Category Archives: Stem Cell Medicine


Gurdon And Yamanaka Share Nobel Prize For Stem Cell Work

Two pioneers of stem cell research have shared the Nobel prize for medicine or physiology.

John Gurdon from the UK and Shinya Yamanaka from Japan were awarded the prize for changing adult cells into stem cells, which can become any other type of cell in the body.

Prof Gurdon used a gut sample to clone frogs and Prof Yamanaka altered genes to reprogramme cells.

The Nobel committee said they had "revolutionised" science.

The prize is in stark contrast to Prof Gurdon's first foray into science when his biology teacher described his scientific ambitions as "a waste of time".

Cloned frog When a sperm fertilises an egg there is just one type of cell. It multiplies and some of the resulting cells become specialised to create all the tissues of the body including nerve and bone and skin.

It had been though to be a one-way process - once a cell had become specialised it could not change its fate.

In 1962, John Gurdon showed that the genetic information inside a cell taken from the intestines of a frog contained all the information need to create a whole new frog. He took the genetic information and placed it inside a frog egg. The resulting clone developed into a normal tadpole.

The technique would eventually give rise to Dolly the sheep, the first cloned mammal.

Reset button Forty years later Shinya Yamanaka used a different approach. Rather than transferring the genetic information into an egg, he reset it.

View post:
Gurdon And Yamanaka Share Nobel Prize For Stem Cell Work

Cellectis: the Award of Nobel Prize in Medicine to Professor Yamanaka Confirms the Relevance of the Group's Stem Cell …

PARIS--(BUSINESS WIRE)--

Regulatory News:

Cellectis (ALCLS.PA) (ALCLS.PA), the French genome engineering specialist, considers the award of the Nobel Prize fin Medicine to Professor Shinya Yamanaka as the validation of its stem cell strategy and is a major growth driver for this activity.

Since 2010 Cellectis started collaborating with Professor Shinya Yamanaka at the Center for iPS Cell Research and Application (CiRA) at Kyoto, Japan, working together on genome engineering of induced pluripotent stem (iPS) cells.

Since then, Cellectis has successively:

Cellectis already sells cellular models for research and drug development within pharmaceutical industry, implementing technologies developed by CiRA. In addition, Cellectis is currently working on a number of develops large-scale projects based on iPS cell technology with two aims:

Andr Choulika, CEO of Cellectis, declares: "the quality of relations between the teams of CiRA and Cellectis Group - based on mutual respect of their scientific expertise on the one hand, the recognition of the strong complementarity of their knowledge on the other - involved the establishment of a real alliance able to compete with the American presence in the area."

Cellectis plans to expand and deepen this collaboration with Prof. Yamanaka in order to strengthen its position as an industry leader, increase its activity remaining at the forefront of iPS cell technology, and develop industry standards in regenerative medicine.

About Cellectis

Founded in France in 1999, the Cellectis Group is based on a highly specific DNA engineering technology. Its application sectors are human health, agriculture and bio-energies. Co-created by Andr Choulika, its Chief Executive Officer, Cellectis is today one of the world leading companies in the field of genome engineering. The Group has a workforce of 230 employees working on 5 sites worldwide: Paris & Evry in France, Gothenburg in Sweden, St Paul (Minnesota) & Cambridge (Massachusetts) in the United States. Cellectis achieved in 2011 16M revenues and has signed more than 80 industrial agreements with pharmaceutical laboratories, agrochemical and biotechnology companies since its inception. AFM, Dupont, BASF, Bayer, Total, Limagrain, Novo Nordisk are some of the Groups clients and partners.

Read the rest here:
Cellectis: the Award of Nobel Prize in Medicine to Professor Yamanaka Confirms the Relevance of the Group's Stem Cell ...

