Category Archives: Stem Cell Medical Center


Panama’s First Umbilical Cord Stem Cell Clinical Trial for Rheumatoid Arthritis Approved by Comité Nacional de …

Panama City, Panama (PRWEB) January 14, 2014

Translational Biosciences, a subsidiary of Medistem Panama has received the countys first clinical trial approval for the treatment of rheumatoid arthritis with human umbilical cord-derived mesenchymal stem cells (MSC) from the Comit Nacional de Biotica de la Investigacin Institutional Review Board (IRB).

Rheumatoid Arthritis (RA) is an autoimmune disease in which the patients immune system generates cellular and antibody responses to various components of the joint such as type I collagen. As a result of this immune response, not only does joint destruction occur, but also other secondary complications such as pulmonary fibrosis, renal damage, and even heart damage. RA affects approximately 0.5-1% of the population in the United States.

Mesenchymal stem cells harvested from donated human umbilical cords after normal, healthy births possess anti-inflammatory and immune modulatory properties that may relieve RA symptoms. Because they are immune privileged, the recipients immune system does not reject them. These properties make MSC interesting candidates for the treatment of rheumatoid arthritis and other autoimmune disorders.

Each patient will receive five intravenous injections of umbilical cord stem cells over the course of 5 days. They will be assessed at 3 months and 12 month primarily for safety and secondarily for indications of efficacy.

The stem cell technology being utilized in this trial was developed by Neil Riordan, PhD, founder of Medistem Panama. The stem cells will be harvested and processed at Medistem Panamas 8000 sq. ft. laboratory in the prestigious City of Knowledge. They will be administered at the Stem Cell Institute in Panama City, Panama.

The Principle Investigator is Jorge Paz-Rodriguez, MD. Dr. Paz-Rodriguez also serves as the Medical Director at the Stem Cell Institute.

While this is just the first step, it is our hope that Panamas rapid emergence as a leader in applied stem cell research will lead to safe, effective treatments for debilitating diseases such as rheumatoid arthritis and serve to benefit all Panamanians who suffer from it in the not-too-distant future, said Ruben Berocal, M.D., National Secretary of Science, Technology and Innovation (SENACYT). Oversight by the National Committee for Investigational Bioethics ensures patient safety by demanding ethical transparency and compliance with the highest levels of international standards, he added.

For detailed information about this clinical trial visit http://www.clinicaltrials.gov. If you are a rheumatoid arthritis patient who has not responded to disease modifying anti-rheumatic drugs (DMARD) for at least 6 months you may qualify for this trial. Please email trials(at)translationalbiosciences(dot)com for more information about how to apply.

About Translational Biosciences

See more here:
Panama’s First Umbilical Cord Stem Cell Clinical Trial for Rheumatoid Arthritis Approved by Comité Nacional de ...

New breast cancer stem cell findings explain how cancer spreads

PUBLIC RELEASE DATE:

14-Jan-2014

Contact: Nicole Fawcett nfawcett@umich.edu 734-764-2220 University of Michigan Health System

ANN ARBOR, Mich. Breast cancer stem cells exist in two different states and each state plays a role in how cancer spreads, according to an international collaboration of researchers. Their finding sheds new light on the process that makes cancer a deadly disease.

"The lethal part of cancer is its metastasis so understanding how metastasis occurs is critical," says senior study author Max S. Wicha, M.D., Distinguished Professor of Oncology and director of the University of Michigan Comprehensive Cancer Center. "We have evidence that cancer stem cells are responsible for metastasis they are the seeds that mediate cancer's spread. Now we've discovered how the stem cells do this."

First, on the outside of the tumor, a type of stem cell exists in a state called the epithelial-mesenchymal transition (EMT) state. These stem cells appear dormant but are very invasive and able to get into the bloodstream, where they travel to distant parts of the body.

Once there, the stem cells transition to a second state that displays the opposite characteristics, called the mesenchymal-epithelial transition state (MET). These cells are capable of growing and making copies of themselves, producing new tumors.

"You need both forms of cancer stem cells to metastasize and grow in distant organs. If the stem cell is locked in one or the other state, it can't form a metastasis," Wicha says.

The findings, which are published in the January issue of Stem Cell Reports, raise a number of questions about how to treat or prevent metastatic breast cancer. Researchers must now understand whether new therapies must attack both forms of the stem cell to be successful. Different pathways regulate each type of stem cell, which suggests that effective therapies must be able to target multiple pathways.

