Category Archives: Stem Cell Medicine


Medical Innovation In Pet Healthcare Is Taking Things Up a Notch – Entrepreneur

Opinions expressed by Entrepreneur contributors are their own.

You're reading Entrepreneur India, an international franchise of Entrepreneur Media.

India is currently home to over 10-plus million pets. Over time, pet parents have realized the importance of medicine and innovation and the change it can bring about in a pets life. Pet innovation today is booming across treats, food, grooming, wearables, insurance, online veterinary services, genetic testing, stem cell therapy, diagnostics and much more. According to PETEX INDIA 2021, the pet food market alone is projected to cross $310 million by FY22. The pet care industry is globally expanding horizontally and vertically with innovative and challenging minds at work. Medical innovation has brought about effective growth thus making way for new products, services and medicines for pets. Medical procedures such as lasers for joint pains and joint care have helped pet owners make the lives of their furry babies a little less painful.

Unsplash

A few medical innovations in India have particularly taken the Indian pet care sector a notch higher:

CBD & Hemp Seed Oil For Overall Health & Wellness

CBD, or cannabidiol, is a chemical found in the cannabis sativa plant and is known to have wonderful pain-relieving properties. CBD is one of the most effective natural therapies for dogs suffering from arthritis and many other diseases. It is safe and has no side effects. CBD oil interacts with the cells in the muscle, skin and nerves of pets thereby reducing their pain. CBD and hemp seed oils are now available in the form of oil, shampoos and treats. It also benefits pets with anxiety issues triggered due to loud noises, people or travel and keeps them calm and relaxed. CBD oil is finding an innovative use in health and wellness based products for pets and its multiple visible benefits.

Omega 3 and Omega 6 fatty acids in hemp seed oil help control skin breakouts and protect the skin.

They are responsible for creating a healthy cell membrane and help to avoid excessive fur shedding. Hemp serves as the optimum plant-based nutrition that is easily digestible and includes antioxidants that aid elevated health in pets. Hemp seed oil has recently been added to pet food and treats and is also being used in healing balms for dry paws and skin.

Prebiotics & Probiotics For Gut Health

Probiotics are the billions of good bacteria that live in the gastrointestinal tract of animals. Pets respond to supplements in the form of immunity boosters and probiotic strips are easy dissolving strips unlike pills, powders or tablets which the pet might refuse to intake. Probiotics treat diarrhoea, stomach related issues, irritable bowel syndrome, improve digestive health, prevent anxiety, reduce stress and improve general health and well-being. Given its health benefits, prebiotics and probiotics have found their way in pet food as they help to maintain the pH balance in the gut and keep the digestive tract healthy. Probiotics have also recently been introduced in shampoos as they help in supporting a healthy microbiome and defend against common skin problems such as itching dryness, dandruff, hot spots, excessive shedding and yeast in pets.

Assistive Devices To Aid Mobility

Harnesses and slings for dogs suffering from hip dysplasia are gaining popularity among vets and pet parents. These act as a wheel-chair and support the pets rear body and enable them to move around. They also help pets who have lost their hind legs in accidents. Harnesses for pets who are blind have been created such that they form a halo around their head and this will alert the pet if they happen to bump against any object. These innovations may alter the pets appearance but what is important is that it helps pets to live a normal life. The same goes for pets afflicted with arthritis. Elevated feeding stations, ramps to reduce the stress on joints have also become common to households who have aging pets.

Veterinary Diagnostics

Innovation in the use of technology that equips veterinarians to view real-time information on internal bone and muscle structure is in the fray. This will help to speed up the prototype required to create an animal bone model that is generated using the tomography scan technology. This technology is building steam though still in its nascent stage. Two new blood types, Langereis and Junior, have been identified in pets apart from the 12 dog blood types. New diagnostic techniques through tests which can help to diagnose the possibility of diseases in pets, confirm or even classify disease status in pets, is the need of the hour.

According to a study by Grand View Research on veterinary medicine, the global veterinary medicine market size was estimated at $29.2 billion in 2020 and is expected to expand at a CAGR of 7.4 per cent from 2021 to 2028. Steady medical innovation is solving unsolved and unattended problems that pets have faced since decades. While the offline gap has been filled in by the online D2C revolution in pet care and wellness, advancements in medical innovation remain unhindered despite the pandemic.

View original post here:
Medical Innovation In Pet Healthcare Is Taking Things Up a Notch - Entrepreneur

San Diego research centers receive $15 million to train next generation of scientists – Three San Diego research institutions have been awarded nearly…

San Diego research centers receive $15 million to train next generation of scientists

San Diego Community News Group

Three San Diego research institutions have been awarded nearly $15 million from the California Institute of Regenerative Medicine (CIRM) to train the next generation of scientists in regenerative medicine, a field of research that holds great promise for generating transformative medicines.

Scripps Research, University of California San Diego, and Sanford Burnham Prebys each received grants of around $5 million from CIRM to support the training of graduate students, postdoctoral trainees, and clinical trainees.

The CIRM awards will also foster interdisciplinary regenerative medicine collaborations among the three San Diego recipient institutions and support outreach science activities in the broader San Diego community. The funding also will support educational programs for K-12 students and undergraduates on topics related to regenerative medicine that are intended to reduce disparities and disproportionate access to science.

"CIRM has provided critical leadership spearheading regenerative medicine and stem cell research," says Peter Schultz, president and CEO of Scripps Research. "This forward-looking investment in training the next generation of scientists will help ensure continued progress toward realizing the tremendous promise of regenerative medicine."

Schultz will head the Scripps Research program which received $4,931,353 to train scientists in disciplines and techniques central to stem cell biology and regenerative medicine. These include cellular processes involved in human embryonic and adult stem cell self-renewal and differentiation and the development of novel drugs to target related pathways.

University of California San Diego received $4,992,446 to train the next generation of stem cell biologists, driving advances ranging from the unraveling of fundamental mechanisms of cell function to the development of new therapies. The UC San Diego training program will be led by Alysson R. Muotri, PhD, professor of pediatrics and cellular and molecular medicine at UC San Diego School of Medicine, and Sheldon Morris, MD, primary care physician at UC San Diego Health.

