Category Archives: Stem Cell Medicine


The story of mRNA: From a loose idea to a tool that may help curb Covid – STAT

ANDOVER, Mass. The liquid that many hope could help end the Covid-19 pandemic is stored in a nondescript metal tank in a manufacturing complex owned by Pfizer, one of the worlds biggest drug companies. There is nothing remarkable about the container, which could fit in a walk-in closet, except that its contents could end up in the worlds first authorized Covid-19 vaccine.

Pfizer, a 171-year-old Fortune 500 powerhouse, has made a billion-dollar bet on that dream. So has a brash, young rival just 23 miles away in Cambridge, Mass. Moderna, a 10-year-old biotech company with billions in market valuation but no approved products, is racing forward with a vaccine of its own. Its new sprawling drug-making facility nearby is hiring workers at a fast clip in the hopes of making history and a lot of money.

In many ways, the companies and their leaders couldnt be more different. Pfizer, working with a little-known German biotech called BioNTech, has taken pains for much of the year to manage expectations. Moderna has made nearly as much news for its stream of upbeat press releases, executives stock sales, and spectacular rounds of funding as for its science.

advertisement

Each is well-aware of the other in the race to be first.

But what the companies share may be bigger than their differences: Both are banking on a genetic technology that has long held huge promise but has so far run into biological roadblocks. It is called synthetic messenger RNA, an ingenious variation on the natural substance that directs protein production in cells throughout the body. Its prospects have swung billions of dollars on the stock market, made and imperiled scientific careers, and fueled hopes that it could be a breakthrough that allows society to return to normalcy after months living in fear.

advertisement

Both companies have been frequently name-checked by President Trump. Pfizer reported strong, but preliminary, data on Monday, and Moderna is expected to follow suit soon with a glimpse of its data. Both firms hope these preliminary results will allow an emergency deployment of their vaccines millions of doses likely targeted to frontline medical workers and others most at risk of Covid-19.

There are about a dozen experimental vaccines in late-stage clinical trials globally, but the ones being tested by Pfizer and Moderna are the only two that rely on messenger RNA.

For decades, scientists have dreamed about the seemingly endless possibilities of custom-made messenger RNA, or mRNA.

Researchers understood its role as a recipe book for the bodys trillions of cells, but their efforts to expand the menu have come in fits and starts. The concept: By making precise tweaks to synthetic mRNA and injecting people with it, any cell in the body could be transformed into an on-demand drug factory.

But turning scientific promise into medical reality has been more difficult than many assumed. Although relatively easy and quick to produce compared to traditional vaccine-making, no mRNA vaccine or drug has ever won approval.

Even now, as Moderna and Pfizer test their vaccines on roughly 74,000 volunteers in pivotal vaccine studies, many experts question whether the technology is ready for prime time.

I worry about innovation at the expense of practicality, Peter Hotez, dean of the National School of Tropical Medicine at Baylor College of Medicine and an authority on vaccines, said recently. The U.S. governments Operation Warp Speed program, which has underwritten the development of Modernas vaccine and pledged to buy Pfizers vaccine if it works, is weighted toward technology platforms that have never made it to licensure before.

Whether mRNA vaccines succeed or not, their path from a gleam in a scientists eye to the brink of government approval has been a tale of personal perseverance, eureka moments in the lab, soaring expectations and an unprecedented flow of cash into the biotech industry.

It is a story that began three decades ago, with a little-known scientist who refused to quit.

Before messenger RNA was a multibillion-dollar idea, it was a scientific backwater. And for the Hungarian-born scientist behind a key mRNA discovery, it was a career dead-end.

Katalin Karik spent the 1990s collecting rejections. Her work, attempting to harness the power of mRNA to fight disease, was too far-fetched for government grants, corporate funding, and even support from her own colleagues.

It all made sense on paper. In the natural world, the body relies on millions of tiny proteins to keep itself alive and healthy, and it uses mRNA to tell cells which proteins to make. If you could design your own mRNA, you could, in theory, hijack that process and create any protein you might desire antibodies to vaccinate against infection, enzymes to reverse a rare disease, or growth agents to mend damaged heart tissue.

In 1990, researchers at the University of Wisconsin managed to make it work in mice. Karik wanted to go further.

The problem, she knew, was that synthetic RNA was notoriously vulnerable to the bodys natural defenses, meaning it would likely be destroyed before reaching its target cells. And, worse, the resulting biological havoc might stir up an immune response that could make the therapy a health risk for some patients.

It was a real obstacle, and still may be, but Karik was convinced it was one she could work around. Few shared her confidence.

Every night I was working: grant, grant, grant, Karik remembered, referring to her efforts to obtain funding. And it came back always no, no, no.

By 1995, after six years on the faculty at the University of Pennsylvania, Karik got demoted. She had been on the path to full professorship, but with no money coming in to support her work on mRNA, her bosses saw no point in pressing on.

She was back to the lower rungs of the scientific academy.

Usually, at that point, people just say goodbye and leave because its so horrible, Karik said.

Theres no opportune time for demotion, but 1995 had already been uncommonly difficult. Karik had recently endured a cancer scare, and her husband was stuck in Hungary sorting out a visa issue. Now the work to which shed devoted countless hours was slipping through her fingers.