In addition, current tests that look at tumor cells circulating in the blood to help determine whether the cancer is spreading do not appear to capture the EMT stem cells, which are the cancer cells that travel through the blood. U-M researchers are working with colleagues from the U-M College of Engineering to develop new tools to isolate the EMT stem cells from the blood of cancer patients.

See the article here:
New breast cancer stem cell findings explain how cancer spreads

Nature Study Discovers Chromosome Therapy to Correct a Severe Chromosome Defect

Contact Information

Available for logged-in reporters only

Newswise Geneticists from Ohio, California and Japan joined forces in a quest to correct a faulty chromosome through cellular reprogramming. Their study, published online today in Nature, used stem cells to correct a defective ring chromosome with a normal chromosome. Such therapy has the promise to correct chromosome abnormalities that give rise to birth defects, mental disabilities and growth limitations.

In the future, it may be possible to use this approach to take cells from a patient that has a defective chromosome with multiple missing or duplicated genes and rescue those cells by removing the defective chromosome and replacing it with a normal chromosome, said senior author Anthony Wynshaw-Boris, MD, PhD, James H. Jewell MD '34 Professor of Genetics and chair of Case Western Reserve School of Medicine Department of Genetics and Genome Sciences and University Hospitals Case Medical Center.

Wynshaw-Boris led this research while a professor in pediatrics, the Institute for Human Genetics and the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UC, San Francisco (UCSF) before joining the faculty at Case Western Reserve in June 2013.

Individuals with ring chromosomes may display a variety of birth defects, but nearly all persons with ring chromosomes at least display short stature due to problems with cell division. A normal chromosome is linear, with its ends protected, but with ring chromosomes, the two ends of the chromosome fuse together, forming a circle. This fusion can be associated with large terminal deletions, a process where portions of the chromosome or DNA sequences are missing. These deletions can result in disabling genetic disorders if the genes in the deletion are necessary for normal cellular functions.

The prospect for effective counter measures has evaded scientistsuntil now. The international research team discovered the potential for substituting the malfunctioning ring chromosome with an appropriately functioning one during reprogramming of patient cells into induced pluripotent stem cells (iPSCs). iPSC reprogramming is a technique that was developed by Shinya Yamanaka, MD, PhD, a co-corresponding author on the Nature paper. Yamanaka is a senior investigator at the UCSF-affiliated Gladstone Institutes, a professor of anatomy at UCSF, and the director of the Center for iPS Cell Research and Application (CiRA) at the Institute for Integrated Cell-Material Sciences (iCeMS) in Kyoto University. He won the Nobel Prize in Medicine in 2012 for developing the reprogramming technique.

Marina Bershteyn, PhD, a postdoctoral fellow in the Wynshaw-Boris lab at UCSF, along with Yohei Hayashi, PhD, a postdoctoral fellow in the Yamanaka lab at the Gladstone Institutes, reprogrammed skin cells from three patients with abnormal brain development due to a rare disorder called Miller Dieker Syndrome, which results from large terminal deletions in one arm of chromosome 17. One patient had a ring chromosome 17 with the deletion and the other two patients had large terminal deletions in one of their chromosome 17, but not a ring. Additionally, each of these patients had one normal chromosome 17.

The researchers observed that, after reprogramming, the ring chromosome 17 that had the deletion vanished entirely and was replaced by a duplicated copy of the normal chromosome 17. However, the terminal deletions in the other two patients remained after reprogramming. To make sure this phenomenon was not unique to ring chromosome 17, they reprogrammed cells from two different patients that each had ring chromosomes 13. These reprogrammed cells also lost the ring chromosome, and contained a duplicated copy of the normal chromosome 13.

It appears that ring chromosomes are lost during rapid and continuous cell divisions during reprogramming, said Yamanaka. The duplication of the normal chromosome then corrects for that lost chromosome.

See original here:
Nature Study Discovers Chromosome Therapy to Correct a Severe Chromosome Defect

Study discovers chromosome therapy to correct severe chromosome defect

Jan. 13, 2014 Geneticists from Ohio, California and Japan joined forces in a quest to correct a faulty chromosome through cellular reprogramming. Their study, published online today in Nature, used stem cells to correct a defective "ring chromosome" with a normal chromosome. Such therapy has the promise to correct chromosome abnormalities that give rise to birth defects, mental disabilities and growth limitations.