This grant comes at a time when stem cell research in San Diego has matured, thanks to strong support over the years from visionaries such as CIRM and philanthropist T. Denny Sanford, Muotri said. The only way to keep up this momentum is to have professionals that understand how to use and apply stem cell and gene therapies. We are building the next generation of researchers and clinicians to do this.

Sanford Burnham Prebys received $4,931,353 to launch a multidisciplinary stem cell training program. The grant will provide funds for competitive awards for PhD students, postdocs and clinical fellows in stem cell, gene therapy and regenerative medicine fields at the institute. The training program will be led by Evan Snyder, MD, PhD, professor and director of the Center for Stem Cells & Regenerative Medicine, as well as professors/directors Pier Lorenzo Puri, MD, and Alessandra Sacco, PhD, in the Development, Aging and Regeneration Program Center at Sanford Burnham Prebys.

Sacco says stem cell research holds tremendous promise for medical treatments, and that CIRMs support will allows scientists to learn more about the process through which science becomes medicine.

We are exceptionally grateful that CIRM is supporting this important program, says Sacco. This award helps the next generation of stem cell and regenerative medicine scientists who will work across boundaries and between disciplines to become capable of translating basic discovery science into clinical research for patient benefit.

This years awards build on an earlier Research Training program through which CIRM supported training in regenerative medicines from 2006-2016 and trained 940 CIRM Scholars including 321 doctoral students, 453 postdocs and 166 MDs.

Read more:
San Diego research centers receive $15 million to train next generation of scientists - Three San Diego research institutions have been awarded nearly...

UC Davis Medical Center faculty respond to the rise of treatments like Merck’s anti-COVID pill – The Aggie – The Aggie

Mercks pill, molnupiravir, shows reductions of hospitalizations and deaths by 50%

By BRANDON NGUYEN science@theaggie.org

Over a year and a half into the pandemic, with sweeping changes to the standard of living along with distressing upward trends of illness, hospitalizations and deaths, recent developments of treatments such as Mercks anti-COVID pill offer hope toward a return to the status quo.

According to an article in The Sacramento Bee, Pharmaceutical company Merck took the internet by storm when it announced Friday morning that findings from a recent study showed its experimental oral pill molnupiravir reduced COVID-19 related hospitalizations and deaths by 50%.

Dr. Christian Sandrock, a trained infectious disease pulmonary critical care doctor at the UC Davis Medical Center, discussed the current state of the pandemic as being dominated by downward trends in new cases by about 20% from where it was two weeks ago. However, he highlighted that hot spots of cases remain in certain states and areas within the U.S. where vaccination rates are not as high as in California.

With the advent of continuing trials for new treatments against COVID-19, a multi-faceted approach is necessary to reduce the impact of the pandemic, according to Dr. Rachael Callcut, the division chief of trauma and acute care surgery at the UC Davis Medical Center. Part of this approach, aside from initial prevention of the disease and treating the virus itself, includes risk mitigation and decreasing the chances of hospitalization by preventing the development of severe illness arising from the coronavirus.

This particular oral agent is targeted at people who are at risk of developing severe illness from the virus, and it is something to be given early in the course of illness to try to prevent the development of complications, Callcut said. I would say that this is sort of analogous to the approaches that you see with things like pills that we give to patients who have influenza to try to prevent them from developing complications of influenza.

Mercks study is important to altering the current landscape of the pandemic and its ferocious impact on the global population in the past year. In the same vein, Sandrock summarized the promising results of the pill and its significance proceeding toward a hopeful end to the pandemic.

The data looks promising: the trial had just about a little over 350 people in each arm so, not whopping numbers but still reasonably high, and the key is the major endpoints of hospitalization and death were certainly down, Sandrock said. So I think that the big thing is it can be taken orally, and this changes the landscape to something that is a single pill.

Other current treatments include the administration of monoclonal antibodies to the patient to combat the virus, and maintaining a steady supply of this product is relatively more costly in terms of price and time, according to Sandrock. For individuals who live further away and have little to no access to healthcare, reducing hospitalizations is key to facilitating a return to the status quo. With Mercks anti-COVID pill, it has the potential to drastically reduce the burdens of both the patient and the medical professional.

Fighting the COVID-19 pandemic has fostered collaboration among drug developers, academic medical and research centers as well as supportive funding agencies, Dr. Allison Brashear, the dean of the UC Davis School of Medicine, said. UC Davis School of Medicine, renowned for its research expertise, is a trusted partner on many COVID-19 clinical trials at the forefront of efforts to cure this terrible disease.

Callcuts lab is also involved in one of the many ongoing clinical trials, working with mesenchymal stromal cells, cells that are stem-cell like that aid in regeneration of damaged lung cells and reducing inflammation associated with acute respiratory disorders caused by viruses like COVID-19.

Hope is on the horizon for individuals actively fighting the pandemic with the race toward developing treatments attacking all realms of the virus. Callcut echoed this sentiment, encouraging the continual efforts in enforcing public health safety and support.

Theres got to be a multi-faceted approach that resides on the principles of our public health initiatives, and the first is prevention of illness, Callcut said. One of the most effective strategies for that is vaccinations, specifically investing in increasing vaccination education and administering vaccines. These types of measures will be our most important defenses in leading to the end of the pandemic. Written by: Brandon Nguyen science@theaggie.org

Read more:
UC Davis Medical Center faculty respond to the rise of treatments like Merck's anti-COVID pill - The Aggie - The Aggie

Managing superficial pyoderma with light therapy – DVM 360

Phovia is highly effective for treating superficial and deep skin infections.

This article is sponsored by Vetoquinol.

Superficial bacterial folliculitis, also called superficial pyoderma, is a commonly diagnosed dermatological condition in dogs.1,2 These infections are secondary to primary conditions affecting normal skin barrier function (eg, allergic skin disease, trauma, burns), keratinization (eg, nutritional deficiency, liver disease), and immune regulation (eg, neoplasia, autoimmunity, endocrinopathy).2 Cats less commonly develop superficial pyoderma perhaps because of decreased adhesion of staphylococci to feline corneocytes, but the primary issues causing infection are similar to those seen in dogs.3-8

The primary pathogen associated with superficial pyoderma in dogs and cats is a normal resident of the skin, Staphylococcus pseudintermedius, but other flora may be involved.2,8-12 As the normal homeostasis of this organism is disrupted from a primary disease, these gram-positive cocci invade deeper regions of the epidermis and hair follicle epithelium, increase in number, and enhance inflammation.