Stem Cell Scientists Awarded Nobel Prize in Physiology and Medicine

Kyodo / Reuters

Kyoto University Professor Shinya Yamanaka (left) and John Gurdon of the Gurdon Institute in Cambridge, England, at a symposium on induced pluripotent stem cells in Tokyo in April 2008

In a testament to the revolutionary potential of the field of regenerative medicine, in which scientists are able to create and replace any cells that are at fault in disease, the Nobel Prize committee on Monday awarded the 2012 Nobel in Physiology or Medicine to two researchers whose discoveries have made such cellular alchemy possible.

The prize went to John B. Gurdon of the University of Cambridge in England, who was the first to clone an animal, a frog, in 1962, and to Shinya Yamanaka of Kyoto University in Japan who in 2006 discovered the four genes necessary to reprogram an adult cell back to an embryonic state.

Sir John Gurdon, who is now a professor at an institute that bears his name, earned the ridicule of many colleagues back in the 1960s when he set out on a series of experiments to show that the development of cells could be reversed. At the time, biologists knew that all cells in an embryo had the potential to become any cell in the body, but they believed that once a developmental path was set for each cell toward becoming part of the brain, or a nerve or muscle it could not be returned to its embryonic state. The thinking was that as a cell developed, it would either shed or silence the genes it no longer used, so that it would be impossible for a cell from an adult animal, for example, to return to its embryonic state and make other cells.

(MORE: Stem Cell Miracle? New Therapies May Cure Chronic Conditions Like Alzheimers)

Working with frogs, Gurdon proved his critics wrong, showing that some reprogramming could occur. Gurdon took the DNA from a mature frogs gut cell and inserted it into an egg cell. The resulting egg, when fertilized, developed into a normal tadpole, a strong indication that the genes of the gut cell were amenable to reprogramming; they had the ability to function as more than just an intestinal cell, and could give rise to any of the cells needed to create an entirely new frog.

Just as Gurdon was facing his critics in England, a young boy was born in Osaka, Japan, who would eventually take Gurdons finding to unthinkable extremes. Initially, Shinya Yamanaka would follow his fathers wishes and become an orthopedic surgeon, but he found himself ill-suited to the surgeons life. Intrigued more by the behind-the-scenes biological processes that make the body work, he found himself drawn to basic research, and began his career by trying to find a way to lower cholesterol production. That work also wasnt successful, but it drew him to the challenge of understanding what makes cells divide, proliferate and develop in specific ways.

In 2006, while at Kyoto University, Yamanaka stunned scientists by announcing he had successfully achieved what Gurdon had with the frog cells, but without using eggs at all. Yamanaka mixed four genes in with skin cells from adult mice and turned those cells back to an embryo-like state, essentially erasing their development and turning back their clock. The four genes reactivated other genes that are prolific in the early embryo, and turned off those that directed the cells to behave like skin.

(MORE: Ovary Stem Cells Can Produce New Human Eggs)

See the original post:
Stem Cell Scientists Awarded Nobel Prize in Physiology and Medicine

Nobel Prize in medicine awarded to pair for stem-cell discovery

STOCKHOLM A British researcher and a Japanese scientist won the Nobel Prize in physiology or medicine today for discovering that ordinary cells of the body can be reprogrammed into stem cells, which then can turn into any kind of tissue a discovery that may led to new treatments.

Scientists want to build on the work by John Gurdon and Shinya Yamanaka to create replacement tissues for treating diseases like Parkinson's and diabetes, and for studying the roots of diseases in the laboratory without the ethical dilemma posed by embryonic stem cells.

In announcing the 8 million kronor ($1.2 million) award, the Nobel committee at Stockholm's Karolinska Institute said the discovery has "revolutionized our understanding of how cells and organisms develop."

Gurdon showed in 1962 the year Yamanaka was born that the DNA from specialized cells of frogs, like skin or intestinal cells, could be used to generate new tadpoles. That showed the DNA still had its ability to drive the formation of all cells of the body.

At the time, the discovery had "no obvious therapeutic benefit at all," Gurdon told reporters in London. "It was almost 50 years before the value the potential value of that basic scientific research comes to light," he said.