"In the future, it may be possible to use this approach to take cells from a patient that has a defective chromosome with multiple missing or duplicated genes and rescue those cells by removing the defective chromosome and replacing it with a normal chromosome," said senior author Anthony Wynshaw-Boris, MD, PhD, James H. Jewell MD '34 Professor of Genetics and chair of Case Western Reserve School of Medicine Department of Genetics and Genome Sciences and University Hospitals Case Medical Center.

Wynshaw-Boris led this research while a professor in pediatrics, the Institute for Human Genetics and the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UC, San Francisco (UCSF) before joining the faculty at Case Western Reserve in June 2013.

Individuals with ring chromosomes may display a variety of birth defects, but nearly all persons with ring chromosomes at least display short stature due to problems with cell division. A normal chromosome is linear, with its ends protected, but with ring chromosomes, the two ends of the chromosome fuse together, forming a circle. This fusion can be associated with large terminal deletions, a process where portions of the chromosome or DNA sequences are missing. These deletions can result in disabling genetic disorders if the genes in the deletion are necessary for normal cellular functions.

The prospect for effective counter measures has evaded scientists -- until now. The international research team discovered the potential for substituting the malfunctioning ring chromosome with an appropriately functioning one during reprogramming of patient cells into induced pluripotent stem cells (iPSCs). iPSC reprogramming is a technique that was developed by Shinya Yamanaka, MD, PhD, a co-corresponding author on the Nature paper. Yamanaka is a senior investigator at the UCSF-affiliated Gladstone Institutes, a professor of anatomy at UCSF, and the director of the Center for iPS Cell Research and Application (CiRA) at the Institute for Integrated Cell-Material Sciences (iCeMS) in Kyoto University. He won the Nobel Prize in Medicine in 2012 for developing the reprogramming technique.

Marina Bershteyn, PhD, a postdoctoral fellow in the Wynshaw-Boris lab at UCSF, along with Yohei Hayashi, PhD, a postdoctoral fellow in the Yamanaka lab at the Gladstone Institutes, reprogrammed skin cells from three patients with abnormal brain development due to a rare disorder called Miller Dieker Syndrome, which results from large terminal deletions in one arm of chromosome 17. One patient had a ring chromosome 17 with the deletion and the other two patients had large terminal deletions in one of their chromosome 17, but not a ring. Additionally, each of these patients had one normal chromosome 17.

The researchers observed that, after reprogramming, the ring chromosome 17 that had the deletion vanished entirely and was replaced by a duplicated copy of the normal chromosome 17. However, the terminal deletions in the other two patients remained after reprogramming. To make sure this phenomenon was not unique to ring chromosome 17, they reprogrammed cells from two different patients that each had ring chromosomes 13. These reprogrammed cells also lost the ring chromosome, and contained a duplicated copy of the normal chromosome 13.

"It appears that ring chromosomes are lost during rapid and continuous cell divisions during reprogramming," said Yamanaka. "The duplication of the normal chromosome then corrects for that lost chromosome."

"Ring loss and duplication of whole chromosomes occur with a certain frequency in stem cells," explained Bershteyn. "When chromosome duplication compensates for the loss of the corresponding ring chromosome with a deletion, this provides a possible avenue to correct large-scale problems in a chromosome that have no chance of being corrected by any other means."

"It is likely that our findings apply to other ring chromosomes, since the loss of the ring chromosome occurred in cells reprogrammed from three different patients," said Hayashi.

Here is the original post:
Study discovers chromosome therapy to correct severe chromosome defect

DaSilva Institute Brings World-Class Medicine to Sarasota, Florida

Sarasota, FL (PRWEB) January 13, 2014

The DaSilva Institute opened their brand new state-of-the-art medical facility in Sarasota, Florida on December 16, 2013.

The DaSilva Institute combines functional medicine with anti-aging and regenerative medicine, making it the most unique multi-specialty medical center of its kind in the U.S.

One major advantage that the DaSilva Institute has over similar centers found elsewhere in the US and overseas is its focus on autologous stem cell therapy. Used to reverse degenerative diseases and injuries, this innovative therapy involves harvesting stem cells from the patients own body fat without the controversial use of embryos, umbilical cords, placentas or donors, thus eliminating the risk of viruses and rejection.