Classical clinical lesions of superficial pyoderma include papules and pustules that may eventually progress to alopecia, epidermal collarettes, scales, and crusts. Often the skin is erythematous and pruritic. Chronic cases may demonstrate lichenification, hyperpigmentation, and scarring alopecia from long-standing inflammation and infection.2 Cats may develop even more unique cutaneous reaction patterns and skin lesionsespecially when allergic skin disease is presentincluding miliary dermatitis, eosinophilic plaques, rodent ulcers, and eosinophilic granulomas.5

Identifying and addressing the primary disease is paramount in achieving complete, permanent resolution of the superficial pyoderma. Therefore, treatment is multifactorial and aimed at addressing the primary disease, reducing skin inflammation, and treating the infection directly. Current guidelines for the treatment of superficial pyoderma in dogs recommend the use of topical antimicrobials as sole therapy whenever possible; however, overuse of systemic antibiotics remains common.2,13-16

Topical therapy has many benefits including direct antimicrobial effects without use of an antibiotic, reduction in antibiotic-resistant bacterial populations, restoration of the normal skin barrier, enhancement of skin hydration, physical removal of keratinous debris, and removal of offending allergens from the haircoat.2,14 However, topical therapy is met with challenges that impede clinical application. Adherence is the biggest concern when recommending topical therapy to pet owners. Frequent bathing or application of medicated solutions to the skin can be difficult when busy owner lifestyles combine with a nonadherent patient. Skin inflammation can be painful and animals may be resistant to topical therapy. Cats are fastidious groomers and may lick away a medicated topical therapy before it can achieve appropriate contact time. Additionally, some topical agents can cause oral erosions and ulcerations or even gastrointestinal disturbance when groomed off. For these reasons, systemic antibiotics continue to be a common prescribing practice for superficial pyoderma.

All antibiotic use, despite duration or frequency, contributes to the development of antibiotic-resistant bacterial populations on the animal and in the environment.17-19 From that very first dose, bacteria are constantly evolving to implement inherent and acquired resistance mechanisms necessary for survival. One well-recognized mechanism is oxacillin resistance through the mecA gene, which produces a penicillin-binding protein receptor with poor affinity for -lactam antibiotics.2,14,15,20-23 Even more concerning than these oxacillin-resistant strains are those that develop multidrug resistance, which is defined as resistance to 3 or more antibiotic drug classes. This may happen over time with repeated antibiotic exposure or after a single dose of certain antibiotics such as fluorinated quinolones.2,20,23-25 The continued emergence of antibiotic-resistant bacteria inhibits the successful treatment of bacterial infections in pets and humans. As veterinarians consider how their antibiotic use contributes to this growing pandemic, they must look for alternative, safe, effective, affordable, and convenient antibacterial treatment modalities.

Phovia as a solution

Investigation into the photobiological effects of light therapy has been ongoing for the past 50 years. Photobiomodulation (PBM) therapy is a type of light treatment that uses visible or near infrared light to promote therapeutic benefits including induction of tissue healing and regeneration and inhibition of biological responses that induce pain or inflammation. The treatment distance, wavelength, fluence, pulse parameters, spot size, and irradiation time influence the effects of light energy on tissue. Visible light with wavelengths ranging from 400 to 700 nm can stimulate positive photobiomodulatory effects that promote wound healing, reduce inflammation and pain, modulate stem cell populations, and reduce bacterial contamination of wounds.26,27

Once visible light enters the skin, it is absorbed by the cells and initiates chemical changes dependent on the wavelength (or color) of light and the chromophore within the skin.27 Within each cell, membrane-bound organelles called mitochondria contain chromophores that absorb the light energy and begin making energy (adenosine triphosphate; ATP) via activation of cytochrome c oxidase. Outcomes of the mitochondrial respiratory pathway activation include stimulation of secondary messenger pathways, production of transcription factors and growth factors, and increased ATP production. However, excessive light energy exposure will overstimulate mitochondrial respiration and cause expenditure of all ATP reserves, which creates oxidative stress resulting in damaging elevations of nitric oxide, production of harmful free radicals, and activation of cytotoxic mitochondrial-signaling pathways leading to apoptosis.27,28 This is why creating PBM therapy protocols is important for targeting the beneficial effects while avoiding unintended harm.

Specific benefits of light energy within the visible light spectrum can be broken down into each color of light. Blue light (400-500 nm) has a lower penetration depth and primarily interacts with keratinocytes, reduces bacterial adhesion and growth, and increases intracellular calcium and osteoblast differentiation.29-31 Green light (495-570 nm) affects the superficial tissue and alters melanogenesis, reduces hyperpigmentation of the skin, and reduces tissue swelling.29,30 Red light (600-750 nm) penetrates deeper into the dermis and subcutis where it acts on cellular mitochondria to reduce inflammation and promote collagen synthesis through fibroblast proliferation and production of transforming growth factor-, fibroblast growth factor, platelet derived growth factor, and others.26-28,32,33 Red light has proliferative effects on mesenchymal stem cells and induces proliferation of epithelial colony forming units important for tissue repair and regeneration.34,35

Phovia, sold by Vetoquinol, is a form of fluorescent PBM therapy utilizing a blue light emitting diode (LED lamp, 400-460 nm) and topical photoconverter gel that emits low-energy fluorescent light (510-600 nm) when illuminated by the LED lamp.36,37 This interaction results in the formation of multiple wavelengths of visible light, each with a unique depth of penetration and effect on the tissue as described above. Application is fast and simple. The affected skin may be clipped free of hair and cellular debris removed with gentle cleaning. The skin is allowed to dry before application of the photoconverter gel. Just prior to application, 1 ampule of fluorescence chromophore gel is added to 1 container of photoconverter carrier gel and mixed thoroughly. The mixture is applied in a 2-mm layer to the affected skin, and the LED lamp is held 5 cm above the lesion and used to illuminate the area for 2 minutes. The gel is wiped away using saline-soaked gauze. The application can be repeated immediately after 5 to 10 minutes of rest or a second application can occur a few days later. Twice-weekly applications are continued until the wound is healed. Appropriate eyewear is required to protect the operator from the intensely bright light. Application is pain free and stress free for the patient, so sedation is not typically required.