I thought of going somewhere else, or doing something else, Karik said. I also thought maybe Im not good enough, not smart enough. I tried to imagine: Everything is here, and I just have to do better experiments.

In time, those better experiments came together. After a decade of trial and error, Karik and her longtime collaborator at Penn Drew Weissman, an immunologist with a medical degree and Ph.D. from Boston University discovered a remedy for mRNAs Achilles heel.

The stumbling block, as Kariks many grant rejections pointed out, was that injecting synthetic mRNA typically led to that vexing immune response; the body sensed a chemical intruder, and went to war. The solution, Karik and Weissman discovered, was the biological equivalent of swapping out a tire.

Every strand of mRNA is made up of four molecular building blocks called nucleosides. But in its altered, synthetic form, one of those building blocks, like a misaligned wheel on a car, was throwing everything off by signaling the immune system. So Karik and Weissman simply subbed it out for a slightly tweaked version, creating a hybrid mRNA that could sneak its way into cells without alerting the bodys defenses.

That was a key discovery, said Norbert Pardi, an assistant professor of medicine at Penn and frequent collaborator. Karik and Weissman figured out that if you incorporate modified nucleosides into mRNA, you can kill two birds with one stone.

That discovery, described in a series of scientific papers starting in 2005, largely flew under the radar at first, said Weissman, but it offered absolution to the mRNA researchers who had kept the faith during the technologys lean years. And it was the starter pistol for the vaccine sprint to come.

And even though the studies by Karik and Weissman went unnoticed by some, they caught the attention of two key scientists one in the United States, another abroad who would later help found Moderna and Pfizers future partner, BioNTech.

Derrick Rossi, a native of Toronto who rooted for the Maple Leafs and sported a soul patch, was a 39-year-old postdoctoral fellow in stem cell biology at Stanford University in 2005 when he read the first paper. Not only did he recognize it as groundbreaking, he now says Karik and Weissman deserve the Nobel Prize in chemistry.

If anyone asks me whom to vote for some day down the line, I would put them front and center, he said. That fundamental discovery is going to go into medicines that help the world.

But Rossi didnt have vaccines on his mind when he set out to build on their findings in 2007 as a new assistant professor at Harvard Medical School running his own lab.

He wondered whether modified messenger RNA might hold the key to obtaining something else researchers desperately wanted: a new source of embryonic stem cells.

In a feat of biological alchemy, embryonic stem cells can turn into any type of cell in the body. That gives them the potential to treat a dizzying array of conditions, from Parkinsons disease to spinal cord injuries.

But using those cells for research had created an ethical firestorm because they are harvested from discarded embryos.

Rossi thought he might be able to sidestep the controversy. He would use modified messenger molecules to reprogram adult cells so that they acted like embryonic stem cells.

He asked a postdoctoral fellow in his lab to explore the idea. In 2009, after more than a year of work, the postdoc waved Rossi over to a microscope. Rossi peered through the lens and saw something extraordinary: a plate full of the very cells he had hoped to create.

Rossi excitedly informed his colleague Timothy Springer, another professor at Harvard Medical School and a biotech entrepreneur. Recognizing the commercial potential, Springer contacted Robert Langer, the prolific inventor and biomedical engineering professor at the Massachusetts Institute of Technology.

On a May afternoon in 2010, Rossi and Springer visited Langer at his laboratory in Cambridge. What happened at the two-hour meeting and in the days that followed has become the stuff of legend and an ego-bruising squabble.

Langer is a towering figure in biotechnology and an expert on drug-delivery technology. At least 400 drug and medical device companies have licensed his patents. His office walls display many of his 250 major awards, including the Charles Stark Draper Prize, considered the equivalent of the Nobel Prize for engineers.

As he listened to Rossi describe his use of modified mRNA, Langer recalled, he realized the young professor had discovered something far bigger than a novel way to create stem cells. Cloaking mRNA so it could slip into cells to produce proteins had a staggering number of applications, Langer thought, and might even save millions of lives.

I think you can do a lot better than that, Langer recalled telling Rossi, referring to stem cells. I think you could make new drugs, new vaccines everything.

Langer could barely contain his excitement when he got home to his wife.

This could be the most successful company in history, he remembered telling her, even though no company existed yet.

Three days later Rossi made another presentation, to the leaders of Flagship Ventures. Founded and run by Noubar Afeyan, a swaggering entrepreneur, the Cambridge venture capital firm has created dozens of biotech startups. Afeyan had the same enthusiastic reaction as Langer, saying in a 2015 article in Nature that Rossis innovation was intriguing instantaneously.

Within several months, Rossi, Langer, Afeyan, and another physician-researcher at Harvard formed the firm Moderna a new word combining modified and RNA.

Springer was the first investor to pledge money, Rossi said. In a 2012 Moderna news release, Afeyan said the firms promise rivals that of the earliest biotechnology companies over 30 years ago adding an entirely new drug category to the pharmaceutical arsenal.

But although Moderna has made each of the founders hundreds of millions of dollars even before the company had produced a single product Rossis account is marked by bitterness. In interviews with the Globe in October, he accused Langer and Afeyan of propagating a condescending myth that he didnt understand his discoverys full potential until they pointed it out to him.

