-specific microeconomic impacts. The study found the shift in market paradigms in terms of regional competitive advantage and the competitive landscape of major players.

The following Top manufacturers are evaluated in this report: BD, Tecan Trading, Sartorius, TAP Biosystems, Cell Culture Company, Eppendorf, Merck KGaA, Hamilton Company, Thermo Fisher Scientific, OCTANE BIOTECH & amp; More.

More Insightful information | Request a sample copy @ https://www.reportsmonitor.com/request_sample/1005622

Product Type Segmentation Automated Cell Culture Storage Equipment Automated Cell Culture Vessels Automated Cell Culture Supporting Instruments Bioreactors

Industry Segmentation Drug Development Stem Cell Research Cancer Research

Some of the main geographic regions included in this report are: 1. North America (United States and Canada and rest of North America) 2. Europe (Germany, France, Italy and the rest of Europe) 3. Asia-Pacific (China, Japan, India, South Korea and the rest of Asia-Pacific) 4. LAMEA (Brazil, Turkey, Saudi Arabia, South Africa and the rest of LAMEA)

Grab Your Report at an Impressive Discount ! Please click Here @https://www.reportsmonitor.com/check_discount/1005622

What does the report offer?

The Global Automated Cell Culture Market report analyzes the production of goods, supply, sales and the current state of the market in detail. In addition, the report examines the market share of production and sales of products, as well as capacity, production capacity, sales trends, cost analysis and revenue generation. Several other factors such as import / export status, industrial statistics, supply and demand ratio, gross margin and the structure of the industrial chain were also studied in the Global Automated Cell Culture Reports.

Get the full report with TOC Please click here @ https://www.reportsmonitor.com/report/1005622/Automated-Cell-Culture-Market

To conclude, the Automated Cell Culture report mentions the key geographies, the market landscapes as well as the product price, revenues, volume, production, supply, demand, rate of market growth and forecasts etc. This report also provides a SWOT analysis, an investment feasibility analysis and a return on investment. analysis.

Contact us Jay Matthews Direct: +1 513 549 5911 (U.S.) +44 203 318 2846 (U.K.) Email: sales@reportsmonitor.com

The rest is here:
Impact of Covid-19 on Automated Cell Culture Market Influencing the Industry Development and Forecast | BD, Tecan Trading, Sartorius, TAP Biosystems,...

Global Live Cell Imaging Market Size is Expected to reach USD 3529.26 Million by 2025 and Registeri – PharmiWeb.com

GlobalLive Cell ImagingMarket Research Report and Forecast 2020-2025is the latest report byFior Marketswhich is the fastest growing market research company. The report provides a comprehensive scope of the market which includes future supply and demand scenarios, changing market trends, high growth opportunities, and in-depth analysis of the future market prospects. The report features real-time developments in the globalLive Cell Imagingmarket encompasses a highly structured and comprehensive outlook of the market. It shows market types and applications that are categorized as ideal market segments. The report covers the competitive data analysis of the emerging and prominent players of the market. Along with this, it provides comprehensive data analysis on the risk factors, challenges, and possible new market avenues.

The report has viewed the current top players and the forthcoming contenders. Business procedures of the vital participants and the new entering market ventures are concentrated in detail in this report. The report also encompasses SWOT investigation, income offer, and contact data. The report throws light on specific drivers, restraints, opportunities, challenges, and other determinants that tremendously favor and oppose normal growth in the globalLive Cell Imagingmarket. It also covers the product pricing factors, growth, emerging and dominant trends, overall market dynamics, and market size. The report includes a wide spectrum of the market to provide insightful data for the forecast period 2020-2025.

Global live cell imaging market is expected to reach USD 3,529.26 Million by 2025, at a CAGR of 8.97% from 2018 to 2025

NOTE:Our analysts monitoring the situation across the globe explains that the market will generate remunerative prospects for producers post the COVID-19 crisis. The report aims to provide an additional illustration of the latest scenario, economic slowdown, and COVID-19 impact on the overall industry.

DOWNLOAD FREE SAMPLE REPORT:https://www.fiormarkets.com/report-detail/386014/request-sample

The report gives the market segments that have been fragmented into sub-segments. The study gives a transparent view of the global market and includes a thorough competitive scenario and portfolio of the key players functioning in it. The report offers fundamental opinions regarding the market landscape, emerging and high-growth sections of the globalLive Cell Imagingmarket, high-growth regions, and market drivers, restraints, and also market chances. It targets estimating the current market size and growth potential of the global market across sections such as also applications and representatives.

Competitive Analysis:

Te report accurately profiles key vendors and players functioning in the globalLive Cell Imagingmarket, in terms of their ranking and core competencies, together with determining the competitive landscape. It also studies competitive developments such as partnerships and collaborations, mergers, and acquisitions (M&A), research and development (R&D) activities, product developments, and expansions in the global market.

The top key players profiled in this report are:Danaher Corporation, Carl Zeiss AG, Nikon Corporation, Olympus Corporation, PerkinElmer, Inc., GE Healthcare, Bruker Corporation, Thermo Fisher Scientific Inc., Sartorius AG, BioTek Instruments, Etaluma, Inc., CytoSMART Technologies, NanoEnTek Inc., Leica Microsystems, Dickinson and Company, Becton, Sigma-Aldrich Corporation, Molecular Devices, LLC

Other Segment Analysis:

Segment classification of the market structure has been encouraged by our research experts to allow readers to comprehend the versatility of the market in terms of product and service variation. The market has been examined with vital market-specific developments across segment categories. Market segments such as type and application are also determined by quantitative and qualitative review. Type market size bifurcated into its product typeInstruments, Consumables, Software, Servicesin terms of Volume (K Units) and Value (USD Million). Market segment by application, split into:Cell Biology, Stem Cells, Developmental Biology, Drug Discovery

Request forCustomization:https://www.fiormarkets.com/enquiry/request-customization/386014

Country-Wise Assessment:

The report presents an understanding of the regional, country, and even local developments. Overview of globalLive Cell Imaging market dynamics such as industry outlook, value chain developments, SWOT and PESTEL assessment as well as Porters Five Point analysis. The report also encompasses crucial analytical reviews on key elements, trends, current, and future perspectives. By regional analysis, the report covers:North America, Europe, Asia Pacific, South America, and the Middle East and Africa.

ACCESS FULL REPORT:https://www.fiormarkets.com/report/live-cell-imaging-market-by-product-instruments-consumables-386014.html

Customization of the Report:This report can be customized to meet the clients requirements. Please connect with our sales team (sales@fiormarkets.com), who will ensure that you get a report that suits your needs.

Contact Us Mark Stone Phone:+1-201-465-4211 Email:sales@fiormarkets.com Web:www.fiormarkets.com

This content has been distributed via CDN Newswire press release distribution service. For press release enquires please mail us at contact@cdnnewswire.com.

See the original post here:
Global Live Cell Imaging Market Size is Expected to reach USD 3529.26 Million by 2025 and Registeri - PharmiWeb.com

[Full text] Identification and Targeting of ThomsenFriedenreich and IL1RAP | OTT – Dove Medical Press

Introduction

Chronic myeloid leukemia (CML) is a hematological malignancy that develops when the 9;22 translocation in a single hematopoietic stem cell (HSC) results in the expression of BCR-ABL1 tyrosine kinase fusion protein. If left untreated, CML progresses over approximately 5 years, from relatively benign chronic phase to accelerated phase, and then to fatal blast crisis. The introduction of tyrosine kinase inhibitors (TKIs) specifically targeting the BCR-ABL1 fusion protein was a breakthrough in the management of CML, leading to a significant reduction in mortality and improved 5-year survival rates. However, despite the high annual acquisition costs of all the TKIs; first-, second-, and-third line TKIs1 induce only transient responses in the 10% to 15% of CML patients diagnosed in advanced phase, suboptimal responses in approximately 30% of CML patients during chronic phase (CP) cases that experience disease progression each year during, and only 1020% chance of successful treatment discontinuation due to disease persistence.2 Among the causes of disease persistence, studies have shown that CML leukemia stem cells (LSC) play a major role in inducing therapeutic resistance and disease progression because they are able to self-renew.3,4 These LSC a rare subset of immature cells residing in the bone marrow niche are protected from the action of TKI5 because these cells are normally quiescent and the TKIs are designed to target malignant blast cells that proliferate. That is why current strategies are not able to effectively eliminate the LSC or the disease.3 In CML, LSC are primitive cells expressing CD34+ CD38- with the 9;22 translocations, or the Philadelphia chromosome (Ph).6 However, these markers cannot distinguish the cancer hematopoietic cells from normal ones. Additionally, the BCR-ABL fusion gene encodes for an intracellular tyrosine kinase protein rather than a surface protein, calling for the need to identify unique surface biomarkers for efficient targeting of this cell population with subsequent eradication of the root of the disease.