The DaSilva Institute is also known for their expertise in bio-identical hormone replacement therapies, functional gastrointestinal disorders, mood disorders, nutritional counseling, IV nutrition and chelation, natural cancer support, regenerative orthopedics, platelet rich plasma (PRP), prolotherapy, and several new aesthetic treatments including facial rejuvenation, natural breast and buttocks augmentation and gentle liposculpture.

Guy DaSilva, MD, founder and medical director of the DaSilva Institute, states, Our vision is to make this extraordinary form of medicine accessible and affordable for people in the U.S. You shouldnt have to fly to other countries and spend tens of thousands of dollars for what you can receive in your own backyard for much less.

After outgrowing their previous office in the Lakewood Ranch area, the decision to move into a larger, more optimally equipped facility led them to the heart of Sarasota.

Dr. DaSilva states, My hope is that people will benefit from our extended menu of services and enjoy the beautiful and comforting ambiance of our new office, as well as the convenience of the new Sarasota location. And above all, we want to help more people discover health without limits.

Link:
DaSilva Institute Brings World-Class Medicine to Sarasota, Florida

Stem cells injected into nerve guide tubes repair injured peripheral nerve

PUBLIC RELEASE DATE:

9-Jan-2014

Contact: Robert Miranda cogcomm@aol.com Cell Transplantation Center of Excellence for Aging and Brain Repair

Putnam Valley, NY. (Jan. 9, 2014) Using skin-derived stem cells (SDSCs) and a previously developed collagen tube designed to successfully bridge gaps in injured nerves in rat models, the research team in Milan, Italy that established and tested the procedure has successfully rescued peripheral nerves in the upper arms of a patient suffering peripheral nerve damage who would have otherwise had to undergo amputations.

The study will be published in a future issue of Cell Transplantation but is currently freely available on-line as an unedited early e-pub at: http://www.ingentaconnect.com/content/cog/ct/pre-prints/content-ct1096.

"Peripheral nerve repair with satisfactory functional recovery remains a great surgical challenge, especially for severe nerve injuries resulting in extended nerve defects," said study corresponding author Dr. Yvan Torrente, of the Department of Pathophysiology and Transplantation at the University of Milan. "However, we hypothesized that the combination of autologous (self-donated) SDSCs placed in collagen tubes to bridge gaps in the damaged nerves would restore the continuity of injured nerves and save from amputation the upper arms of a patient with poly-injury to motor and sensory nerves."

Although autologous nerve grafting has been the 'gold standard' for reconstructive surgeries, these researchers felt that there were several drawbacks to that approach, including graft availability, donor site morbidity, and neuropathic pain.

According to the researchers, autologous SDSCs have advantages over other stem cells as they are an accessible source of stem cells rapidly expandable in culture, and capable of survival and integration within host tissues.

While the technique of using the collagen tubes - NeuraGen, an FDA-approved device - to guide the transplanted cells over gaps in the injured nerve had been previously developed and tested by the same researchers with the original research successfully saving damaged sciatic nerves on rats, the present case, utilizing the procedure they developed employing SDSCs and a nerve guide, is the first to be carried out on a human.

Over three years, the researchers followed up on the patient, assessing functional recovery of injured median and ulnar nerves by pinch gauge test and static two-point discrimination and touch test with monofiliments along with electrophysiological and MRI examinations.

See more here:
Stem cells injected into nerve guide tubes repair injured peripheral nerve

The Stem Cell Center at Texas Heart Institute at St. Luke’s

Welcome

The Stem Cell Center Texas Heart Institute is dedicated to the study of adult stem cells and their role in treating diseases of the heart and the circulatory system. Through numerous clinical and preclinical studies, we have come to realize the potential of stem cells to help patients suffering from cardiovascular disease.We are actively enrolling patients in studies using stem cells for the treatment of heart failure, heart attacks, and peripheral vascular disease.

Whether you are a patient looking for information regarding our research, or a doctor hoping to learn more about stem cell therapy, we welcome you to the Stem Cell Center. Please visit our Clinical Trials page for more information about our current trials.