Its total malarkey, said Rossi, who ended his affiliation with Moderna in 2014. Im embarrassed for them. Everybody in the know actually just shakes their heads.

Rossi said that the slide decks he used in his presentation to Flagship noted that his discovery could lead to new medicines. Thats the thing Noubar has used to turn Flagship into a big company, and he says it was totally his idea, Rossi said.

Afeyan, the chair of Moderna, recently credited Rossi with advancing the work of the Penn scientists. But, he said, that only spurred Afeyan and Langer to ask the question, Could you think of a code molecule that helps you make anything you want within the body?

Langer, for his part, told STAT and the Globe that Rossi made an important finding but had focused almost entirely on the stem cell thing.

Despite the squabbling that followed the birth of Moderna, other scientists also saw messenger RNA as potentially revolutionary.

In Mainz, Germany, situated on the left bank of the Rhine, another new company was being formed by a married team of researchers who would also see the vast potential for the technology, though vaccines for infectious diseases werent on top of their list then.

A native of Turkey, Ugur Sahin moved to Germany after his father got a job at a Ford factory in Cologne. His wife, zlem Treci had, as a child, followed her father, a surgeon, on his rounds at a Catholic hospital. She and Sahin are physicians who met in 1990 working at a hospital in Saarland.

The couple have long been interested in immunotherapy, which harnesses the immune system to fight cancer and has become one of the most exciting innovations in medicine in recent decades. In particular, they were tantalized by the possibility of creating personalized vaccines that teach the immune system to eliminate cancer cells.

Both see themselves as scientists first and foremost. But they are also formidable entrepreneurs. After they co-founded another biotech, the couple persuaded twin brothers who had invested in that firm, Thomas and Andreas Strungmann, to spin out a new company that would develop cancer vaccines that relied on mRNA.

That became BioNTech, another blended name, derived from Biopharmaceutical New Technologies. Its U.S. headquarters is in Cambridge. Sahin is the CEO, Treci the chief medical officer.

We are one of the leaders in messenger RNA, but we dont consider ourselves a messenger RNA company, said Sahin, also a professor at the Mainz University Medical Center. We consider ourselves an immunotherapy company.

Like Moderna, BioNTech licensed technology developed by the Pennsylvania scientist whose work was long ignored, Karik, and her collaborator, Weissman. In fact, in 2013, the company hired Karik as senior vice president to help oversee its mRNA work.

But in their early years, the two biotechs operated in very different ways.

In 2011, Moderna hired the CEO who would personify its brash approach to the business of biotech.

Stphane Bancel was a rising star in the life sciences, a chemical engineer with a Harvard MBA who was known as a businessman, not a scientist. At just 34, he became CEO of the French diagnostics firm BioMrieux in 2007 but was wooed away to Moderna four years later by Afeyan.

Moderna made a splash in 2012 with the announcement that it had raised $40 million from venture capitalists despite being years away from testing its science in humans. Four months later, the British pharmaceutical giant AstraZeneca agreed to pay Moderna a staggering $240 million for the rights to dozens of mRNA drugs that did not yet exist.

The biotech had no scientific publications to its name and hadnt shared a shred of data publicly. Yet it somehow convinced investors and multinational drug makers that its scientific findings and expertise were destined to change the world. Under Bancels leadership, Moderna would raise more than $1 billion in investments and partnership funds over the next five years.

Modernas promise and the more than $2 billion it raised before going public in 2018 hinged on creating a fleet of mRNA medicines that could be safely dosed over and over. But behind the scenes the companys scientists were running into a familiar problem. In animal studies, the ideal dose of their leading mRNA therapy was triggering dangerous immune reactions the kind for which Karik had improvised a major workaround under some conditions but a lower dose had proved too weak to show any benefits.

Moderna had to pivot. If repeated doses of mRNA were too toxic to test in human beings, the company would have to rely on something that takes only one or two injections to show an effect. Gradually, biotechs self-proclaimed disruptor became a vaccines company, putting its experimental drugs on the back burner and talking up the potential of a field long considered a loss-leader by the drug industry.

Meanwhile BioNTech has often acted like the anti-Moderna, garnering far less attention.

In part, that was by design, said Sahin. For the first five years, the firm operated in what Sahin called submarine mode, issuing no news releases, and focusing on scientific research, much of it originating in his university lab. Unlike Moderna, the firm has published its research from the start, including about 150 scientific papers in just the past eight years.

In 2013, the firm began disclosing its ambitions to transform the treatment of cancer and soon announced a series of eight partnerships with major drug makers. BioNTech has 13 compounds in clinical trials for a variety of illnesses but, like Moderna, has yet to get a product approved.

When BioNTech went public last October, it raised $150 million, and closed with a market value of $3.4 billion less than half of Modernas when it went public in 2018.

Despite his role as CEO, Sahin has largely maintained the air of an academic. He still uses his university email address and rides a 20-year-old mountain bicycle from his home to the office because he doesnt have a drivers license.

Then, late last year, the world changed.