In 2010, a single biomarker, Interleukin 1 receptor accessory protein (IL1RAP), was found to be up-regulated on the cell surface of BCR-ABL+ LSC. They were able to distinguish Ph+ from Ph- LSCs using IL1RAP.7 A polyclonal anti-human IL1RAP was generated that not only targeted the LSC population but also killed normal peripheral blood mononuclear cells, indicating that this marker was not specific to the LSC.7 Another characteristic cell surface marker has been investigated; ThomsenFriedenreich antigen (TF, or CD176) a tumor-associated carbohydrate epitope. The CD176 antigen was found to be expressed on the surface of various cancer-initiating cells, such as breast carcinomas,8 colorectal carcinomas,9 several leukemias,10 and other types of cancer, but was absent from almost all normal adult cell types.11 CD176 was also found to be expressed on the surface of CD34+ hematopoietic stem cells of the K562 erythroblastic leukemia cell line; a cell line derived from a CML patient. Being strongly expressed on the surface of cancer cells and virtually absent from normal tissues, CD176 was evaluated as a suitable target for cancer biotherapy8 with the development of an anti-CD176 antibody that induced apoptosis of leukemic cells.12

Using monoclonal antibodies (mAb) as a tool for cancer therapy still has its limitations. Patients who receive mAb therapy may develop drug resistance or fail to respond to treatment owing to the multiple signaling pathways involved in the pathogenesis of cancer and other diseases.13 Targeting more than one molecule has proven to circumvent the regulation of parallel pathways and avoid resistance to the treatment.14 Bi-specific antibodies (Bis-Ab) are antibodies that can recognize two different epitopes. They can redirect specific immune cells to the tumor cells to enhance tumor eradication, enable the simultaneous blocking of two different targets that have common signaling pathways, or interact with two different cell-surface antigens instead of one with subsequent boosting of the binding specificity.13 Thus, the identification of two surface markers specific to the cancer stem cells would be useful in characterizing and targeting CML stem cells, without affecting other blood cells.

In this study, we evaluated co-expression of IL1RAP, linked to BCR-ABL+ expression, and the CD176 antigen, carried on the hematopoietic stem cell marker CD34 molecule, in CML patients. We identified PBMCs co-expressing CD34, IL1RAP, and CD176 antigens using flow cytometry, a finding that allowed for subsequent separation and targeting of such cells from normal HSCs. A bi-specific antibody (TF/RAP), was generated in order to target the IL1RAP+ and CD176+ cell population among PBMCs in patients with CML. We used a flow-cytometry assay as a cell-based assay to measure the antibody binding capability of the TF/RAP Bis-Ab to the cell surface antigens. Our TF/RAP Bis-Ab, increased targeting of the IL1RAP+ and CD176+ cell population among CML PBMCs but not corresponding normal cells, using complement-dependent cytotoxicity assay (CDC). This novel TF/RAP Bis-Ab may provide a novel strategy for the eradication of CML stem cells.

Deidentified samples of peripheral blood from healthy volunteers were obtained from Gulf Coast Regional Blood Bank (Houston, TX, USA) after signing informed consent and used as reference samples. Deidentified samples of peripheral blood mononuclear cells (PBMCs) from consented patients with CML were obtained from Oncology Research Gundersen BioBank (https://www.gundersenhealth.org/research/biobank/, La Crosse, WI, USA). While the samples were de-identified, necessary CML patient characteristics were collected (Table 1). The collection and dissemination protocols for the samples are approved by The Gundersen Human Subjects Committee/Institutional Review Board (IRB) and are in full compliance with National Cancer Institute Best Practices for Biospecimen Resources. Because the de-identified samples were received through Biobanks and not through direct intervention/interaction with a research subject, the Tulane University Human Research Protection Office was notified and this study was classified by the IRB as exempt as the study did not meet the definition of human subjects research according to US Federal policy (HHS regulations, 45 CFR part 46, subpart A, also known as the Common Rule). The study was conducted in accordance with the Declaration of Helsinki.

Table 1 CML Patients Characteristics

HEK 293FT cell line (Invitrogen # R70007) was cultured in DMEM (Life Technologies, Carlsbad, CA, USA) supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 U/mL penicillin, 100 g/mL streptomycin sulfate, and 4.0 mM L-glutamine (Gibco BRL products, Gaithersburg, MD), at 37C in a humidified 5% CO2 incubator. The KG1 cell line (ATCC #CCL-246) and transduced derivative cells were cultured in Iscoves Modified Dulbeccos Medium (Life technologies) supplemented with 20% FBS at 37C in a humidified 5% CO2 incubator. K562 cell line (ATCC# CCL-243) was maintained in RPMI-1640 (Life technologies) supplemented with 10% FBS, 100 U/mL penicillin, 100 g/mL streptomycin sulfate at 37C in a humidified 5% CO2 incubator.

The IL1RAP cDNA was PCR amplified from an expression plasmid containing Human IL-1RAcP/IL-1R3 Gene ORF cDNA (Sino biological Inc., HG10121-CM) using Clone Amp HiFi PCR Premix (Takara Bio USA, Inc.), and primers that included either a BamHI or an XhoI site (F-IL1RAP: acgggatccccaccaagcttggtaccatgac; R-IL1RAP: acgctcgagttatacatttttcaaagatg). The PCR fragment was gel extracted as above, sub-cloned into BamHI and XhoI sites in the pHRST-MPSV vector according to standard protocols and confirmed by restriction mapping and sequencing.

Transient production of lentiviral particles in adherent HEK293T was modified from previously described.15 Briefly, HEK293T cells were seeded in a T-75 flask, where we used 4.0 g of envelope plasmid pMPSV-VSV-G, 10.0 g packaging plasmid psPAX2, and 26 g transfer plasmid that has the gene of interest. In our case, the transfer plasmid is either the antibody plasmid or the control. The plasmids were mixed into 500 L 0.25 M CaCl2 (Sigma Aldrich, St. Louis, MO) and incubated at room temperature for 5 minutes, and then mixed with 500 L 2xHBS and briefly vortexed. The mixed transfection cocktail was then incubated for 3 minutes at room temperature, and added into the medium of the cells, and mixed gently to make an even distribution. After 16 hours of incubation, the medium was replaced with fresh medium and collected every 24 hours for 3 days. The conditioned medium that contained the vector virus was then pelleted for 10 minutes at 1500 g and passed through a 0.45-m filter to remove the cell debris, and then frozen at 80C for long-term storage, or used for the transduction of target cells.

Lentiviral transduction was done as previously described.1618 In brief, lentiviral supernatant was added to KG1 cells cultured in complete IMEM. After overnight incubation, the lentiviral vector was removed, and fresh media was added. After 48 hours, IL1RAP expression was demonstrated by flow cytometry using anti-Human IL-1 RAcP/IL-1 R3 PE-conjugated antibody (#FAB676P, R&D Systems, Minneapolis, MN).

The CH and CL constant domains in the pLM219 plasmids were amplified with 0.5 nM overlapping mutant primers (Table S1), Deep Vent Polymerase (New England Biolabs), and reaction buffer for forty cycles at 94C for 10 seconds, 60C for 45 seconds, and 72C for 2 minutes. Initial fragments were purified, combined, and used to amplify the entire heavy or light domains (Table S2). The mutated fragments were then gel purified and sub-cloned into their corresponding vectors using restriction enzymes according to standard protocols (Table S2). Sequences were then verified by restriction digestion and sequencing.