In 1997, the cloning of Dolly the sheep by other scientists showed that the same process Gurdon discovered in frogs would work in mammals.

More than 40 years after Gurdon's discovery, in 2006, Yamanaka showed that a surprisingly simple recipe could turn mature cells back into primitive cells, which in turn could be prodded into different kinds of mature cells.

Basically, the primitive cells were the equivalent of embryonic stem cells, which had been embroiled in controversy because to get human embryonic cells, human embryos had to be destroyed. Yamanaka's method provided a way to get such primitive cells without destroying embryos.

"The discoveries of Gurdon and Yamanaka have shown that specialized cells can turn back the developmental clock under certain circumstances," the committee said. "These discoveries have also provided new tools for scientists around the world and led to remarkable progress in many areas of medicine."

Just last week, Japanese scientists reported using Yamanaka's approach to turn skin cells from mice into eggs that produced baby mice.

Read more:
Nobel Prize in medicine awarded to pair for stem-cell discovery

Stem cell researchers awarded Nobel Prize for medicine

A British researcher and a Japanese scientist won the Nobel Prize in physiology or medicine on Monday for discovering that ordinary cells of the body can be reprogrammed into stem cells, which then can turn into any kind of tissue -- a discovery that may led to new treatments.

Scientists want to build on the work by John Gurdon and Shinya Yamanaka to create replacement tissues for treating diseases like Parkinson's and diabetes, and for studying the roots of diseases in the laboratory -- without the ethical dilemma posed by embryonic stem cells.

In announcing the 8 million kronor ($1.2 million) award, the Nobel committee at Stockholm's Karolinska Institute said the discovery has "revolutionized our understanding of how cells and organisms develop."

Gurdon showed in 1962 -- the year Yamanaka was born -- that the DNA from specialized cells of frogs, like skin or intestinal cells, could be used to generate new tadpoles. That showed the DNA still had its ability to drive the formation of all cells of the body.

At the time, the discovery had "no obvious therapeutic benefit at all," Gurdon told reporters in London.

"It was almost 50 years before the value -- the potential value -- of that basic scientific research comes to light," he said.

In 1997, the cloning of Dolly the sheep by other scientists showed that the same process Gurdon discovered in frogs would work in mammals.

More than 40 years after Gurdon's discovery, in 2006, Yamanaka showed that a surprisingly simple recipe could turn mature cells back into primitive cells, which in turn could be prodded into different kinds of mature cells.

Basically, the primitive cells were the equivalent of embryonic stem cells, which had been embroiled in controversy because to get human embryonic cells, human embryos had to be destroyed. Yamanaka's method provided a way to get such primitive cells without destroying embryos.

"The discoveries of Gurdon and Yamanaka have shown that specialized cells can turn back the developmental clock under certain circumstances," the committee said. "These discoveries have also provided new tools for scientists around the world and led to remarkable progress in many areas of medicine."

Continue reading here:
Stem cell researchers awarded Nobel Prize for medicine

Stem-cell advocacy ‘moved the needle’

A beautiful, fresh face, Sabrina Cohen can stun you with her charm.

But she is far more. This 24-year-old, who has spent 10 years in a wheelchair as a result of a car accident, is battling to raise money for research and therapies that may eventually reverse paralysis and treat central nervous system impairments.

A native of Miami Beach, she is one of five leaders being honored by the Palm Beach-based Genetic Policy Institute at its eighth annual World Stem Cell Summit Dec. 4 at the Palm Beach County Convention Center in West Palm Beach. She is receiving the Inspirational Award.

This award brings a lot of meaning to my life and the path I have chosen to follow, she says of her founding of the nonprofit Sabrina Cohen Foundation.

This provides a platform for my foundation to inspire others and to share my hope for (stem cell) regeneration.

Other honorees include CBS 60 Minutes for its hard-hitting programs on unproven stem cell treatments; Susan Solomon, CEO of the New York Stem Cell Foundation; Alliance for Regenerative Medicine; and the Nebraska Coalition for Lifesaving Cures.