Shortly before midnight, on Dec. 30, the International Society for Infectious Diseases, a Massachusetts-based nonprofit, posted an alarming report online. A number of people in Wuhan, a city of more than 11 million people in central China, had been diagnosed with unexplained pneumonia.

Chinese researchers soon identified 41 hospitalized patients with the disease. Most had visited the Wuhan South China Seafood Market. Vendors sold live wild animals, from bamboo rats to ostriches, in crowded stalls. That raised concerns that the virus might have leaped from an animal, possibly a bat, to humans.

After isolating the virus from patients, Chinese scientists on Jan. 10 posted online its genetic sequence. Because companies that work with messenger RNA dont need the virus itself to create a vaccine, just a computer that tells scientists what chemicals to put together and in what order, researchers at Moderna, BioNTech, and other companies got to work.

A pandemic loomed. The companies focus on vaccines could not have been more fortuitous.

Moderna and BioNTech each designed a tiny snip of genetic code that could be deployed into cells to stimulate a coronavirus immune response. The two vaccines differ in their chemical structures, how the substances are made, and how they deliver mRNA into cells. Both vaccines require two shots a few weeks apart.

The biotechs were competing against dozens of other groups that employed varying vaccine-making approaches, including the traditional, more time-consuming method of using an inactivated virus to produce an immune response.

Moderna was especially well-positioned for this moment.

Forty-two days after the genetic code was released, Modernas CEO Bancel opened an email on Feb. 24 on his cellphone and smiled, as he recalled to the Globe. Up popped a photograph of a box placed inside a refrigerated truck at the Norwood plant and bound for the National Institute of Allergy and Infectious Diseases in Bethesda, Md. The package held a few hundred vials, each containing the experimental vaccine.

Moderna was the first drug maker to deliver a potential vaccine for clinical trials. Soon, its vaccine became the first to undergo testing on humans, in a small early-stage trial. And on July 28, it became the first to start getting tested in a late-stage trial in a scene that reflected the firms receptiveness to press coverage.

The first volunteer to get a shot in Modernas late-stage trial was a television anchor at the CNN affiliate in Savannah, Ga., a move that raised eyebrows at rival vaccine makers.

Along with those achievements, Moderna has repeatedly stirred controversy.

On May 18, Moderna issued a press release trumpeting positive interim clinical data. The firm said its vaccine had generated neutralizing antibodies in the first eight volunteers in the early-phase study, a tiny sample.

But Moderna didnt provide any backup data, making it hard to assess how encouraging the results were. Nonetheless, Modernas share price rose 20% that day.

Some top Moderna executives also drew criticism for selling shares worth millions, including Bancel and the firms chief medical officer, Tal Zaks.

In addition, some critics have said the government has given Moderna a sweetheart deal by bankrolling the costs for developing the vaccine and pledging to buy at least 100 million doses, all for $2.48 billion.

That works out to roughly $25 a dose, which Moderna acknowledges includes a profit.

In contrast, the government has pledged more than $1 billion to Johnson & Johnson to manufacture and provide at least 100 million doses of its vaccine, which uses different technology than mRNA. But J&J, which collaborated with Beth Israel Deaconess Medical Centers Center for Virology and Vaccine Research and is also in a late-stage trial, has promised not to profit off sales of the vaccine during the pandemic.

Over in Germany, Sahin, the head of BioNTech, said a Lancet article in January about the outbreak in Wuhan, an international hub, galvanized him.

We understood that this would become a pandemic, he said.

The next day, he met with his leadership team.

I told them that we have to deal with a pandemic which is coming to Germany, Sahin recalled.

He also realized he needed a strong partner to manufacture the vaccine and thought of Pfizer. The two companies had worked together before to try to develop mRNA influenza vaccines. In March, he called Pfizers top vaccine expert, Kathrin Jansen.

Read the rest here:
The story of mRNA: From a loose idea to a tool that may help curb Covid - STAT

Sobi’s Gamifant receives final rejection from CHMP for primary HLH – PMLiVE

The European Medicines Agencys (EMA) Committee for Medicinal Products for Human Use (CHMP) has given Sobis Gamifant a final negative opinion after re-examining its initial decision.

Sobi requested that the CHMP re-examine the application for Gamifant (emapalumab) as a treatment for of primary haemophagocytic lymphohistiocytosis (HLH) after the Committee initially rejected the drug in July.

Primary HLH is a genetic disease characterised by widespread destruction of blood cells, extremely high iron levels in the blood, coagulation problems and excessive growth of organs.

The condition can be passed on genetically by parents who are carriers of the disease, or can occur as a spontaneous mutation. It results in an over-expression of IFN gamma that causes an auto-immune-like syndrome.

Patients with primary HLH are limited to haematopoietic stem cell transplantation (HSCT), a procedure which requires individuals to undergo intense treatment first in order for it to be successful.

In its original decision, the CHMP ruled that the results of the study used to support Sobis application for Gamifant were not convincing enough to conclude that the drug is effective in the treatment of primary HLH.

In addition, the CHMP said that the study only involved a small number of patients, who were also receiving other medicines used to treat HLH. This, the Committee said, made it difficult to determine if the responses seen in some patients were due to Gamifant treatment.