Benefits of Phovia

Phovia shows great promise as a safe, effective therapy for treatment of numerous inflammatory dermatoses in dogs including superficial pyoderma,38 deep pyoderma,39 perianal fistula,40 interdigital dermatitis,41 calcinosis cutis,42 acute traumatic wounds,43 chronic wounds,37 surgical wounds,44 and otitis externa.45 Phovia as a sole therapy speeds time to healing by 36% in canine superficial pyoderma as compared with dogs receiving oral antibiotics alone.38 In one study, dogs with superficial pyoderma were treated with Phovia alone or with an oral antibiotic alone. Dogs treated twice weekly with Phovia demonstrated complete clinical healing in about 2.3 weeks (P < .05)whereas dogs receiving oral antibiotic healed in about 3.75 weeks.38 Additionally, Phovia speeds time to healing by nearly 50% in deep pyoderma when used with an oral antibiotic (5.7 weeks of treatment) compared with dogs receiving only oral antibiotic (11.7 weeks of treatment).39 The ability of this fluorescent PBM therapy to eliminate or significantly reduce duration of exposure to antibiotics will decrease the spread of antibiotic-resistant bacterial strains within pets and humans.

Phovias high safety profile makes it a beneficial tool to implement in everyday practice. Training the veterinary team to communicate therapy benefits with clients as well as to perform treatments is fast and easy. Training the veterinary technicians to perform treatments will give the veterinarian time to examine other patients. A single back-to-back application takes about 15 minutes, so pet owners can be in and out of the clinic quickly; however, the 2 weekly treatments can be separated by a few days if the veterinarian prefers to evaluate the patient more frequently. Additionally, when used as a sole therapy, clients are not required to administer oral or topical medications at home. This greatly improves treatment adherence and success. Instruct clients to use once-daily smartphone photos to document improvement at home. This can be useful when deciding how many treatments to perform. Most cases of superficial pyoderma will resolve completely by the third treatment.38 It is a good idea to communicate to clients that 3 to 4 weekly treatments may be required.

Conclusion

Phovia is a versatile, innovative therapeutic approach to numerous types of dermatitis.36 It is easy to implement in general practice, and is safe, pain free, and affordable. Phovia is highly effective for superficial and deep skin infections and eliminates the need for clients to administer numerous at-home treatments. This greatly improves the pet-owner bond and treatment outcomes by promoting adherence. Phovia accelerates time to wound healing, which decreases duration of antibiotic exposure and may reduce risk of antibiotic resistance development in these cases.2,13,36-39 Phovias efficacy against antibiotic-susceptible and antibiotic-resistant bacteria shows promise as an alternative therapeutic approach that promotes the principles of antimicrobial stewardship.36 If you are interested in purchasing this medical device for your practice, contact your Vetoquinol service representative.

Amelia G. White, DVM, MS, DACVD is an associate clinical professor of dermatology at Auburn University College of Veterinary Medicine.

REFERENCES

More:
Managing superficial pyoderma with light therapy - DVM 360

Completion of Enrollment in Phase III Comparative Study for Investigational Regenerative Cellular Medicine (gMSC1) for Knee Chondrogenesis Using…

Chugai Pharmaceutical Co., Ltd.

TWOCELLS Co., Ltd.

Completion of Enrollment in Phase III Comparative Study for

Investigational Regenerative Cellular Medicine (gMSC1) for Knee Chondrogenesis Using Allogeneic 3D Artificial Tissue of MSC

TOKYO, October 27, 2021 --Chugai Pharmaceutical Co., Ltd.(TOKYO: 4519) and TWOCELLS Co., Ltd.

(Head Office: Hiroshima City, Hiroshima; President and CEO: Toshiki Hiura; hereafter, TWOCELLS) announced completion of target enrollment into a Phase III comparative study for an investigational regenerative cellular medicine for chondrogenesis in the knee (development number "gMSC1"), with surgery on the 70th patient.

This study examines the safety and efficacy of transplanting gMSC1, a three-dimensional artificial tissue of allogeneic MSCs, in comparison with microfracture surgery for patients with symptomatic traumatic cartilage defects or osteochondritis dissecans in the knee. The enrollment had started on November 29, 2017 and completed with the 70th surgery, fully enrolling the target number of patients. Going forward, the primary endpoints of histological evaluation of the cartilage and subjective symptoms will be analyzed at week 52 after surgery.

"The articular cartilage in the knee plays an important role in assisting with smooth leg movement. It has a very limited regenerative capacity, and various methods of treatment are under investigation for damages on the cartilage. gMSC1 aims to repair the cartilage in the knee as a regenerative cell therapy which does not require the patient's own tissue taken from their joint, potentially paving the way for solving unmet medical needs in existing treatments. We hope that the assessment ahead will prove the value of gMSC1, Chugai's first regenerative medicine project, and its benefit for patients," said Dr. Osamu Okuda, President and CEO of Chugai.

Toshiki Hiura, President and CEO of TWOCELLS, said, "Despite significant impact from COVID-19 pandemic, we have successfully completed enrollment in the study. Supported by the partnership with Chugai, we, here in Hiroshima, are smoothly advancing the development of basic technologies required for allogenic tissues, the provision of tissues from donors and establishing a GCTP-compatible facility to manufacture final products in Japan for the first time. We will build commercial production capacity as early as possible and strive to make regenerative medicine a familiar treatment option."

Chugai and TWOCELLS concluded a licensing agreement for gMSC1 in 2016. Under the agreement, TWOCELLS is conducting the clinical trial, and responsible for manufacture and supply of gMSC1. Chugai has joint development and exclusive distribution rights for gMSC1 in Japan and is responsible for regulatory application.

To provide more patients with an innovative treatment option as soon as possible, Chugai and TWOCELLS will work on the practical application of the cartilage regenerative therapy using allogenic synovium-derived mesenchymal stem cell, which is the first of its kind in the world.