For antibody sequences towards CD176 (TF) and IL1RAP, the VH and VL domains from two clones with the most conserved amino acid sequences (TF Clone 1 and Clone 2 called TF1 and TF2 for CD176; Clone 4B6 and Clone 4G9 called RAPa and RAPb for IL1RAP, respectively) were chosen from published sequences.20,21 IL1RAP antibody was designed to target the extracellular membrane anchor-proximal region that comprises an amino acid primary sequence VPAPRYTVELAC within 10 to 15 amino acids of amino acid 361 of human ILR1AP (Gene bank accession Q9NPH3) while the TF antibody was designed to target the same Gal(13)GalNAc disaccharide epitope20 as the Bis-Ab. Variable domains (VD) were codon-optimized and synthesized (Gene Art, Invitrogen) to be compatible with 15 base pairs of homologous sequences on both the 3 and 5 ends of pLM2 recipient plasmid flanking the EcoRI restriction enzyme site.

The pLM2 expression vector was digested with EcoRI to generate a double-stranded break. An In-Fusion HD cloning kit (Clontech, Inc) was used to clone the VD regions of the antibodies between the leader and constant regions of the pLM2 vectors. The correct clones were identified by PCR and restriction mapping and then verified by sequencing.

Adherent HEK cells were transfected as above. A total of 14 g high-quality plasmid-DNA, 10% GFP plasmid for assessment of transfection efficiency, while the rest was heavy and light chain plasmid DNA combined at a ratio of 1:1. Six to 8 hours later, cells were gently washed once with PBS and fresh growth medium added. Sixteen hours post-transfection, the medium was replaced with DMEM supplemented with 5% FCS and incubated at 5% CO2 for 24 hours prior to the initial collection of antibody supernatant. A second collection was made after a further 24 hours.

Flow antibodies used were as follows: anti-TF/CD176 mAb mouse IgM (Glycotope, Berlin, Germany) targeting Gal1-3GalNAc epitope; FITC-conjugated anti-mouse IgM secondary antibody (-chain specific, #F9259; Sigma); PE-conjugated mouse anti-human IL-1 RAcP/IL-1 R3 monoclonal IgG1 antibody, epitope Ser21-Glu359 (#FAB676P, R&D Systems); APC-conjugated mouse anti-human CD34 monoclonal IgG1 antibody (#QBEnd10, FAB7227A-025, R&D Systems); APC-conjugated mouse antihuman IgG monoclonal antibody (Clone G18-145, mouse IgG1 , #550,931, BD Pharmingen).

LIVE/DEAD Fixable Aqua Dead Cell Stain Kit (#L34957, Invitrogen); Vibrio Cholera Neuraminidase (VCN; Sigma Aldrich Inc), an enzyme used to expose the CD176 on the surface of expressing cells. Flow cytometric analyses were performed in a BD LSR Fortessa (BD Biosciences, USA) and flow cytometric cell sorting was done in a FACSAriaII (P0010) cell sorter (BD Biosciences, USA). The amount of bi-specific antibody bound to the receptors was calculated from the frequency of total IgG bound receptors.

Sorted cells were received in RPMI media and then fixed using the standard 3:1 methanol: acetic acid fixative. Standard procedures were used for FISH hybridization and washing.22 The BCR/ABL1 Plus translocation, dual fusion probe set (Cytocell Inc., Tarrytown, NY) was used. Slides were analyzed using Leica Biosystems Cyto Vision. FISH nomenclature was described according to the ISCN 2016.23

CD34+CD176+IL1RAP+ and CD34+CD176+IL1RAP- cells were sorted from PBMC samples derived from patients with CML. Cells (1 x 103) were plated in Metho Cult Express (#04437, Stem Cell Technologies, Vancouver, Canada) semi-solid media containing recombinant human IL-3, IL-6, G-CSF, GM-CSF, SCF, TPO and cultured for 2 weeks in a humidified atmosphere at 37C with 5% CO2. Fourteen days after plating, the number of colonies was counted by microscopy.24,25

The capacity to induce CDC was assessed essentially as has been described.2628 Briefly, target cells (1105 cells) were pre-incubated at 37C for 60 min with diluted antibodies. Human serum from human male AB (Sigma Aldrich) (20% v/v) was added to the cells as a source of complement and incubated at 37C for an additional 45 min. Cells were then put on ice and viability was determined by staining with LIVE/DEAD staining and detected using a FORTESSA flow cytometer (BD Biosciences). CDC activity was expressed as a percentage of lyses as determined from the increase in the percentage of cells stained positive with the LIVE/DEAD marker compared to the control samples. Cycloviolacin O2 (CyO2, 0.05nM), a pore-forming peptide, was used as a positive control because it kills cells with the similar mechanisms as CDC by causing pores in the cell membrane.

The capacity to induce CDC was assessed essentially as has been described.2628 Briefly, target cells (1105 cells) were pre-incubated at 37C for 60 min with diluted antibodies. Human serum from human male AB (Sigma Aldrich) (20% (v/v)) was added to the cells as a source of complement and incubated at 37C for an additional 45 min. Cells were then put on ice and viability was determined by staining with LIVE/DEAD staining and detected using a FORTESSA flow cytometer (BD Biosciences). CDC activity was expressed as a percentage of lyses as determined from the increase in the percentage of cells stained positive with the LIVE/DEAD marker compared to the control samples. Cycloviolacin O2 (CyO2, 0.05nM), a pore-forming peptide, was used as a positive control because it kills cells with the similar mechanisms as CDC by causing pores in the cell membrane.

We measured the production of the Bis-Ab by ELISA. Plates were initially coated with goat anti-Human IgG heavy chain antibody (Axell) and blocked with PBS containing 0.5% Tween 20 (Fisher), 10% FBS (FetalPlex Animal Serum Complex, GeminiBio, Cat#100-602), 4% whey protein (BiPRO, AGROPUR). Undiluted or diluted supernatant was added, including the standard curve samples (human IgG MAb 1.7B, kindly provided by Dr. James Robinson), and negative blocking buffer. After incubating at 37C for 60 min, the plates were washed. Then, goat anti-Human lambda antibody conjugated to HRP (Southern Biotech, Cat# 207005) was added at 1:300 in blocking buffer for 60 min and washed five times. A mixture of 0.1M Na Acetate (pH 6), peroxide, and TMB substrate were added. The reaction was terminated by adding 1M phosphoric acid, and the absorbance of each well was measured at 450 nm using a Synergy H1 microplate reader (BioTek).

For each experiment, more than three independent replicates were conducted, and the results were expressed as average standard deviation. Comparison of multiple groups was conducted using ANOVA-based Test and p< 0.05 (*) represented significances with statistical meaning. Calculation of the Kd was done using the equation % RO = [Ab]/([Ab]+Kd) 100%, where RO is the receptor occupancy, Ab is the concentration of antibody and Kd is the equilibrium dissociation constant.

In order to analyze the co-expression of CD176 and IL1RAP antigens on CD34+ cells, peripheral blood mononuclear cells from a normal volunteer (NPBMCs), patients with CML, and K562 cells were isolated and stained with anti-CD34, anti-CD176, and anti-IL1RAP monoclonal antibodies and analyzed by flow cytometry (Figure 1A). It has been previously established that these markers were not expressed on normal PBMCs nor on stem cells7,10 CD34+ cell expression ranged from an average 938% in CML samples versus 83.7% in K562 cells (Figure 1A, upper panel). Within the CD34+ cell population, CD176 and IL1RAP antigens were variably expressed in CML samples, ranging from 1.35% in CML-4 to over 50% in CML-1 (Figure 1A, lower panel), while CD176+ IL1RAP+ was detected in 78% of CD34 cells in K562 cells. Surprisingly, surface co-expression of CD176 and IL1RAP was not only detectable on CD34+ cells in patients with BCR-ABL positive CML but was also demonstrable in cells from a treated patient who was BCR-ABL negative (CML-2) (Figure 1B). In Figure 1C, CD34+ cells revealed higher frequency of CD176+ IL1RAP+ in CML group compared to control sample (17.5% versus 3.4%, p<0.001).