The CHMP also called into question the data concerning the safety of Gamifant, saying in a statement that the design of the study made it difficult to collect data on the drugs side effects.

After re-examining the available data, as well as additional advice from a group of experts, the CHMP determined that although Sobi had addressed concerns over Gamifants safety profile, the other concerns still remained.

"This recommendation by the CHMP is disappointing given the significant unmet medical need which exists for patients with pHLH who have no approved therapies in Europe, said Ravi Rao, head of R&D and chief medical officer at Sobi

During the re-examination we worked extensively with physicians and patients and were able to resolve some but not all of the concerns raised by EMA.

"We are confident about the clinical profile of emapalumab and our focus is now on increasing access for patients in other regions and developing new indications for this medicine, he added.

Sobi, based in Stockholm, Sweden, acquired the global marketing rights to Gamifant from Novimmune in July 2018, and in June 2019 the company spent $518m to acquire the outstanding intellectual property and patents for the drug.

Gamifant was approved by the US Food and Drug Administration (FDA) for the treatment of primary HLH in November 2018. In the US, over 100 primary HLH patients have been treated with Gamifant, with the benefit/risk profile continuing to prove favourable according to Sobi.

Read more:
Sobi's Gamifant receives final rejection from CHMP for primary HLH - PMLiVE

Meeting Agenda Focuses on Increased Applications of Cellular Therapies in Hematologic Cancers – Targeted Oncology

There has been a surge in treatment advancements for multiple myeloma that have improved outcomes for patients in the front- and later-line disease settings, creating an eager need to keep abreast of these latest systemic therapy innovations. In an interview with Targeted Therapies in Oncology, Sagar Lonial, MD, program cochair for the upcoming 24th Annual International Congress on Hematologic Malignancies. hosted by Physicians Education Resource., LLC (PER.), detailed breakthroughs in the care of patients with multiple myeloma as well as other hematologic cancers, and offered a preview of what attendees might expect to hear at the meeting.

Particularly in the era of COVID-19 [coronavirus disease 2019] where so much information is continuing to come out but the live meeting opportunities are limited, [this meeting] provides an opportunity to hear from leading experts in their fields [giving] you the moment to moment changes that are occurring, said Lonial, who is also a professor and the chair of the Department of Hematology and Medical Oncology at Emory University School of Medicine, as well as chief medical officer at Winship Cancer Institute of Emory University in Atlanta, Georgia. These changes are occurring so fast, its hard for the [community oncologist] to keep up.

Anti-BCMA Agents and Other Advances in Multiple Myeloma

Lonial detailed the FDAs August 2020 approval of the B-cell maturation antigen (BCMA) antibody-drug conjugate belantamab mafodotin-blmf (Blenrep; Bela-maf) for the treatment of patients with relapsed/refractory disease following at least 4 prior therapies, including an anti-CD38 monoclonal antibody, a proteasome inhibitor, and an immunomodulatory agent.1 This marks the first time a systemic therapy agent aimed at inhibiting BCMA received approval in the United States.

We have periods of time where a lot happens. Were seeing BCMA-targeted therapies really come to the forefront, Lonial said. Right now, [there are] 3 different ways to target BCMA. You can use the antibody-drug conjugate bela-maf, you can use a bispecific T-cell engager, or you can use a CAR [chimeric antigen receptor] T-cell therapy.

One of the advantages of targeting BCMA is that it is expressed exclusively on plasma cells, leading to fewer off-target affects, Lonial said. Additionally, BCMA activation has been shown to promote drug resistance,2 so inhibiting it may provide the dual benefit of suppressing tumor growth as well as overcoming drug resistance.

Regarding bispecific T-cell engager (BiTE) therapies, Lonial said clinicians may be familiar with this approach by looking at an established agent for the treatment of acute lymphoblastic leukemia (ALL), blinatumomab (Blincyto). Here, the bispecific CD19-directed T-cell engager binds to CD19 expressed on tumor cells and CD3 expressed on T cells,3 bringing them in close proximity with one another. I was skeptical that this approach would work in myeloma because I thought that T cells would be exhausted, and I wasnt sure youd be able to get them to work. But certainly, at higher doses, it appears that youre getting response [rates above] 65% to 70%.

Two notable BiTEs in clinical development that are aiming at BCMA for the treatment of multiple myeloma include teclistamab (JNJ-7957) and AMG 420, which have both been explored in phase 1 clinical trials (NCT03145181 and NCT02514239, respectively) with results presented at recent medical meetings.

In CAR T-cell therapy, a modality that Lonial said clinicians are familiar with due to recent successes in ALL and large B-cell lymphoma, there are multiple agents in development that target BCMA for the treatment of multiple myeloma. One of the advantages that has come to light over the CD19-directed agents is the lower rates of cytokine release syndrome and neurologic toxicity which account for the most troublesome adverse events of CAR T-cell therapy administration that lead to hospitalization. We dont know if thats a function of BCMA or of myeloma, Lonial said.