We recognize the dedicated individuals and organizations that positively impact the cause of stem-cell advancement aimed at finding cures and alleviating human suffering, said Bernard Siegel, executive director of GPI.

Through their positive actions, our honorees have moved the regenerative medicine needle, bringing closer the day when patients will be safely treated through these innovative technologies.

Previous Stem Cell Action awardees have included Maryland Governor Martin OMalley, Research!America, Juvenile Diabetes Research Foundation, Michael J. Fox, Robert Klein, Sherry Lansing, Palm Beacher A. Alfred Taubman and the National Association of Biology Teachers.

This year, panels will address advancing treatments for specific diseases and conditions including cancer, diabetes, HIV/AIDS, cardiovascular disease, spinal cord injury, paralysis, multiple sclerosis, ALS, Parkinsons, eye diseases and others.

The rest is here:
Stem-cell advocacy ‘moved the needle’

Cancer, induced pluripotent stem cell similarities

SACRAMENTO UC Davis investigators have found new evidence that a promising type of stem cell now being considered for a variety of disease therapies is very similar to the type of cells that give rise to cancer. The findings suggest that although the cells known as induced pluripotent stem cells (iPSCs) show substantial promise as a source of replacement cells and tissues to treat injuries, disease and chronic conditions, scientists and physicians must move cautiously with any clinical use because iPSCs could also cause malignant cancer.

The article, "Induced pluripotency and oncogenic transformation are related processes," is now online in the journal Stem Cells and Development.

"This is the first study that describes the specific molecular pathways that iPSCs and cancer cells share from a direct comparison" said Paul Knoepfler, associate professor of cell biology and human anatomy, and principal investigator of the study. "It means that much more study is required before iPSCs can be used clinically. However, our study adds to a growing knowledge base that not only will help make stem cell therapies safer, but also provide us with new understandings about the cancer-causing process and more effective ways to fight the disease."

Since 2007, cell biologists have been able to induce specialized, differentiated cells (such as those obtained from the skin or muscle of a human adult) to become iPSCs. Like embryonic stem cells, iPSCs are a type of stem cell that is able to become any cell type. This "pluripotent" capability means that iPSCs have the potential of being used in treatments for a variety of human diseases, a fundamentally new type of clinical care known as regenerative medicine.

iPSCs are considered particularly important because their production avoids the controversy that surrounds embryonic stem (ES) cells. In addition, iPSCs can be taken from a patient's own skin and induced to produce other needed tissues, thereby evading the possibility of immunologic rejection that arises when transplanting cells from a donor to a recipient. In contrast to therapies based on ES cells, iPSCs would eliminate the need for patients to take immunosuppressive drugs.

Earlier research indicated that both ES cells and iPSCs pose some health risks. Increasing evidence suggests that pluripotency may be related to rapid cellular growth, a characteristic of cancer. iPSCs, as well as embryonic stem cells, are well known by scientists to have the propensity to cause teratomas, an unusual type of benign tumor that consists of many different cell types. The new UC Davis study demonstrates for the first time that iPSCs as well as ES cells share significant similarities to malignant cancer cells.

The investigators compared iPSCs to a form of malignant cancer known as oncogenic foci that are also produced in laboratories; these cell types are used by medical researchers to create models of cancer, particularly sarcoma. Specifically, the scientists contrasted the different cells' transcriptomes, comprised of the RNA molecules or "transcripts." Unlike DNA analysis, which reflects a cell's entire genetic code whether or not the genes are active, transcriptomes reflect only the genes that are actively expressed at a given time and therefore provide a picture of actual cellular activity.

From this transcriptome analysis, the investigators found that the iPSCs and malignant sarcoma cancer cells are unexpectedly similar in several respects. Genes that were not expressed in iPSCs were also not expressed in the cancer-generating cells, including many that have properties that guide a cell to normally differentiate in certain directions. Both cell types also exhibited evidence of similar metabolic activities, another indication that they are related cell types.