TWOCELLS and Chugai Announce Performing Surgery of the First Patient in Phase III Trial for "gMSC1," a Regenerative Cellular Medicine for Chondrogenesis in the Knee (press release on November 29, 2017) https://www.chugai-pharm.co.jp/english/news/detail/20171129170000_50.html

Chugai and TWO CELLS Announce a License Agreement for "gMSC1" a Regenerative Cellular Medicine for Chondrogenesis in the Knee (press release on April 25, 2016) https://www.chugai-pharm.co.jp/english/news/detail/20160425150000_144.html

Sources of reference for the study:

Japan Pharmaceutical Information Center (JAPIC) Drug Information Database

http://www.clinicaltrials.jp/user/cteSearch.jsp

About gMSC

gMSC1 is a tissue-engineered medical product currently developed by TWOCELLS and was prepared for the regenerative chondrogenesis using synovium-derived mesenchymal stem cell (MSC) in collaboration with Osaka University and Hiroshima University. This product is a scaffold-free allogeneic 3D artificial tissue of MSC provided by TWOCELLS with their own technologies and serum-free medium (STK1 and STK2), which is expected to provide an effective treatment for cartilage regeneration. Development of gMSC1 has been supported by JST (Japan Science and Technology Agency), NEDO (New Energy and Industrial Technology Development Organization), the Ministry of Economy, Trade and Industry, and AMED (Japan Agency for Medical Research and Development).

About Chugai

Chugai Pharmaceutical is one of Japan's leading research-based pharmaceutical companies with strengths in biotechnology products. Chugai, based in Tokyo, specializes in prescription pharmaceuticals and is listed on the 1st section of the Tokyo Stock Exchange. As an important member of the Roche Group, Chugai is actively involved in R&D activities in Japan and abroad. Specifically, Chugai is working to develop innovative products which may satisfy the unmet medical needs.

About TWOCELLS

TWOCELLS is a bio-venture company established in Hiroshima in 2003, aiming to promote regenerative medicine so that patients may have a new treatment option. By particularly targeting MSC (mesenchymal stem cell), it is engaging in the development of cellular medicine with MSC, peri-MSC culturing technique and a system for regenerative medicine.

Read the rest here:
Completion of Enrollment in Phase III Comparative Study for Investigational Regenerative Cellular Medicine (gMSC1) for Knee Chondrogenesis Using...

New Stem Cell Approach Through Using Wavelength Laser Might have Discovered Why Humans Lose Hair – Tech Times

Urian B., Tech Times 05 October 2021, 12:10 am

(Photo : Image from Unsplash Website) New Stem Cell Approach Through Using Wavelength Laser Might have Discovered Why Humans Lose Hair

A new stem cell approach through the use of wavelength lasers might have discovered why humans lose their hair. Rui Yi, a professor of pathology at Northwestern University, is now setting out to answer the question.

According to the Straits Times, a generally accepted hypothesis regarding stem cells notes that they replenish tissues and organs, which include hair, but they will then eventually be exhausted and then even die in place. This particular process is seen as quite an integral part of the aging process.

Stem cells reportedly play a huge role when it comes to the growth of human and mice hair. The director of the Black Family Stem Cell Institute at the Icahn School of Medicine located at Mount Sinai, Sarah Millar, gave a statement. Luminate Medicine has been able to find a way to avoid chemotherapy hair loss.

Sarah Millar wasn't reportedly involved in Yi's paper and explained that the cells gave rise to the hair shaft as well as its sheath. After a period of time, which is short for human body hair and still much longer for hair on a person's head, the follicles then become inactive, and its lower part starts to degenerate. Sarah Millar's discovery can be found on Eurekalert.

The hair shaft then stops its growth and starts to shed, which is only to be replaced by a brand new strand of hair while the cycle repeats. While the rest of the follicles then die, a collection of stem cells still remains in the bulge and are ready to start turning into hair cells in order to grow a strand of hair.

Researchers who study aging usually take chunks of tissue from animals at different ages and examine the changes. There are, however, two drawbacks to this approach, according to Yi. There has also been a relation made betweenhair loss and teeth.

First, it was noted that the tissue was already dead. It is also not clear as to what led to the charges that are reportedly observed or what will then come after them. He then decided that the team would use a different approach.

Read Also:Best Diabetes Apps for Sugar-Conscious Peeps 2021

They reportedly watched the growth of other individual hair follicles in the ears of mice through the use of a long-wavelength laser that will be able to penetrate deep into the tissue. They then start labeling hair follicles along with green fluorescent protein, anesthetizing the animals in order for them to not move.

They then put their ear under the microscope and started to go back and forth to watch what was happening to the exact same hair follicle. The result showed that when the animals got older and grey, they started to lose their hair, their stem cells also started to escape their own small homes in the bulge.

The cells then changed their shapes from around to certain amoeba-like and squeezed out of small holes in the follicles. They then reportedly recovered their normal shapes and started darting away.

Related Article:Gaming And Mental Health: A Closer Look

This article is owned by Tech Times

Written by Urian B.

2021 TECHTIMES.com All rights reserved. Do not reproduce without permission.

Continue reading here:
New Stem Cell Approach Through Using Wavelength Laser Might have Discovered Why Humans Lose Hair - Tech Times

Stem cells and their role in lung transplant rejection – Michigan Medicine

A lung transplant can mean the difference between life and death for people with diseases such as pulmonary fibrosis, chronic obstructive pulmonary disease (COPD) and even severe COVID-19. Yet, recipients of donor lungs must take daily medications to stave off damage caused by their own immune system, which attacks the organs it recognizes as foreigna process known as rejection.

A new University of Michigan Health study, published in the Journal of Clinical Investigation, has identified cells that appear to play a pivotal role in creating the scarring, or fibrosis, characteristic of chronic rejection following a lung transplant.

Almost 15 years ago, Vibha Lama, MBBS, M.S., a professor in the Division of Pulmonary Disease and Critical Care Medicine, and her lab described the presence of stem-cell-like cells, called mesenchymal stromal cells, in lung sample fluid from lung transplant recipients.

We found that even ten years post-transplant, these cells belonged to the donor, not the recipient, she explained. At that time, we had no clue where in the lung they were coming from or what role they played.

To figure this out, her lab generated a mouse model to recreate what happens within a lung transplant recipient. With the model, they followed a transcription factor known as FOXF1 as a sort of trail of breadcrumbs back to the cells original location.