Emerson C. Perin, MD, PhD, FACC Director, Clinical Research for Cardiovascular Medicine Medical Director, Stem Cell Center McNair Scholar

You may contact us at:

E-mail: stemcell@texasheart.org Toll free: 1-866-924-STEM (7836) Phone: 832-355-9405 Fax: 832-355-9440

We are a network of physicians, scientists, and support staff dedicatedto studying stem cell therapy for treating heart disease. Thegoals of the Network are to complete research studies that will potentially lead to more effective treatments for patients with cardiovasculardisease, and to share knowledge quickly with the healthcare community.

Websitein Spanish (En espaol)

Read more:
The Stem Cell Center at Texas Heart Institute at St. Luke's

NYSCF scientists make living brain cells from Alzheimer’s patients biobanked brain tissue

PUBLIC RELEASE DATE:

7-Jan-2014

Contact: David McKeon DMckeon@nyscf.org 212-365-7440 New York Stem Cell Foundation

NEW YORK, NY (January 7, 2014) Scientists at The New York Stem Cell Foundation (NYSCF) Research Institute, working in collaboration with scientists from Columbia University Medical Center (CUMC), for the first time generated induced pluripotent stem (iPS) cells lines from non-cryoprotected brain tissue of patients with Alzheimer's disease.

These new stem cell lines will allow researchers to "turn back the clock" and observe how Alzheimer's develops in the brain, potentially revealing the onset of the disease at a cellular level long before any symptoms associated with Alzheimer's are displayed. These reconstituted Alzheimer's cells will also provide a platform for drug testing on cells from patients that were definitively diagnosed with the disease. Until now, the only available method to definitively diagnose Alzheimer's disease that has been available to researchers is examining the brain of deceased patients. This discovery will permit scientists for the first time to compare "live" brain cells from Alzheimer's patients to the brain cells of other non-Alzheimer's patients.

NYSCF scientists successfully produced the iPS cells from frozen tissue samples stored for up to eleven years at the New York Brain Bank at Columbia University.

This advance, published today in Acta Neuropathologica Communications , shows that disease-specific iPS cells can be generated from readily available biobanked tissue that has not been cryoprotected, even after they have been frozen for many years. This allows for the generation of iPS cells from brains with confirmed disease pathology as well as allows access to rare patient variants that have been banked. In addition, findings made using iPS cellular models can be cross-validated in the original brain tissue used to generate the cells. The stem cell lines generated for this study included samples from patients with confirmed Alzheimer's disease and four other neurodegenerative diseases.

This important advance opens up critical new avenues of research to study cells affected by disease from patients with definitive diagnoses. This success will leverage existing biobanks to support research in a powerful new way.

iPS cells are typically generated from a skin or blood sample of a patient by turning back the clock of adult cells into pluripotent stem cells, cells that can become any cell type in the body. While valuable, iPS cells are often generated from patients without a clear diagnosis of disease and many neurodegenerative diseases, such as Alzheimer's disease, often lack specific and robust disease classification and severity grading. These diseases and their extent can only be definitively diagnosed by post-mortem brain examinations. For the first time we will now be able to compare cells from living people to cells of patients with definitive diagnoses generated from their banked brain tissue.

Brain bank networks, which combined contain tens of thousands of samples, provide a large and immediate source of tissue including rare disease samples and a conclusive spectrum of disease severity among samples. The challenge to this approach is that the majority of biobanked brain tissue was not meant for growing live cells, and thus was not frozen in the presence of cryoprotectants normally used to protect cells while frozen. NYSCF scientists in collaboration with CUMC scientists have shown that these thousands of samples can now be used to make living human cells for use in disease studies and to develop new drugs or preventative treatments for future patients.

Continued here:
NYSCF scientists make living brain cells from Alzheimer's patients biobanked brain tissue

Cedars-Sinai researchers target cancer stem cells in malignant brain tumors

PUBLIC RELEASE DATE:

6-Jan-2014

Contact: Sandy Van sandy@prpacific.com 808-526-1708 Cedars-Sinai Medical Center

LOS ANGELES (Jan. 6, 2014) Researchers at the Cedars-Sinai Maxine Dunitz Neurosurgical Institute and Department of Neurosurgery identified immune system targets on cancer stem cells cells from which malignant brain tumors are believed to originate and regenerate and created an experimental vaccine to attack them.

Results of laboratory and animal studies are published in the online edition of Stem Cells Translational Medicine, and will appear in the March 2014 print edition. A Phase I safety study in human volunteers with recurrent glioblastoma multiforme, the most common and aggressive brain tumor in adults, is underway.