Figure 1 CD176 and IL1RAP antigens are co-expressed on CD34+ Leukemia stem cells. Peripheral blood mononuclear cells from patients with CML and healthy volunteers were isolated and stained for flow-cytometry analysis. (A) FACS Dot Blot showing expression of CD34 (top row) and co-expression of CD176 and IL1RAP antigens on the CD34+ cells (bottom row) in PBMCs from patients with CML compared to NPBMCs. (B) Bar graphs showing the BCR-ABL status relative to the percentage of IL1RAP and CD176 co-expression in the CD34+ subsets from patients with CML as compared to the normal control and the positive control (K562 cells). The BCR-ABL status is indicated below the sample. The error bars represent the variation in two independent experiments. (C) Average percentage of CD34+ and CD34+ CD176+ IL1RAP+ subsets in normal versus CML patients respectively. (D) Bar graphs showing the average count of colony-forming units (CFU) per 1000 CD34+CD176+IL1RAP- cells (open bar) or CD34+CD176+IL1RAP+ cells (solid bar) obtained from CML-2 and CML-4 samples. **p< 0.01, n.s represents that there is no significant difference between groups.

In order to analyze the progenitor activity of the various subpopulations, CML-2 and CML-4 were flow-sorted for CD34+CD176+IL1RAP+ and CD34+CD176+IL1RAP- then plated in media t support hematopoietic colony formation. The number of colonies, or colony-forming units (CFU), in CD34+CD176+IL1RAP+ pool represented 6% of the sorted cells with a significant difference between both populations, p<0.01 (Figure 1D and Figure S1).

To facilitate correct interaction of the VH and VL domains, site-directed mutagenesis was used to generate knob-in-hole mutations in the heavy and light chains of the constant domains (Figure 2A) via polymerase chain reaction overlap extension (Figures S2 and 3). Two PCR reactions were performed to generate two amplicons with the specific mutations included in the overlapping primers. The two fragments were then combined in a subsequent fusion reaction, in which the overlapping ends anneal, allowing the 3 overlap of each strand to serve as a primer for the 3 extension of the complementary strand. The resulting fusion product served as a template for amplification of the entire constant domain. In order to circumvent the light chain mismatching, an Orthogonal Fab interface was generated. In one Fab, complementary mutation was introduced and verified at the heavy chain constant domain (CH1_H172A_ F174G) and at the light chain constant domain (CL_L135Y_S176W), respectively (Figures S46). For the heavy chain heterodimerization, we used the Knob-in-Hole strategy, where we inserted the CH3 mutations (S354C and T366W) into different heavy chains (Figures S7 and 8). The VH and VL sequences were synthesized and cloned into the new pLM2-CH and -CL plasmids (Figure 2A) where CD176 was represented by TF1 (VH1 and VL1) and TF2 (VH2 and VL2) while IL1RAP was represented by Clone 4B6 (VHa and VLa) and Clone 4G9 (VHb and VLb). Then, we generated the four different bi-specific antibody mixtures (TF1RAPa, TF1RAPb, TF2RAPa, and TF2RAPb) to evaluate the most effective Bis-Ab (Figure 2B). The bispecific antibody was quantified by ELISA at 283 ng/mL. Since ELISA used the human IgG heavy chain antibody as the primary antibody and a goat anti-human lambda antibody conjugated to HRP as the secondary antibody, these data also confirm the correct association of the heavy and light chains and ensure that monomers are excluded.

Figure 2 The bi-specific antibody arms. (A) Schematic diagram of the bi-specific antibody showing the mutant arms and the antigen-binding domains. Thomsen-Freidenrich or CD176 domains (TF); IL1RAP domains (RAP); variable domain-heavy chain (VH); variable domain-light chain (VL); L135Y and S176W mutations (Y-W) in constant domain-light chain; H172A and F174G mutations in CH1 domain (A-G); S354C (C) or T366W (W) mutations in CH3. (B) Antibody mixtures generated by transient transfection of HEK 293T cells. TF1 and TF2 was paired with RAPa and RAPb to generate four Bis-Ab mixtures. The bispecific antibody concentration was 283 ng/mL as measured with ELISA. The correct association of the human IgG heavy chain and the lambda light chain was confirm and monomers were excluded by using anti-IgG primary antibodies and anti-light chain secondary antibodies.

KG1 cell line is an acute myeloid leukemia cell line that is known to be a positive control for CD176. For optimizing the staining protocol of CD176, KG1 cells were pre-treated with VCN to expose CD176 antigens for better staining (Figure S9). In order to test the binding capability and functional potential of our bi-specific antibody, we generated a dual-positive cell line for expressing both IL1RAP and CD176 through lentiviral transduction (Figure S10A and B). IL1RAP expression was increased by 1.5 folds in KG1/RAP cells as verified by flow cytometry (Figure S10C and D).

CD176 antigen is a glycosylated antigen; a protein antigen bound to GAL-NAC moiety which makes the antigen displayed on the cell surface yet not easy to isolate.21 For this reason, a flow-cytometry assay was used to evaluate both the binding capability and toxicity of our Bis-Ab using the gating strategy in Figure S11. KG1 and KG1/RAP cell lines were treated with the various Bis-Ab mixtures. Binding percentage was calculated from the percentage of IgG positive cells, where the secondary IgG antibody is bound to the primary Bis-Ab. The TF1RAPa Bis-Ab showed the highest binding in KG1/RAP cells (Figure 3A) as compared to other mixtures (p<0.001). In contrast, the TF1RAPb antibody revealed slightly reduced binding in KG1/RAP cells. On treating KG1/RAP cells with increasing amounts of TF1RAPa, more binding to the dual-positive KG1/RAP cells was observed (Figure 3B). To demonstrate the specificity of the Bis-Ab, we measured the competition with the CD176 and the IL1RAP monoclonal antibodies. Increasing concentrations of the Bis-Ab specifically inhibited the binding of both the IL1RAP and CD176 mAbs (Figure S12). Then, our KG1/RAP cells were treated with the Bis-Ab TF1RAPa and complement prior to staining with the LIVE/DEAD Fixable Aqua Dead Cell Stain Kit, in order to evaluate whether CDC could be achieved using IL1RAP and CD176 as targets. Flow cytometric analysis revealed a significant increase in dead cells in the Bis-Ab treated CD176/IL1RAP dual-positive KG1/RAP population as antibody binding also increased (Figure 3C), p<0.001.

Figure 3 Validation of TF-RAP Bi-specific antibody in KG1 cell line and CML samples. (A) MFI for binding of different Bis-Ab mixtures in KG1/RAP (p <0.001). (B) Binding (%) of the Bis-Ab in KG1/RAP cell lines. (C) Shows live/dead (LD) staining (%) in KG1/RAP cell lines after treatment with the Bis-Ab and complement. (D) MFI for binding of different Bis-Ab mixtures p <0.001 in CML cells. (E) Binding of the Bis-Ab (%) in PBMCs from patients with CML. The binding affinity (Kd) of our bispecific antibody was 21ng/mL, calculated using the % RO = [Ab]/([Ab]+Kd) 100%, where RO is the receptor occupancy, Ab is the concentration of antibody, and Kd is the equilibrium dissociation constant. This Bis-Ab platform used in this study had the correct molecular weight (95 KDa) and assembled properly (93%) as revealed by SDS-PAGE analysis.38 (F) Live/dead (L/D) staining (%) from patients with CML after treatment with the Bis-Ab and complement. The red square were L/D positive cells treated with CyO2; the percent of L/D staining in normal PBMCs is shown in blue. Each point represents the mean increase in L/D staining SEM with three to four replicates. Data from normal samples were low for all doses (data not shown).