MORE FROM THE LAB: Subscribe to our weekly newsletter

They discovered that these cells formed a reservoir of stem cells within the bronchovascular bundle deep inside the lung. These bundles contain a bronchus (airway), arteries, connective tissue and other structures and is the part of the lung which connects it to the outside environment.

In this study, explained Lama, who is senior author on the paper, they show that these specific stem cells are interacting with neighboring epithelial cells within that airway niche.

Epithelial cells line and protect the airways and produce a protein known as Sonic hedgehog. Via this protein, epithelial cells signal the stem-cell-like mesenchymal cells, which make up the scaffolding of the lungs, to make FOXF1, a repressor that keeps the stem cells in check.

We are just recently understanding that there are many different kinds of mesenchymal cells in the lung, said Lama. What we describe here is not only are there many kinds of mesenchymal cells, FOXF1 is retained only in these specific stem-cell-like cells.

In the case of lung transplant rejection, Lama hypothesized that immune cells from the recipient attack the epithelial cells which disrupts the balance between them and the mesenchymal cells.

Like Podcasts? Add the Michigan Medicine News Break oniTunes, Google Podcasts or anywhere you listen to podcasts.

Because of the damage caused by rejection, the epithelial cells get damaged, Sonic hedgehog is reduced and that interrupts the signaling to the mesenchymal cells to keep quiet, she said. Because of that, these cells start dividing and they lay down more collagen, which leads to fibrotic scarring.

The work sets the stage for more research into the interaction of these cells with epithelial and other cells it their vicinity to further characterize what happens during chronic rejection and potentially how to prevent it. Furthermore, discovery of these cells is also important in understanding other airway diseases like asthma and COPD.

Paper cited: Transcription factor FOXF1 identifies compartmentally distinct mesenchymal cells with a role in lung allograft fibrogenesis, J Clin Invest. DOI: 10.1172/JCI147343

See the original post:
Stem cells and their role in lung transplant rejection - Michigan Medicine

StemExpress Partners with the Alliance for Regenerative Medicine to Provide COVID-19 Testing for the Cell and Gene Meeting on the Mesa – WIBW

StemExpress to use utilize the Thermo Fisher Accula rapid PCR testing system to provide event attendees with accurate results in 30 minutes.

Published: Oct. 5, 2021 at 2:33 PM CDT|Updated: 3 hours ago

SACRAMENTO, Calif., Oct. 5, 2021 /PRNewswire/ --StemExpress is proud to announce that they will be the official COVID-19 testing provider for 2021's Meeting on the Mesa, a hybrid event bringing together great minds in the cell and gene biotech sphere. It has partnered with Alliance for Regenerative Medicine to comply with the newly implemented California state COVID-19 vaccination and testing policy regarding gatherings with 1,000 or more attendees. This partnership will allow the vital in-person networking aspect of the event to commence while protecting the health and safety of participants and attendees.

In-person networking commences at the 2021 Cell and Gene Meeting on the Mesa with COVID-19 testing options provided by StemExpress.

As a leading global provider of human biospecimen products, StemExpress understands the incredible impact that Meeting on the Mesa has on the industry and has been a proud participant for many years. For over a decade, StemExpress has provided the cell and gene industry with vital research products and holds valued partnerships with many of this year's participants. As such, it understands the immense value that in-person networking provides and is excited to help bring this element back to the meeting safely and responsibly.

StemExpress has been a trusted provider of widescale COVID-19 testing solutions since early 2020 - providing testing for government agencies, public health departments, private sector organizations, and the public nationwide. For Meeting on the Mesa, StemExpress is offering convenient testing options for unvaccinated attendees and those traveling from outside of the country. Options will include take-home RT-PCR COVID Self-Testing Kits and on-site, rapid PCR testing for the duration of the event. The self-testing kit option allows attendees to test for COVID in the days leading up to the event for a seamless admission and the days following the event to confirm they haven't been exposed. The on-site rapid testing option utilizes the new Thermo Fisher Accula, offering in-person testing at the event with results in around 30 minutes. StemExpress is excited to bring these state-of-the-art COVID testing solutions to the frontlines of the Cell & Gene industry to allow for safe in-person connections.

The StemExpress partnership with Alliance for Regenerative Medicine seeks to empower the entire cell and gene industry with a long-awaited opportunity to return to traditional networking practices. It is well known that innovation doesn't exist in a vacuum - allowing great minds to come together is a sure way to spur scientific growth and advance cutting-edge research, giving hope for future cures.

Cell and Gene Meeting on the Mesa will take place October 12th, 2021, through October 14th, 2021, at Park Hyatt Aviara,7100 Aviara Resort Drive Carlsbad, CA 92011. To learn more about the event, please visit MeetingOnTheMesa.com.

For more information about COVID testing solutions for businesses and events, visit https://www.stemexpress.com/covid-19-testing/.

About StemExpress:

Founded in 2010 and headquartered in Sacramento, California, StemExpress is a leading global biospecimen provider of human primary cells, stem cells, bone marrow, cord blood, peripheral blood, and disease-state products. Its products are used for research and development, clinical trials, and commercial production of cell and gene therapies by academic, biotech, diagnostic, pharmaceutical, and contract research organizations (CRO's).

StemExpress has over a dozen global distribution partners and seven (7) brick-and-mortar cellular clinics in the United States, outfitted with GMP certified laboratories. StemExpress runs its own non-profit supporting STEM initiatives, college and high school internships, and women-led organizations. It is registered with the U.S. Food and Drug Administration (FDA) and is continuously expanding its network of healthcare partnerships, which currently includes over 50 hospitals in Europe and 3 US healthcare systems - encompassing 31 hospitals, 35 outpatient facilities, and over 200 individual practices and clinics.

StemExpress has been ranked by Inc. 500 as one of the fastest-growing companies in the U.S.

About the Alliance for Regenerative Medicine:

The Alliance for Regenerative Medicine (ARM) is the leading international advocacy organization dedicated to realizing the promise of regenerative medicines and advanced therapies. ARM promotes legislative, regulatory, reimbursement and manufacturing initiatives to advance this innovative and transformative sector, which includes cell therapies, gene therapies and tissue-based therapies. Early products to market have demonstrated profound, durable and potentially curative benefits that are already helping thousands of patients worldwide, many of whom have no other viable treatment options. Hundreds of additional product candidates contribute to a robust pipeline of potentially life-changing regenerative medicines and advanced therapies. In its 12-year history, ARM has become the voice of the sector, representing the interests of 400+ members worldwide, including small and large companies, academic research institutions, major medical centers and patient groups. To learn more about ARM or to become a member, visit http://www.alliancerm.org.