"We were surprised how similar iPSCS were to cancer-generating cells," said Knoepfler. "Our findings indicate that the search for therapeutic applications of iPSCs must proceed with considerable caution if we are to do our best to promote patient safety."

Knoepfler noted, for example, that future experimental therapies using iPSCs for human transplants would most often not involve implanting iPSCs directly into a patient. Instead, iPSCs would be used to create differentiated cells or tissues in the laboratory, which could then be transplanted into a patient. This approach avoids implanting the actual undifferentiated iPSCS, and reduces the risk of tumor development as a side effect. However, Knoepfler noted that even trace amounts of residual iPSCs could cause cancer in patients, a possibility supported by his team's latest research.

Go here to read the rest:
Cancer, induced pluripotent stem cell similarities

Researchers Find Similarities Between Cancer Cells And Induced Pluripotent Stem Cells

September 30, 2012

April Flowers for redOrbit.com Your Universe Online

A research team from the University of California, Davis, has found evidence that a promising type of stem cell being considered for a variety of disease therapies is very similar to the type of cells that cause cancer. The cells, known as induced pluripotent stem cells (iPSCs) show promise as a source of replacement cells and tissues to treat injuries, diseases and chronic conditions. Although the iPSCs have the potential for such good, scientists have to move cautiously because they could also cause malignant cancer, according to the teams study published online in the journal Stem Cells and Development.

This is the first study that describes the specific molecular pathways that iPSCs and cancer cells share from a direct comparison said Paul Knoepfler, associate professor of cell biology and human anatomy. It means that much more study is required before iPSCs can be used clinically. However, our study adds to a growing knowledge base that not only will help make stem cell therapies safer, but also provide us with new understandings about the cancer-causing process and more effective ways to fight the disease.

Cell biologists have been able to induce specialized, differentiated cells such as those obtained from the skin or muscle of adult humans to become iPSCs since 2007. Like embryonic stem cells, iPSCs are pluripotent, meaning they can become any type of cell and have the potential for being used in treatments for a variety of human diseases. This is a fundamentally new type of clinical care known as regenerative medicine.

The production of iPSCs avoids the controversy that surrounds embryonic stem cells (ES), making them particularly important. They can also be taken from a patients own skin and induced to produce other needed tissues, making the chances of immunologic rejection extremely low, eliminating the need to take immunosuppressive drugs.

Earlier studies indicate that both ES and iPSCs pose some health risks. There is an increasing amount of evidence that suggests pluripotency may be related to rapid cellular growth, which is a characteristic of cancer. Both types of stem cells are well known by scientists to have the propensity to cause teratomas, a benign tumor that consists of many different cell types. This new study from UC Davis demonstrates that iPSCs as well as ES cells share significant similarities to malignant cancer cells.

The research team compares iPSCs to a form of malignant cancer known as oncogenic foci that are also produced in laboratories. These are used by scientists to create models of cancer, particularly sarcoma. The scientists contrasted the different cells transcriptomes, comprised of the RNA molecules or transcripts. Transcriptomes reflect only the genes that are actively expressed at a given time and therefore provide a picture of actual cellular activity, unlike DNA analysis, which reflects a cells entire genetic code whether or not the genes are active.

By analyzing the transcriptomes, the team found that the iPSCs and malignant sarcoma cancer cells are unexpectedly similar. Genes not expressed in iPSCs are also not expressed in the cancer-generating cells, including many that have properties that guide a cell to normally differentiate in certain directions. Both cell types also exhibited similar metabolic activities. This is another indication that they are related cell types.

We were surprised how similar iPSCS were to cancer-generating cells, said Knoepfler. Our findings indicate that the search for therapeutic applications of iPSCs must proceed with considerable caution if we are to do our best to promote patient safety.

Follow this link:
Researchers Find Similarities Between Cancer Cells And Induced Pluripotent Stem Cells

FDA critical of stem-cell firm

The Sugar Land company involved in Gov. Rick Perry's unlicensed adult stem-cell procedure is rife with basic manufacturing problems, according to the U.S. Food and Drug Administration.