Binding of TF1RAPa, TF2RAPa, and TF2RAPb was also tested in PBMCs from patients with CML. Again, TF1RAPa showed the highest binding relative to other mixtures (p<0.001) (Figure 3D) and with increasing doses (Figure 3E). Based on the CML binding curve, the binding affinity (Kd) of our bispecific antibody was 21 ng/mL. Other therapeutic antibodies, such as ofatumumab directed against CD20, have shown significant CDC against peripheral blood cells obtained from CML patients in chronic phases26 and B cells in CLL,29 respectively. Thus, the TF1RAPa cocktail was used to generate the doseresponse curve and to evaluate whether CDC could be achieved using both IL1RAP and CD176 as targets. The ability of the TF1RAPa cocktail was compared to human anti-IL1RAP and anti-CD176 monoclonal antibodies to induce cell death in PBMCs from patients with CML. PBMCs from CML1-4 were tested in CDC assays in parallel to cells from healthy control samples. In CML cells, the binding of TF1RAPa mediated CDC at higher levels than in normal peripheral blood mononuclear control cells, correlating with the expression level of IL1RAP and CD176, particularly at lower antibody concentrations (Figure 3F). More strikingly, among peripheral blood cells, TF1RAPa did not induce CDC of normal cells, whereas a clear dose-dependent CDC effect was observed in CML cells (Figure S13A and B). To address the selectivity of IL1RAP/CD176-targeting antibodies, we also validated the bispecific antibody cytotoxicity on the various subpopulations in peripheral blood. The dual-positive CD176+IL1RAP+ cell populations showed the highest CDC activity as compared to CD176+IL1RAP-, CD176-IL1RAP+, and CD176-IL1RAP- populations (Figure 4 and S13CF, S14).

Figure 4 Dose-response curve of TF1RAPa Bis-Ab on CDC in CML samples. A dose-response curve showing the selective killing potential of CD176+IL1RAP+ subpopulation by the TF1RAPa Bis-Ab as compared to other subpopulations in PBMCs from patients with CML. Each point represents the mean SEM of the four samples.

Targeting molecules involved in multiple pathways is proving to be one of the most reliable strategies for eradicating cancer stem cells. In this report, we present a novel bi-specific antibody, TF/RAP, capable of targeting ThomsenFriedenreich (TF, CD176) and IL1RAP antigens on CD34+ HSCs in CML and on cell lines. TF is a glycoprotein that has many domains and motifs (eg, LGALS3, Gal(1,3)GalNAc, LGalS3BP), many related to signaling pathways. It is a known marker for ongoing tumorigenesis and metastasis, as it is expressed on various cancer-initiating cells.8 Interestingly, CD34 and LGALS3 were found to be co-expressed in myeloid cells.30,31 LGALS3 and ABL1 are involved in regulating RUNX1 and the transcription of genes involved in differentiation of hematopoietic stem cells,32 especially myeloid cells33 (Figure S15) IL1RAP, on the other hand, is a member of the Toll-like receptor superfamily and is a well-known co-receptor of IL1R1.34 IL1RAP plays a role in mediating the effect of the pro-inflammatory cytokine IL-1 and is also involved in activating T cells and mast cells after mediating the signal of IL-1 cytokine.35 It has previously been characterized as a tightly related marker for BCR-ABL positive cells.7 Together, both TF and IL1RAP were related to apoptotic pathways; IL1RAP up-regulation was associated with decreased apoptosis in AML,36 and anti-CD176 antibody induced apoptosis of CD176-positive leukemic cells through multiple pathways.12 Although we did not find a direct link between IL1RAP, CD176 and leukemogenesis, previous studies have shown that each of them is separately expressed on CD34+ cells in leukemia cell lines8,10,12 and patients with CML7

Therefore, we conducted this pilot study, in order to assess the co-expression of IL1RAP and ThomsenFriedenreich (CD176) antigens on CD34+ HSCs in peripheral blood of patients with CML, using FACS gene expression analyses. Flow-drop FISH and CFU assays were used for the separation of CD34+CD176 BCR-ABL+ and BCR-ABL CML stem cells, based on IL1RAP expression.7 CFU numbers were significantly lower in CD34+CD176+IL1RAP- cells than in CD34+CD176+IL1RAP+ cells, obtained from CML-2 and CML-4 samples (Figure 1D), particularly CML-2 sample which was obtained from a patient in remission (BCR-ABL-). We found that the frequency of clonogenic hematopoietic progenitor cells was increased in the CD34+ CD176+IL1RAP+ cells in these samples. Testing the stem-cell characteristics of these two cell populations in immune-deficient mice would have been advantageous. Yet, the low numbers of sorted CML cells acquired from the CD34+CD176+ IL1RAP and IL1RAP+ cell subpopulations, alongwith the general low engrafting efficiency of chronic phase CML cells in these mice7 prevented us from successfully performing such experiments. Importantly, as IL1RAP expression was correlated with changes from chronic phase (CP) into accelerated phase (AP) and blast phase (BP)37, we also found that the level of IL1RAP/CD176 co-expressionwas increased, in our patient samples, as the disease progressed, independent of the treatment status(Table S3).

To target both TF and IL1RAP simultaneously, we developed a Bis-Ab specific for both antigens. Because antibodies are normally heterodimers of two heavy and two light chains, we modified the constant domains in the Bis-Ab to maximize the correct interactions of the four immunoglobulin chains within single cells. Here, we used the orthogonal Fab design; CH1_H172A_F174G and CL_L135Y_S176W38 to facilitate selective assembly of the Fab arms for correct dimerization of the antigen-binding domains.39 Therefore, we mutated CH1 and CL binding sites to restrict the assembly of the Fab with the correct VD pairs. The RAP VDs were cloned with the wild type Fab; and the TF VD was linked to the mutant orthogonal Fab design. Published data have shown that the component proteins of this Bis-Ab platform proper assembly were detected at 93% and the complex had a molecular weight of 95 KDa, as revealed by SDS-PAGE analysis.38 Additionally, the CH3 for each Fab was mutated with previously described knob-into-hole mutations40,41 to facilitate hetero-dimerization between the TF and the RAP heavy chains. In our study, we used ELISA to demonstrate that both the VD and Fc were properly paired. Here, because the primary antibody was anti-human VL and the secondary antibody was anti-human IgG, quantifying the Bis-Ab also demonstrated the VD-Fc interactions.

To efficiently validate the specific binding of our Bis-Ab, we generated a dual-positive cell line; KG1/RAP. KG1 cell line expresses CD176+, but IL1RAP is low or absent. Therefore, we induced IL1RAP expression in KG1 cells by lentiviral mediated-gene transfer, as previously usedin both immune42 and leukemic cells.43 In the competitive binding assay, increasing concentrations of the Bis-Ab blocked the binding of CD176 and IL1-RAP monoclonal antibodies to the KG1/RAP and KG1 parental cells, demonstrating the specific binding of the Bis-Ab. The level of CD176 expression in KG1 cell line was detected before and after VCN treatment. Increased staining of the KG1/RAP cells compared to the parental KG1 cells indicated that expression of the IL1RAP facilitates the interaction of the Bis-Ab with the target cell. This increased binding of the Bis-Ab to the KG1/RAP cells also increased their susceptibility to complement-dependent cytotoxicity (CDC). We also observed increased binding and increased CDC in the CD176+ IL1RAP+ population of the peripheralblood from patients with CML. As a pilot study and given that on average, 50% of the cells within the CD34+ subpopulation in the patients tested were dual positive for CD176 and IL1RAP antigens, in addition to the almost undetectable CDC in CD34+ cells in normal controls, our data strongly support the idea that the bi-specific antibody (TF/RAP) indeed induces CDC preferentially in CD176+ IL1RAP+ CML CD34+ cells. In generating a bi-specific antibody that targets CD176 and IL1RAP, we are unique in providing proof of concept that CML CD34+CD176+ IL1RAP+ cells can be targeted while preserving corresponding normal cells. The potential to target multiple antigens is supported by studies that demonstrated increased or synergistic CDC activity by non-cross blocking CD20 antibody combinations.44