Media Contact: Anthony Tucker, atucker@stemexpress.com

View original content to download multimedia:

SOURCE StemExpress

The above press release was provided courtesy of PRNewswire. The views, opinions and statements in the press release are not endorsed by Gray Media Group nor do they necessarily state or reflect those of Gray Media Group, Inc.

The rest is here:
StemExpress Partners with the Alliance for Regenerative Medicine to Provide COVID-19 Testing for the Cell and Gene Meeting on the Mesa - WIBW

Pharmaxis Cleared To Progress To Phase 2 Bone Marrow Cancer Trial – KMVT

SYDNEY, Oct. 5, 2021 /PRNewswire/ -- Clinical stage drug development company Pharmaxis Ltd (ASX: PXS) today announced further positive results of data analysis from a phase 1c clinical trial (MF-101) studying its drug PXS-5505 in patients with the bone marrow cancer myelofibrosis for 28 days at three dosage levels.

Assessment with Pharmaxis' proprietary assays of the highest dose has shown inhibition of the target enzymes, LOX and LOXL2, at greater than 90% over a 24-hour period at day 7 and day 28. The trial safety committee has reviewed the results and having identified no safety signals, has cleared the study to progress to the phase 2 dose expansion phase where 24 patients will be treated at the highest dose twice a day for 6 months.

Pharmaxis CEO Gary Phillips said, "We are very pleased to have completed the dose escalation phase of this study with such clear and positive findings.We will now immediately progress to the phase 2 dose expansion study where we aim to show PXS-5505 is safe to be taken longer term with the disease modifying effects that we have seen in the pre-clinical models. The trial infrastructure and funding is in place and we are on track to complete the study by the end of 2022."

Independent, peer-reviewed research has demonstrated the upregulation of several lysyl oxidase family members in myelofibrosis.The level of inhibition of LOX achieved in the current study at all three doses significantly exceeds levels that caused disease modifying effects with PXS-5505 in pre-clinical models of myelofibrosis with improvements in blood cell count, diminished spleen size and reduced bone marrow fibrosis. LOXL2 was inhibited to a similar degree and based on pre-clinical work such high inhibition is likely replicated for other LOX family members (LOXL1, 3 and 4).[1] Study data can be viewed in the full announcement.

Commenting on the results of the trial, Dr Gabriela Hobbs, Assistant Professor, Medicine, Harvard Medical School & Clinical Director, Leukaemia, Massachusetts General Hospital said, "Despite improvements in the treatment of myelofibrosis, the only curative therapy remains an allogeneic stem cell transplantation, a therapy that many patients are not eligible for due to its morbidity and mortality. None of the drugs approved to date consistently or meaningfully alter the fibrosis that defines this disease. PXS-5505 has a novel mechanism of action by fully inhibiting all LOX enzymes. An attractive aspect of this drug is that so far in healthy controls and in this phase 1c study in myelofibrosis patients, the drug appears to be very well tolerated. This is meaningful as approved drugs and those that are undergoing study, are associated with abnormal low blood cell counts. Preliminary data thus far, demonstrate that PXS-5505 leads to a dramatic, >90% inhibition of LOX and LOXL2 at one week and 28 days. This confirms what's been shown in healthy controls as well as mouse models, that this drug can inhibit the LOX enzymes in patients. Inhibiting these enzymes is a novel approach to the treatment of myelofibrosis by preventing the deposition of fibrosis and ultimately reversing the fibrosis that characterizes this disease."

The phase 1c/2a trial MF-101 cleared by the FDA under the Investigational New Drug (IND) scheme aims to demonstrate that PXS-5505, the lead asset in Pharmaxis' drug discovery pipeline, is safe and effective as a monotherapy in myelofibrosis patients who are intolerant, unresponsive or ineligible for treatment with approved JAK inhibitor drugs. Trial sites will now open to recruit myelofibrosis patients into the 6-month phase 2 study in Australia, South Korea, Taiwan and the USA.

An effective pan-LOX inhibitor for myelofibrosis would open a market that is conservatively estimated at US$1 billion per annum.

While Pharmaxis' primary focus is the development of PXS-5505 for myelofibrosis, the drug also has potential in several other cancers including liver and pancreatic cancer where it aims to breakdown the fibrotic tissue in the tumour and enhance the effect of chemotherapy treatment.

Trial Design

Name of trial

PXS5505-MF-101: A phase 1/2a study to evaluate safety, pharmacokinetic and pharmacodynamic dose escalation and expansion study of PXS-5505 in patients with primary, post-polycythaemia vera or post-essential thrombocythemia myelofibrosis

Trial number

NCT04676529

Primary endpoint

To determine the safety of PXS-5505 in patients with myelofibrosis

Secondary endpoints

Blinding status

Open label

Placebo controlled

No

Trial design

Randomised, multicentre, 4 week duration phase 1 (dose escalation) followed by 6 month phase 2 (dose expansion)

Treatment route

Oral

Treatment frequency

Twice daily

Dose level

Dose escalation: three escalating doses

Dose expansion: one dose

Number of subjects

Dose escalation: minimum of three patients to maximum of 18 patients

Dose expansion: 24 patients

Subject selection criteria

Patients with primary or secondary myelofibrosis who are intolerant, unresponsive or ineligible for treatment with approved JAK inhibitor drugs

Trial locations

Dose escalation: Australia (2 sites) and South Korea (4 sites)

Dose expansion: Australia, Korea, Taiwan, USA

Commercial partners involved

No commercial partner

Reference: (1) doi.org/10.1002/ajh.23409

AUTHORISED FOR RELEASE TO ASX BY:

Pharmaxis Ltd Disclosure Committee. Contact: David McGarvey, Chief Financial Officer and Company Secretary: T +61 2 9454 7203, E david.mcgarvey@pharmaxis.com.au

Join the Pharmaxis mailing listhere

Follow us on LinkedInand Twitter

About Pharmaxis

Pharmaxis Ltd is an Australian clinical stage drug development company developing drugs for inflammatory and fibrotic diseases, with a focus on myelofibrosis. The company has a highly productive drug discovery engine built on its expertise in the chemistry of amine oxidase inhibitors, with drug candidates in clinical trials. Pharmaxis has also developed two respiratory products which are approved and supplied in global markets, generating ongoing revenue.