Of all BCMA-targeted CAR T-cell therapies, the most advanced in terms of FDA clearance is idecabtagene vicleucel (ide-cel; BB2121), which just earned priority review in September 2020. The Prescription Drug User Fee Act action date has been set as March 27, 2021.4

Other advances in multiple myeloma that Lonial mentioned included the development of the novel cereblon E3 ligase modulator (CELMoD) iberdomide, which has demonstrated response rates of up to 30% in patients with heavily pretreated multiple myeloma when used in conjunction with dexamethasone.5 Additionally, Lonial noted that the use of minimal residual disease (MRD) status as a patient selection tool will become more prominent as more agents are approved across settings.

If somebodys MRD positive, is that where you treat with a BCMA-directed therapy early to try and eliminate that? Those, I think, are really exciting questions were going to be able to answer.

Trends in Cellular Therapy and Other Topics

Lonial said that cellular therapy for the treatment of hematologic diseases by way of allogeneic stem cell transplants, in his view, represented the first time immunotherapy was used for the treatment of any malignancy. Moving into the modern treatment era, investigators are striving to refine these approaches and incorporate new modalities, such as CAR T-cell therapy, for the treatment of patients with hematologic cancers.

Another focus of the meeting will include looking at precision medicine techniques of the solid tumor world and applying those principles to cancers of the blood.

Using genetics and genomics to identify lymphoma subsets is getting us into both an immune era and a precision medicine era, Lonial said. The challenge for us in hematologic malignancies is marrying the 2 concepts together. How do you take both precision medicine and immune therapy and make it one treatment approach for a patient?

Lonial said the CAR T-cell therapy workshop which will be moderated by fellow meeting cochair Andre H. Goy, MD, who is physician in chief of Hackensack Meridian Health Oncology Care Transformation Service, chairman & chief Physician Officer of the John Theurer Cancer Center, Lydia Pfund Chair for lymphoma Academic Academic Chairman Oncology of Hackensack Meridian School of Medicine at Seton Hall University, and professor of medicine at Georgetown Universitymay be especially helpful for all clinicians hoping to learn more about this treatment modality, regardless of whether or not their centers are approved to administer it.

Knowing when to refer from the community [setting to an academic institution] for a CAR T-cell [administration] and what that can offer patients is critically important, he said. The advantage of CAR [T-cell therapy] from my perspective is it is a one-and-done therapy. And if that one-and-done really is done, then its a true victory. We dont want to limit [this only] to people who are seen in academic centers.

Finally, meeting cochair Jorge E. Cortes, MD, the director of Georgia Cancer Center and an Eminent Scholar of the Georgia Research Alliance at Augusta University in Georgia, will moderate sessions addressing the treatment of indolent non-Hodgkin lymphoma and myelodysplastic syndromes, among others.

Lonial concluded by describing what he hopes will be a broad overview for attendees who treat patients in the community and academic settings alike. You get experts in [the treatment of hematologic cancers]which I think is prone for rapid change, expansion, and discoveryto hear in one setting whats newest in lymphoma, whats newest in leukemia, whats newest in myeloma, and whats newest in CAR T-cell therapy. That opportunity is very important, and it provides people with a case-based learning approach.

References:

1. FDA granted accelerated approval to belantamab mafodotin-blmf for multiple myeloma. FDA. Updated August 6, 2020. Accessed October 27, 2020. https://bit.ly/37M2UDd

2. Tai YT, Acharya C, An G, et al. APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood. 2016;127(25):3225-3236. doi:10.1182/ blood-2016-01-691162

3. Blincyto. Prescribing information. Amgen; 2020. Accessed October 27, 2020. https://bit.ly/2TsOL5d

4. US Food and Drug Administration (FDA) accepts for priority review Bristol Bristol Myers Squibb and bluebird bio application for anti-BCMA CAR T cell therapy idecabtagene vicleucel (ide-cel, bb2121). News release. Bristol Myers Squibb. September 22, 2020. Accessed October 27, 2020. https://bit.ly/3kDhakH

5. Lonial S, Van de Donk N, Popat R, et al. A phase 1b/2a study of the CELMoD iberdomide (CC-220) in combination with dexamethasone in patients with relapsed/refractory multiple myeloma. Clin Lymphoma Myeloma Leuk. 2019;19(suppl 10):E52-E53. doi:10.1016/j.clml.2019.09.080

See the rest here:
Meeting Agenda Focuses on Increased Applications of Cellular Therapies in Hematologic Cancers - Targeted Oncology

Angiocrine Bioscience Announces FDA Regenerative Medicine Advanced Therapy (RMAT) Designation Granted to AB-205 (Universal E-CEL Cell Therapy) to…

Angiocrine Bioscience Announces FDA Regenerative Medicine Advanced Therapy (RMAT) Designation Granted to AB-205

About Regenerative Medicine Advanced Therapy (RMAT) DesignationEstablished under the 21st Century Cures Act, the RMAT designation was established to facilitate development and expedite review of cell therapies and regenerative medicines intended to treat serious or life-threatening diseases or conditions. Advantages include the benefits of the FDA's Fast Track and Breakthrough Therapy Designation programs, such as early interactions with the FDA to discuss potential surrogate or intermediate endpoints to support accelerated approval.