Therapeutic antibodies are commonly administered intravenously, yet selectivity and specificity are a major concern for reduced toxicity. CD176/IL1RAP co-expression was not present in monocytes unlike the reported weak but present IL1RAP expression in monocytes.7 Both antigens were low or absent in most types of normal bone-marrow progenitor and mature cell types, suggesting that CD176/IL1RAP dual targeting antibodies are expected to show low toxicity on normal hematopoietic cells. Being strongly expressed on the surface of cancer cells and virtually absent from normal tissues, CD176 was evaluated as a potential target for cancer biotherapy with the development of anti-CD176 antibody that induced apoptosis of leukemic cells.8 Added to this, antibodies against IL1RAP were found to be capable of blocking IL-1 signaling as well as inhibiting tumor cells' growth in AML,34 CML,7 breast cancer,45 prostate cancer, breast cancer, lung cancer, colorectal cancer, melanomas, bladder cancer, brain/CNS cancer, cervical cancer, esophageal cancer, gastric cancer, head/neck cancer, kidney cancer, liver cancer, lymphomas, ovarian cancer, pancreatic cancer, and sarcomas46 especially in cancer stem cells, or (CSCs) and progenitor cells, which are responsible, directly or indirectly, for the development of a solid tumor.47 Thus, it may be thatour Bis-Ab will not only eradicate the CD176+IL1RAP+ drug-resistantCML stem cells but also may have universal therapeutic potential for preventing relapses in both solid and hematological cancers.Given that the mode of action in CDC is having the antibody direct the complement pathway to target cell killing, we suggest that this therapeutic strategy would be independent of known mechanisms of TKI resistance in CML. Thus, the concept of complement-mediated killing of IL1RAP/CD176 expressing cells may also have the potential to eradicate such cells in patients, either alone or in combination with current regimens, in order to increase their therapeutic effectiveness. And finally, expanded studies need to be performed in order to confirm the co-expression of both markers, especially in resistant and relapsed cancer patients as well as in patient-derived xenografts (PDX).

The experimental research was mostly supported by a fellowship to REE from the Egyptian Ministry of Higher Education, Cultural, and Missions Section (JS 3577). The lentiviral vectorHRST-cmvGFPand the packaging plasmids were akind gift from Richard C.Mulligan in the Harvard Gene Therapy Institute. The human IgG heavy and light chain constant genes were provided by JE Robinson (Tulane University). C Wu and SEB were supported by AI110158 and/or OD01104-51; EUA and SEB were supported by the Applied Stem Cell Laboratory.

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work. All authors have given approval of the final version of the article; and have agreed to be accountable for all aspects of the work.

The abstract of this paper was presented at the AACR annual Meeting 2019; March 29 April3, 2019; Atlanta, GA, as a poster presentation with interim findings. The posters abstract was published in Poster Abstracts in the AACR meeting proceedings and as a supplement in the AACR Cancer Research Journal [https://cancerres.aacrjournals.org/content/79/13_Supplement/1222A].

Raghda Eldesouki reports grants from Egyptian Ministry of Higher Education. Stephen EBraun reports grants from Egyptian Ministry of Education, Alliance for Cardiovascular Research, NIAID OD01104, and Braun/McGroarty Charitable Fund, during the conduct of the study. In addition, Dr Raghda Eldesouki, Dr Stephen Braun, Dr Fouad Badr and Dr Eman Abdel-Moemen Mohammedhave apatent, PCT/EG2019/000014, pending. The authors report no other conflicts of interest in this work.

1. Marchetti M. Cost-effectiveness of kinase inhibitors for hematologic malignancies: a systematic and critical review. Expert Rev Pharmacoecon Outcomes Res. 2017;17(5):469480. doi:10.1080/14737167.2017.1366858

2. Holyoake TL, Helgason GV. Do we need more drugs for chronic myeloid leukemia? Immunol Rev. 2015;263(1):106123.

3. Zhou H, Xu R. Leukemia stem cells: the root of chronic myeloid leukemia. Protein Cell. 2015;6(6):403412.

4. Holyoake TL, Vetrie D. The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood. 2017;129(12):15951606. doi:10.1182/blood-2016-09-696013

5. Koptyra M, Falinski R, Nowicki MO, et al. BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood. 2006;108(1):319327. doi:10.1182/blood-2005-07-2815

6. Tasian SK, Bornhuser M, Rutella S. Targeting leukemia stem cells in the bone marrow niche. Biomedicines. 2018;6(1):22. doi:10.3390/biomedicines6010022

7. Jrs M, Johnels P, Hansen N, et al. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc Natl Acad Sci U S A. 2010;107(37):1628016285. doi:10.1073/pnas.1004408107

8. Goletz S, Cao Y, Danielczyk A, Ravn P, Schoeber U, Karsten U. Thomsen-Friedenreich antigen: the hidden tumor antigen. Adv Exp Med Biol. 2003;535:147162.

9. Kurtenkov O, Innos K, Sergejev B, Klaamas K. The Thomsen-Friedenreich antigen-specific antibody signatures in patients with breast cancer. Bio Med Res Int. 2018;2018:9579828.

10. Sindrewicz P, Lian LY, Yu LG. Interaction of the onco-fetal Thomsen-Friedenreich antigen with galectins in cancer progression and metastasis. Front Oncol. 2016;6:79. doi:10.3389/fonc.2016.00079

11. Lin WM, Karsten U, Goletz S, Cheng RC, Cao Y. Expression of CD176 (Thomsen-Friedenreich antigen) on lung, breast, and liver cancer-initiating cells. Int J Exp Pathol. 2011;92(2):97105. doi:10.1111/j.1365-2613.2010.00747.x

12. Yi B, Zhang M, Schwartz-Albiez R, Cao Y. Mechanisms of the apoptosis induced by CD176 antibody in human leukemic cells. Int J Oncol. 2011;38:15651573.

13. Fan G, Wang Z, Hao M, Li J. Bi-specific antibodies and their applications. J Hematol Oncol. 2015;8:130. doi:10.1186/s13045-015-0227-0

14. Varela MA. Identification of sequences common to more than one therapeutic target to treat complex diseases: simulating the high variance in sequence interactivity evolved to modulate robust phenotypes. BMC Genom. 2015;16(1):530. doi:10.1186/s12864-015-1727-6

15. Wu C, Lu Y. High-titre retroviral vector system for efficient gene delivery into human and mouse cells of hematopoietic and lymphocytic lineages. J Gen Virol. 2010;91(8):19091918. doi:10.1099/vir.0.020255-0

16. Ge D, Zhang QS, Zabaleta J, et al. Doublecortin may play a role in defining chondrocyte phenotype. Int J Mol Sci. 2014;15(4):69416960. doi:10.3390/ijms15046941

17. Braun SE, Wong FE, Connole M, et al. Inhibition of simian/human immunodeficiency virus replication in CD4+ T cells derived from lentiviral-transduced CD34+ hematopoietic cells. Mol Ther. 2005;12(6):11571167. doi:10.1016/j.ymthe.2005.07.698

18. Braun SE, Lu XV, Wong FE, et al. Potent inhibition of simian immunodeficiency virus (SIV) replication by an SIV-based lentiviral vector expressing antisense Env. Hum Gene Ther. 2007;18(7):653664. doi:10.1089/hum.2007.003

19. Robinson JE, Hastie KM, Cross RW, et al. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nat Commun. 2016;7:11544. doi:10.1038/ncomms11544

20. Goltez S, Karasten U Cancer stem cell markers and uses thereof. WIPO, WO2011089004A1 2011 Jul 28.

21. Jiang Y, Tso J, Karsunky H. Antibodies that bind membrane-bound IL1rap. European patent EP2935334A1. 2015 Oct 28.

22. Keaglen MB, Gersen SL. Basic cytogenetics laboratory procedures. In: Gersen SL, Keagle MB, editors. The Principles of Clinical Cytogenetics. NewYork, NY: Springer NewYork; 2013:5365.