Pharmaxis is developing its drug PXS-5505 for the bone marrow cancer myelofibrosis which causes a build up of scar tissue that leads to loss of production of red and white blood cells and platelets. The US Food and Drug Administration has granted Orphan Drug Designation to PXS-5055 for the treatment of myelofibrosis and permission under an Investigational Drug Application (IND) to progress a phase 1c/2 clinical trial that began recruitment in Q1 2021. PXS5505 is also being investigated as a potential treatment for other cancers such as liver and pancreatic cancer.

Other drug candidates being developed from Pharmaxis' amine oxidase chemistry platform are targeting fibrotic diseases such as kidney fibrosis, NASH, pulmonary fibrosis and cardiac fibrosis; fibrotic scarring from burns and other trauma; and inflammatory diseases such as Duchenne Muscular Dystrophy.

Pharmaxis has developed two products from its proprietary spray drying technology that are manufactured and exported from its Sydney facility; Bronchitol for cystic fibrosis, which is approved and marketed in the United States, Europe, Russia and Australia; and Aridol for the assessment of asthma, which is approved and marketed in the United States, Europe, Australia and Asia.

Pharmaxis is listed on the Australian Securities Exchange (PXS). Its head office, manufacturing and research facilities are in Sydney, Australia. http://www.pharmaxis.com.au

About PXS-5505

PXS-5505 is an orally taken drug that inhibits the lysyl oxidase family of enzymes, two members LOX and LOXL2 are strongly upregulated in human myelofibrosis. In pre-clinical models of myelofibrosis PXS-5505 reversed the bone marrow fibrosis that drives morbidity and mortality in myelofibrosis and reduced many of the abnormalities associated with this disease. It has already received IND approval and Orphan Drug Designation from the FDA.

Myelofibrosis is a disorder in which normal bone marrow tissue is gradually replaced with a fibrous scar-like material. Over time, this leads to progressive bone marrow failure. Under normal conditions, the bone marrow provides a fine network of fibres on which the stem cells can divide and grow. Specialised cells in the bone marrow known as fibroblasts make these fibres.

In myelofibrosis, chemicals released by high numbers of platelets and abnormal megakaryocytes (platelet forming cells) over-stimulate the fibroblasts. This results in the overgrowth of thick coarse fibres in the bone marrow, which gradually replace normal bone marrow tissue. Over time this destroys the normal bone marrow environment, preventing the production of adequate numbers of red cells, white cells and platelets. This results in anaemia, low platelet counts and the production of blood cells in areas outside the bone marrow for example in the spleen and liver, which become enlarged as a result.

Myelofibrosis can occur at any age but is usually diagnosed later in life, between the ages of 60 and 70 years. The cause of myelofibrosis remains largely unknown. It can be classified as either JAK2 mutation positive (having the JAK2 mutation) or negative (not having the JAK2 mutation).

Source: Australian Leukemia Foundation: https://www.leukaemia.org.au/disease-information/myeloproliferative-disorders/types-of-mpn/primary-myelofibrosis/

Forward-looking statements

Forwardlooking statements in this media release include statements regarding our expectations, beliefs, hopes, goals, intentions, initiatives or strategies, including statements regarding the potential of products and drug candidates. All forward-looking statements included in this media release are based upon information available to us as of the date hereof. Actual results, performance or achievements could be significantly different from those expressed in, or implied by, these forward-looking statements. These forward-looking statements are not guarantees or predictions of future results, levels of performance, and involve known and unknown risks, uncertainties and other factors, many of which are beyond our control, and which may cause actual results to differ materially from those expressed in the statements contained in this document. For example, despite our efforts there is no certainty that we will be successful in developing or partnering any of the products in our pipeline on commercially acceptable terms, in a timely fashion or at all. Except as required by law we undertake no obligation to update these forward-looking statements as a result of new information, future events or otherwise.

CONTACT:

Media: Felicity Moffatt: T +61 418 677 701, E felicity.moffatt@pharmaxis.com.au

Investor relations:Rudi Michelson (Monsoon Communications) T +61 411 402 737, E rudim@monsoon.com.au

View original content:

SOURCE Pharmaxis Limited

View original post here:
Pharmaxis Cleared To Progress To Phase 2 Bone Marrow Cancer Trial - KMVT

Diabetic patient receives stem cell therapy – The Hindu

In a pioneering off-the-shelf drug treatment in place of a surgical procedure, Maruti Hospital on Tuesday inaugurated its Regenerative Medicine Department by administering stem cell therapy for a diabetic patient who lost four toes on both feet.

Developed by pharma major, Cipla, in collaboration with Bengaluru-based, Stempeutics Research, over 14 years, it is available (on order) in vials of 150 million and 200 million cells harvested from healthy individuals and costs between 1.5 to 2 lakh.

Diabetic foot ulcers/critical limb ischemia prevents the leg and feet from receiving adequate oxygen and nutrients needed for proper function. The stell cells are injected into the affected leg to promote new blood vessels growth called angiogenesis. It helps avoid amputation if given before gangrene sets in.

Stem cell treatment will help to improve blood circulation in the feet of the patient. The new method allows patients from any place to access this treatment in a ready-to-use procedure. We hope to use customised variations of this therapy for people with other medical ailments in the future, and reduce the dependence on transplants, said V. R. Ravi, orthopaedic surgeon, Maruti Hospital, said addressing the media.

The drug was produced in a carefully monitored processes, with mesenchymal stromal cell derived from the bone marrow of healthy donors in the age group of 20-25 years. It was transported from Bengaluru to Tiruchi by car with liquid nitrogen packs to keep the drug chilled. It was brought to room temperature within four hours and used on the patient.

B.N.Manohar, Managing Director and Chief Executive Officer, Stempeutics, was also present.

Read the original:
Diabetic patient receives stem cell therapy - The Hindu