About HDT-AHCT High-dose therapy and autologous hematopoietic cell transplantation (HDT-AHCT) is considered a standard-of-care therapy for patients with aggressive systemic Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL).Although efficacious and considered a potential cure, HDT-AHCT is associated with severe regimen-related toxicities (SRRT) that increase patient morbidity and risk for mortality, especially in the aging population. Effective prevention of SRRT may lead to more patients being eligible for a potential cure through HDT and stem cell transplantation.

About SRRT Consequences of Diffuse Injury to the Organ Vascular NichesThe human body is capable of renewing, healing and restoring organs.For example, the human oral-GI tract renews its lining every 3 to 7 days. Both the organ renewal and healing processes are dependent on organ stem cell vascular niches made up of stem cells, endothelial cells (cells that line blood vessels) and supportive cells.When tissues are injured, the vascular niche endothelial cells direct the stem cells, via angiocrine factor expression, to repair and restore the damaged tissue. This restorative capacity is most active during childhood and youth but starts to diminish with increasing age.HDT provided to eradicate cancer cells also cause diffuse, collateral damage to vascular niches of multiple healthy organs. In particular, the organs with the highest cell turnover (ones with most active vascular niches) are severely affected.Specifically, the oral-GI tract, dependent on constant renewal of its mucosal lining, starts to break down upon vascular niche injury.The mucosal breakdown can cause severe nausea, vomiting and diarrhea. In addition, the bacteria in the gut may escape into the circulation, resulting in patients becoming ill with endotoxemia, bacteremia or potentially lethal sepsis.HDT-related vascular niche damage can also occur in other organs resulting in severe or life-threatening complications involving the lung, heart, kidney, or the liver.Collectively, these complications are known as severe regimen-related toxicities or SRRT.SRRT can occur as frequently as 50% in lymphoma HDT-AHCT patients, with increased rate and severity in older patients.

About AB205AB-205 is a first-in-class engineered cell therapy consisting of proprietary 'universal' E-CEL (human engineered cord endothelial) cells.The AB-205 cells are intravenously administered after the completion of HDT on the same day as when the patient's own (autologous) blood stem cells are infused. AB-205 acts promptly to repair injured vascular niches of organs damaged by HDT.By repairing the vascular niches, AB-205 restores the natural process of tissue renewal, vital for organs such as oral-GI tract and the bone marrow. Successful and prompt organ restoration can prevent or reduce SRRT, an outcome that is beneficial to quality of life and cost reductive to the healthcare system.

About CIRMThe California Institute for Regenerative Medicine (CIRM) was established in November, 2004 with the passage of Proposition 71, the California Stem Cell Research and Cures Act. The statewide ballot measure provided $3 billion in funding for California universities and research institutions.With over 300 active stem cell programs in their portfolio, CIRM is the world's largest institution dedicated to stem cell research. For more information, visit http://www.cirm.ca.gov.

About Angiocrine Bioscience Inc.Angiocrine Bioscience is a clinical-stage biotechnology company developing a new and unique approach to treating serious medical conditions associated with the loss of the natural healing and regenerative capacity of the body.Based on its novel and proprietary E-CEL platform, Angiocrine is developing multiple therapies to address unmet medical needs in hematologic, musculoskeletal, gastrointestinal, soft-tissue, and degenerative/aging-related diseases.A Phase 3 registration trial is being planned for the intravenous formulation of AB-205 for the prevention of severe complications in lymphoma patients undergoing curative HDT-AHCT.This AB-205 indication is covered by the Orphan Drug Designation recently granted by the US FDA.In addition, Angiocrine is conducting clinical trials of local AB-205 injections for the treatment of: (1) rotator cuff tear in conjunction with arthroscopic repair; and, (2) non-healing perianal fistulas in post-radiation cancer patients.

For additional information, please contact:

Angiocrine Bioscience, Inc. John R. Jaskowiak (877) 784-8496 [emailprotected]

SOURCE Angiocrine Bioscience, Inc.

Link:
Angiocrine Bioscience Announces FDA Regenerative Medicine Advanced Therapy (RMAT) Designation Granted to AB-205 (Universal E-CEL Cell Therapy) to...

Regenerative Medicine Market with Report In Depth Industry Analysis on Trends, Growth, Opportunities and Forecast till 2026 – Illadel Graff Supply

The latest report on Regenerative Medicine market collated by Market Study Report, LLC, delivers facts and numbers regarding the market size, geographical landscape and profit forecast of the Regenerative Medicine market. In addition, the report focuses on major obstacles and the latest growth plans adopted by leading companies in this business.

Request a sample Report of Regenerative Medicine Market at: https://www.marketstudyreport.com/request-a-sample/1695290?utm_source=illadelink&utm_medium=RV

The Regenerative Medicine Market is anticipated to reach over USD 79.23 billion by 2026 according to a new research. In 2017, the cell therapy dominated the global Regenerative Medicine market, in terms of revenue. North America is expected to be the leading contributor to the global market revenue in 2017.

The regenerative medicine market is primarily driven by the increasing number of individuals suffering from cancer, rising need to monitor and treating these chronic diseases in the limited time. Furthermore, stringent government policies, proper reimbursement policies, and increasing government healthcare expenditure for developing healthcare infrastructure to also boost the market growth in coming years. Also, rising number of organ transplantation, and increasing number of products in pipeline that are waiting for approval create major opportunity for the regenerative medicines in the coming years. However, some of the ethical and religious concerns for the use of stem cells, and lack of proper regulatory for the approval of various drugs would impede the market growth during the forecast period.