23. International Standing Committee on Human Cytogenetic Nomenclature. ISCN2016: An International System for Human Cytogenetic Nomenclature. Karger Medical and Scientific Publishers; 2016.

24. Broxmeyer HE, Etienne-Julan M, Gotoh A, et al. Hematopoietic colony formation from human growth factor-dependent TF1 cells and human cord blood myeloid progenitor cells depends on SHP2 phosphatase function. Stem Cells Dev. 2013;22(6):9981006. doi:10.1089/scd.2012.0478

25. Balduini A, Broxmeyer HE, Braun SE, Cornetta K, Lyman S. Comparative effects of retroviral mediated gene transfer into primary human stromal cells of flt3ligand, interleukin 3 and gmcsf on production of cord blood progenitor cells in longterm culture. Stem Cells. 1998;16:3749. doi:10.1002/stem.5530160807

26. Tatake RJ, Maniar HS, Chiplunkar SV, et al. Antibody-dependent cellular cytotoxicity and complement-mediated cytotoxicity on leukemic cells mediated by anti K562 monoclonal antibodies. J Clin Lab Immunol. 1990;31(2):8791.

27. Lindorfer MA, Beum PV, Taylor RP. CD20 mAb-mediated complement dependent cytotoxicity of tumor cells is enhanced by blocking the action of factor I. Antibodies. 2013;2:598616. doi:10.3390/antib2040598

28. Gerlach SL, Chander PK, Roy U, et al. The membrane-active phytopeptide. Cycloviolacin O2 simultaneously targets HIV1-infected cells and infectious viral particles to potentiate the efficacy of antiretroviral drugs. Medicines (Basel). 2019;6(1):E33. doi:10.3390/medicines6010033

29. Zen CS, Secreto CR, LaPlant BR, et al. Direct and complement dependent cytotoxicity in CLL cells from patients with high-risk early-intermediate stage chronic lymphocytic leukemia (CLL) treated with alemtuzumab and rituximab. Leuk Res. 2008;32(12):18491856. doi:10.1016/j.leukres.2008.05.014

30. Marer N. Galectin3 expression in differentiating human myeloid cells. Cell Biol Int. 2000;24:245251. doi:10.1006/cbir.1999.0501

31. Labbaye C, Testa U. The emerging role of MIR-146A in the control of hematopoiesis, immune function and cancer. J Hematol Oncol. 2012;5:13. doi:10.1186/1756-8722-5-13

32. Huang H, Woo AJ, Waldon Z, et al. A Src family kinase-Shp2 axis controls RUNX1 activity in megakaryocyte and T-lymphocyte differentiation. Genes Dev. 2012;26(14):15871601. doi:10.1101/gad.192054.112

33. Zhang HY, Jin L, Stilling GA, et al. RUNX1 and RUNX2 upregulate Galectin-3 expression in human pituitary tumors. Endocrine. 2009;35(1):101111. doi:10.1007/s12020-008-9129-z

34. gerstam H, Karlsson C, Hansen N, et al. Antibodies targeting human IL1RAP (IL1R3) show therapeutic effects in xenograft models of acute myeloid leukemia. Proc Natl Acad Sci U S A. 2015;112(34):1078610791.

35. McEntee CP, Finlay CM, Lavelle EC. Divergent roles for the IL-1 family in gastrointestinal homeostasis and inflammation. Front Immunol. 2019;10:1266.

36. Barreyro L, Will B, Bartholdy B, et al. Over expression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS. Blood. 2012;120(6):12901298. doi:10.1182/blood-2012-01-404699

37. Zhao K, Yin LL, Zhao DM, et al. IL1RAP as a surface marker for leukemia stem cells is related to a clinical phase of chronic myeloid leukemia patients. Int J Clin Exp Med. 2014;7(12):47874798.

38. Lewis SM, Wu X, Pustilnik A, et al. Generation of bi-specific IgG antibodies by structure-based design of an orthogonal Fab interface. Nat Biotechnol. 2014;32:191198. doi:10.1038/nbt.2797

39. Spidel JL, Vaessen B, Chan YY, Grasso LJ, Kline B. Rapid high-throughput cloning and stable expression of antibodies in HEK293 cells. J Immunol Methods. 2016;439:5058. doi:10.1016/j.jim.2016.09.007

40. Ridgway JB, Presta LG, Carter P. Knobs-into-holes engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 1996;9:617621. doi:10.1093/protein/9.7.617

41. Atwell S, Ridgway JB, Wells JA, Carter P. Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. J Mol Biol. 1997;270:2635. doi:10.1006/jmbi.1997.1116

42. Pan H, Mostoslavsky G, Eruslanov E, Kotton DN, Kramnik I. Dual-promoter lentiviral system allows inducible expression of noxious proteins in macrophages. J Immunol Methods. 2007;329(12):3144. doi:10.1016/j.jim.2007.09.009

43. Biagi E, Bambacioni F, Gaipa G, et al. Efficient lentiviral transduction of primary human acute myelogenous and lymphoblastic leukemia cells. Haematologica. 2001;86(1):1316.

44. Melis JP, Strumane K, Ruuls SR, Beurskens FJ, Schuurman J, Parren PW. Complement in therapy and disease: regulating the complement system with antibody-based therapeutics. Mol Immunol. 2015;67:117130. doi:10.1016/j.molimm.2015.01.028

45. Liberg D, nnervik P, Riva M, Larsson L, Forsberg G, Wachenfeldt K. Antibody Blockade of IL1RAP Signaling Reduces Metastasis in a Breast Cancer Model. Annual Meeting of the American Association for Cancer: McCormick Place North/South Chicago, Illinois, USA; 2018.

46. Fioretos T, Jaras M Method of treatment of a solid tumor with interleukin-1 accessory protein antibody. United States patent US 9403906B2. 2016 Aug 02.

47. Fioretos T, Jaras M. Anti - IL1rap antibodies and their use for treating human. European patent EP2665749A1. 2013 Nov 27.

Continued here:
[Full text] Identification and Targeting of ThomsenFriedenreich and IL1RAP | OTT - Dove Medical Press

New Genetic Disorder Discovered That Affects Brain and Craniofacial Skeleton – Technology Networks

Compared to a disease-free mother (left), differentiated LINKED patient cells (right) lack markers of normal development of the brain, spinal cord and craniofacial skeleton (pink, green, yellow). Credit: Werner lab, NIDCR.

Read Time:

Researchers at the National Institutes of Health have discovered a new genetic disorder characterized by developmental delays and malformations of the brain, heart and facial features.

Named linkage-specific-deubiquitylation-deficiency-induced embryonic defects syndrome (LINKED), it is caused by a mutated version of theOTUD5gene, which interferes with key molecular steps in embryo development. The findings indicate that the newly identified pathway may be essential for human development and may also underlie other disorders that are present at birth. The information will help scientists better understand such diseases both common and rare and improve patient care. The results were reported Jan. 20, 2021 inScience Advances.

Our discovery of the dysregulated neurodevelopmental pathway that underlies LINKED syndrome was only possible through the teamwork of geneticists, developmental biologists and biochemists from NIH, said Achim Werner, Ph.D., an investigator at the National Institute of Dental and Craniofacial Research (NIDCR) and lead author. This collaboration provided the opportunity to pinpoint the likely genetic cause of disease, and then take it a step further to precisely define the sequence of cellular events that are disrupted to cause the disease.

The project began when David B. Beck, M.D., Ph.D., a clinical fellow in the laboratory of Dan Kastner M.D., Ph.D., at the National Human Genome Research Institute (NHGRI) and co-first author, was asked to consult on a male infant who had been born with severe birth defects that included abnormalities of the brain, craniofacial skeleton, heart and urinary tract. An in-depth examination of siblings and family members genomes, combined with genetic bioinformatics analyses, revealed a mutation in theOTUD5gene as the likely cause of the condition. Through outreach to other researchers working on similar problems, Beck found seven additional males ranging from 1 to 14 years of age who shared symptoms with the first patient and had varying mutations in theOTUD5gene.