In a report one expert called a blow to the entire adult stem-cell industry, the FDA found that Celltex Therapeutics Corp. cannot guarantee the sterility, uniformity and integrity of stem cells it takes from people and then stores and grows for therapeutic reinjection.

You have not performed a validation of your banking and thawing process to assure viability of the stem cells, reads the April 27 report, meaning that the company cannot verify the cells are alive.

The FDA report, which followed an April inspection of Celltex, was released under the Freedom of Information Act on Monday to the Houston Chronicle and a University of Minnesota bioethicist who complained that Celltex is a potential danger to patients and not in compliance with federal law.

The report, partially redacted, was not accompanied by a warning letter.

A former FDA official who asked not to be identified, said the deficiencies 79 in all, from incorrectly labeled products to failed sterility tests are so serious that Celltex risks being shut down if it does not remedy the problems quickly.

Adult stem cells are cells in the body that multiply to replenish dying cells. Long used to treat leukemia and other cancers, they have shown promise for tissue repair in many other diseases in the last decade, although most scientists in the field consider them not ready for mainstream use.

Celltex has been in the public eye since it was revealed that Perry's Houston doctor treated him with his own stem cells during back surgery last July and in follow-up appointments. His stem cells were stored and grown at Celltex.

Perry subsequently called for Texas to become the nation's leader of adult stem-cell medicine, which he touts as an ethical alternative to embryonic stem cells. Perry worked with his Houston doctor and a state representative to write legislation intended to commercialize the therapy in Texas.

In April, the Texas Medical Board approved rules regulating the therapy, which isn't approved by the FDA. The rules allow doctors to use stem cells as long as they get the approval of a review board that evaluates clinical research for safety. The board members were all appointed by Perry.

Link:
FDA critical of stem-cell firm

FDA: Stem cell lab used by Perry has problems

The U.S. Food and Drug Administration has issued a new report criticizing the Texas company that stored adult stem cells from Texas Gov. Rick Perry for use in an experimental procedure for his back pain, according to a newspaper report Monday.

An FDA report obtained by the Houston Chronicle ( http://bit.ly/MwEHjI) said CellTex Therapeutics cannot guarantee the stem cells it takes from patients remain sterile and alive. The nine-page report dated April 27 says the lab, located in the Houston suburb of Sugar Land, does not have procedures to prevent contamination of products that are supposed to be sterile.

The report also says the lab didn't have written records of investigations into the failure of a batch of cells. It also says the lab has not marked some lab products properly.

"The deficiencies identified reflect significant problems, serious issues," said Paul Knoepfler, an associate professor at the University of California-Davis School of Medicine, in an interview with the newspaper. "If I were a patient, they would scare me off big time."

CellTex was thrust into the news last year when Perry, then running for the Republican nomination for president, revealed that he had stem cells taken from fat in his body, grown in a lab and then injected into his back during a July operation to address his back pain.

Perry's stem cells were stored and grown at CellTex, the Chronicle reported. The firm is co-owned by Dr. Stanley Jones, Perry's friend who performed the operation.

Subsequently, the Texas Medical Board approved new rules on similar experimental stem cell therapies. Perry appointed the board. The FDA has not approved any adult stem cell therapies for orthopedic use, but experimentation by doctors in the U.S. and abroad is common.

Some scientists tout possible benefits of stem cell treatments, including treatment for heart disease, diabetes and some cancers. Others argue adult stem cell experimentation actually increases the risk of cancer and can cause blood clots.

A Perry spokeswoman called Perry's surgery a "success" and reaffirmed his commitment to adult stem cell research. She said the FDA report was between the agency and CellTex.

CellTex CEO David Eller said the company invited the FDA inspection, which took place over nearly two weeks in April, according to the report.

Read the rest here:
FDA: Stem cell lab used by Perry has problems