Like normal stem cells, cancer stem cells have the ability to self-renew and generate new cells, but instead of producing healthy cells, they create cancer cells. In theory, if the cancer stem cells can be destroyed, a tumor may not be able to sustain itself, but if the cancer originators are not removed or destroyed, a tumor will continue to return despite the use of existing cancer-killing therapies.

The researchers identified certain fragments of a protein CD133 that is found on cancer stem cells of some brain tumors and other cancers. In the laboratory, they cultured the proteins with dendritic cells, the immune system's most powerful antigen-presenting cells, which are responsible for helping the immune system recognize and attack invaders.

Studies in lab mice showed that the resulting vaccine was able to stimulate an immune response against the CD133 proteins without causing side effects such as an autoimmune reaction against normal cells or organs.

"CD133 is one of several proteins made at high levels in the cancer stem cells of glioblastoma multiforme. Because this protein appears to be associated with resistance of the cancer stem cells to treatment with radiation or chemotherapy or both, we see it as an ideal target for immunotherapy. We have found at least two fragments of the protein that can be targeted to trigger an immune response to kill tumor cells. We don't know yet if the response would be strong enough to prevent a tumor from coming back, but we now have a human clinical trial underway to assess safety for further study," said John Yu, MD, vice chair of the Department of Neurosurgery, director of surgical neuro-oncology, medical director of the Brain Tumor Center and neurosurgical director of the Gamma Knife Program at Cedars-Sinai. He is senior author of the journal article.

With standard care, which includes surgery, radiation treatment and chemotherapy, median length of survival is 15 months for patients diagnosed with glioblastoma multiforme. Cedars-Sinai researchers have studied dendritic cell immunotherapy since 1997, with the first patient human clinical trial launched in 1998.

View post:
Cedars-Sinai researchers target cancer stem cells in malignant brain tumors

Stanford shares in $540 million gift from Ludwig Cancer Research

Stanford Report, January 6, 2014

Irving Weissman, director of the Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford.

The Stanford University School of Medicine has received $90 million from Ludwig Cancer Research on behalf of its founder, Daniel K. Ludwig, to support the school's innovative work in cancer stem cells, which are believed to drive the growth of many cancers.

Stanford is one of six institutions to share in Ludwig's $540 million contribution to the field of cancer research. Announced today, the gift is one of the largest ever made to the field from an individual donor.

The funding will augment the existing endowment for the Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, established in 2006, where scientists already have discovered some promising therapies that are moving into clinical trials.

"The gift from Ludwig Cancer Research is truly historic," said Stanford President John Hennessy. "Over the years, Ludwig has been a generous supporter of cancer research, and through its support changed the course of cancer treatment. But this extraordinary gift will spur innovation well into the future.Stanford is distinguished for its cancer research and has assembled a 'dream team' of dedicated scientists at the Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford. This gift is a tremendous vote of confidence in the work they and their colleagues at other Ludwig Centers are doing and will provide essential support as they pioneer new treatments and therapies."

The Ludwig gift will complement Stanford's Cancer Initiative, a $250 million effort to advance research and improve patient care, said Lloyd Minor, dean of the Stanford School of Medicine.

"We are very grateful to Ludwig Cancer Research for this exceptional gift, which will provide momentum for further discoveries in cancer stem cells and spur the development of new therapies," Minor said. "Together with our Cancer Initiative, it represents an opportunity to truly transform cancer research and treatment."

With his latest gift, Ludwig has now committed $150 million to Stanford. The university's Ludwig Center, the only cancer stem cell center of its kind, is directed by Irving Weissman, the Virginia and D.K. Ludwig Professor for Clinical Investigation in Cancer Research at Stanford.

The first evidence of cancer stem cells was found in acute myeloid leukemia in 1994 by Canadian scientist John Dick. Weissman and his colleagues purified human blood-forming stem cells in 1992 and human leukemia stem cells in 2000 and later identified potential therapeutic targets on them. Since then, Michael Clarke, professor of medicine at Stanford and a Ludwig Center deputy director, isolated cancer stem cells in breast cancer, pancreatic cancers and colorectal cancer, and with Weissman head and neck cancers, bladder cancer, myelomas and other cancers.

Continued here:
Stanford shares in $540 million gift from Ludwig Cancer Research