The gene contains instructions for making the OTUD5 enzyme, which is involved in ubiquitylation, a process that molecularly alters a protein to change its function. Ubiquitylation plays a role in governing cell fate, where stem cells are instructed to become specific cell types in the early stages of embryo development.

Based on the genetic evidence, I was pretty sureOTUD5mutations caused the disease, but I didnt understand how this enzyme, when mutated, led to the symptoms seen in our patients, said Beck. For this reason we sought to work with Dr. Werners group, which specializes in using biochemistry to understand the functions of enzymes like OTUD5.

To start, the NIH team examined cells taken from patient samples, which were processed at the NIH Clinical Center. Normally, OTUD5 edits or removes molecular tags on certain proteins (substrates) to regulate their function. But in cells from patients withOTUD5mutations, this activity was impaired.

Using a method to return mature human cells to the stem cell-like state of embryo cells, the scientists found thatOTUD5mutations were linked to abnormalities in the development of neural crest cells, which give rise to tissues of the craniofacial skeleton, and of neural precursors, cells that eventually give rise to the brain and spinal cord.

In further experiments, the team discovered that the OTUD5 enzyme acts on a handful of protein substrates called chromatin remodelers. This class of proteins physically alters the tightly packed strands of DNA in a cells nucleus to make certain genes more accessible for being turned on, or expressed.

With help from collaborators led by Pedro Rocha Ph.D., an investigator at the National Institute of Child Health and Human Development (NICHD), the team found that chromatin remodelers targeted by OTUD5 help enhance expression of genes that control the cell fate of neural precursors during embryo development.

Taken together, the researchers concluded, OTUD5 normally keeps these chromatin remodelers from being tagged for destruction. But when OTUD5 is mutated, its protective function is lost and the chromatin remodelers are destroyed, leading to abnormal development of neural precursors and neural crest cells. Ultimately, these changes can lead to some of the birth defects seen in LINKED patients.

Several of the chromatin remodelers OTUD5 interacts with are mutated in Coffin Siris and Cornelia de Lange syndromes, which have clinically overlapping features with LINKED syndrome, said Werner. This suggests that the mechanism we discovered is part of a common developmental pathway that, when mutated at various points, will lead to a spectrum of disease.

We were surprised to find that OTUD5 elicits its effects through multiple, functionally related substrates, which reveals a new principle of cellular signaling during early embryonic development, said Mohammed A. Basar, Ph.D., a postdoctoral fellow in Werners lab and co-first author of the study. These findings lead us to believe that OTUD5 may have far-reaching effects beyond those identified in LINKED patients.

In future work, Werners team plans to more fully investigate the role that OTUD5 and similar enzymes play in development. The researchers hope the study can serve as a guiding framework for unraveling the causes of other undiagnosed diseases, ultimately helping clinicians better assess and care for patients.

Were finally able to provide families with a diagnosis, bringing an end to what is often a long and exhausting search for answers, said Beck.

Reference: Beck DB, Basar MA, Asmar AJ, et al. Linkage-specific deubiquitylation by OTUD5 defines an embryonic pathway intolerant to genomic variation. Sci Adv. 2021;7(4):eabe2116. doi:10.1126/sciadv.abe2116.

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Read the original:
New Genetic Disorder Discovered That Affects Brain and Craniofacial Skeleton - Technology Networks

Parent Project Muscular Dystrophy Invests $1 Million in Satellos Bioscience to Support New Regenerative Medicine Technology – PRNewswire

HACKENSACK, N.J., Jan. 19, 2021 /PRNewswire/ --Parent Project Muscular Dystrophy (PPMD), a nonprofit organization leading the fight to end Duchenne muscular dystrophy (Duchenne), today announced a $1 million programmatic investment in Satellos Bioscience Inc. (Satellos) to support the development of a new regenerative medicine for the therapeutic treatment of Duchenne.

Duchenne is the most common fatal genetic disorder diagnosed in childhood, affecting approximately one in 5,000 live male births. Duchenne is caused by a change in the dystrophin gene. In people living with Duchenne, it was discovered by Dr. Michael Rudnicki, the scientific founder of Satellos, that muscle stem cells are severely compromised in their ability to create muscle progenitor cells which repair injured muscle. As a result, people with Duchenne are unable to keep up with the continuous damage to their muscles throughout life.

Satellos's technology is based on this ground-breaking discovery into what controls muscle stem cell differentiation, and the significant impact its dysregulation has on the progressive nature of Duchenne. The company is developing a means to correct this problem through a novel therapeutic approach involving the administration of a small molecule drug, which mobilizes the body's own muscle stem cells, also known as satellite cells, to repair and regenerate muscles.

Such a small molecule drug could be used to treat all people living with Duchenne and furthermore, could be used throughout life to boost the continuous repair and regeneration of skeletal muscle ravaged by this disease, thereby enhancing and extending the lives of people with Duchenne.

"For over 25 years, PPMD has been committed to exploring and supporting every single therapeutic possibility. With this programmatic investment in Satellos, we continue our cutting-edge approach to accelerate finding treatments that have the potential to end Duchenne for every single person impacted by the disease," said Eric Camino, PhD, PPMD's Vice President of Research and Clinical Innovation. "There is compelling proof of concept data showing that the Satellos technology can improve muscle quality and restore function in the mdxmouse model of Duchenne. This investment from PPMD will enable the Satellos team to build on their proof of concept by amplifying their efforts to invent and refine a drug development candidate suitable for testing in humans."

"We are delighted to be working with PPMD and proud to have the therapeutic potential of our novel science recognized by such a leading entity in the fight against Duchenne", said Frank Gleeson, Satellos founder and CEO. "Our profound discoveries into how muscle stem cells repair and regenerate muscle offers a new avenue for addressing a root cause of the progressive debilitation characteristic of Duchenne. Support from PPMD will enable us to accelerate the development of our new treatment approach which offers the promise of helping Duchenne patients of all ages and stages of disease."

To learn more about PPMD's robust Research Strategy, funding initiatives, and strategies for accelerating drug development,click here.

ABOUT PARENT PROJECT MUSCULAR DYSTROPHY:

Duchenneis a fatal genetic disorder that slowly robs people of their muscle strength.Parent Project Muscular Dystrophy (PPMD)fights every single battle necessary to end Duchenne.

We demand optimal care standards and ensure every family has access to expert healthcare providers, cutting edge treatments, and a community of support. We invest deeply in treatments for this generation of Duchenne patients and in research that will benefit future generations. Our advocacy efforts have secured hundreds of millions of dollars in funding and won four FDA approvals.

Everything we doand everything we have done since our founding in 1994helps those with Duchenne live longer, stronger lives. We will not rest until we end Duchenne for every single person affected by the disease. Join our fight against Duchenne atEndDuchenne.org.Follow PPMD onFacebook,Twitter, Instagram, andYouTube.

ABOUT SATELLOS BIOSCIENCE INC.:

Satellos is a regenerative medicine company dedicated to developing novel therapeutics that stimulate or restore muscle regeneration in life threatening disorders. Our founding scientist, Dr. Michael Rudnickidiscovered that the dysregulation of stem-cell polarity a process that balances replenishment of stem cells and production of specialized tissue cells, including muscle can lead to the inability of the body to properly repair and regenerate muscle throughout life.

Satellos is initially applying these discoveries to our lead program to develop a new therapeutic treatment which restores muscle regeneration in Duchenne muscular dystrophy, a lethal degenerative disease. Defects in muscle regeneration are also causative in many chronic conditions which we plan to pursue including sarcopenia (muscle wasting with age), cachexia (muscle wasting from chemotherapy or smoking) and various dystrophies. Founded in 2018, Satellos is headquartered in Canada.For more information about Satellos' discovery platform and development programs please visit Satellos.com.

SOURCE Parent Project Muscular Dystrophy (PPMD)

Join the fight. End Duchenne.

Read more from the original source:
Parent Project Muscular Dystrophy Invests $1 Million in Satellos Bioscience to Support New Regenerative Medicine Technology - PRNewswire