Enquiry about Regenerative Medicine market report before Buying at: https://www.marketstudyreport.com/enquiry-before-buying/1695290?utm_source=illadelink&utm_medium=RV

North America generated the highest revenue in the Regenerative Medicine market in 2017, and is expected to be the leading region globally during the forecast period. Increasing number of patients suffering from chronic diseases, improved healthcare infrastructure and health facilities, accessibility of healthcare facilities, are the primary factors driving the market growth in this region. While, Asia Pacific to be the fastest growing region in the coming years. The growth in this region is majorly attributed to the developing healthcare infrastructure of the countries like India, & China, and rising awareness for the use of regenerative medicines as an effective treatment option for chronic diseases.

Regenerative medicine is a branch of medicine that regrows, and repairs the damaged cells in the human body. These medicines include the use of stem cells, tissue engineering, that further helps in developing new organ that function smoothly. These medicines have the caliber of developing an entire organ as these cells are multipotent. The cells are majorly isolated from bone marrow, and umbilical cord blood.

Purchase full report of Regenerative Medicine market at: https://www.marketstudyreport.com/securecheckout/paymenta/1695290?utm_source=illadelink&utm_medium=RV?msfpaycode=sumsf

The key players operating in the Regenerative Medicine market include Organogenesis Inc., Vericel Corporation, Osiris Therapeutics, Inc., Stryker Corporation, and NuVasive, Inc., Medtronic Plc., Acelity, Cook Biotech Inc., Integra LifeSciences, and C.R. Bard. These companies launch new products and collaborate with other market leaders to innovate and launch new products to meet the increasing needs and requirements of consumers.

Regenerative Medicine Market share byMajor regions included:

United States North America Asia Pacific Europe Middle East & Africa

Table of Contents

1. Overview and Scope 1.1. Research goal & scope 1.2. Research assumptions 1.3. Research Methodology 1.3.1. Primary data sources 1.3.2. Secondary data sources 1.4. Key take-away 1.5. Stakeholders 2. Executive Summary 2.1. Market Definition 2.2. Market Segmentation 3. Regenerative Medicine Market Insights 3.1. Regenerative Medicine Industry snapshot 3.2. Regenerative Medicine Ecosystem analysis 3.3. Regenerative Medicine Market Dynamics 3.3.1. Regenerative Medicine Market Forces 3.3.1.1. Regenerative Medicine Market Driver Analysis 3.3.1.2. Regenerative Medicine Market Restraint/Challenges analysis 3.3.1.3. Regenerative Medicine Market Opportunity Analysis 3.4. Industry analysis Porters five force 3.4.1. Bargaining power of supplier 3.4.2. Bargaining power of buyer 3.4.3. Threat of substitute 3.4.4. Threat of new entrant 3.4.5. Degree of competition 3.5. Regenerative Medicine Market PEST Analysis 3.6. Regenerative Medicine Market Value Chain Analysis 3.7. Regenerative Medicine Industry Trends 3.8. Competitive Ranking Analysis 4. Regenerative Medicine Market Size and Forecast by Therapy Type, 2018-2026 4.1. Key Findings 4.2. Tissue engineering 4.3. Cell Therapy 4.4. Immunotherapy 4.5. Gene Therapy 5. Regenerative Medicine Market Size and Forecast by Product Type, 2018-2026 5.1. Key Findings 5.2. Acellular Products 5.3. Cellular Products

About Us:

Marketstudyreport.com allows you to manage and control all corporate research purchases to consolidate billing and vendor management. You can eliminate duplicate purchases and customize your content and license management.

Contact Us:

Market Study Report LLC

Phone: 1-302-273-0910

US Toll Free: 1-866-764-2150

Email:sales@marketstudyreport.com

Read the original post:
Regenerative Medicine Market with Report In Depth Industry Analysis on Trends, Growth, Opportunities and Forecast till 2026 - Illadel Graff Supply

Leading Human Immunology and Infectious Disease Experts to Join UM School of Medicines Institute of Human Virology – Newswise

Newswise Baltimore, MD, November 12, 2020 Robert C. Gallo, MD, the Homer & Martha Gudelsky Distinguished Professor in Medicine at the University of Maryland School of Medicine (UMSOM) and Co-Founder & Director of the UMSOMs Institute of Human Virology (IHV), announced today that a team of leading scientists in human immunology, virology and stem cell biology, led by Lishan Su, PhD joined IHV on October 1 with academic appointments in the UMSOM Department of Pharmacology. As part of the Maryland E-Nnovation Initiative Fund (MEIF) to recruit top research faculty and a donation to IHV from the Charles Gordon Estate, Dr. Su has been named the Charles Gordon Smith Endowed Professor for HIV Research. Dr. Su will also head IHVs Division of Virology, Pathogenesis and Cancer.

The team will include a 12-person Laboratory of Viral Pathogenesis and Immunotherapy with two faculty appointments as well as major public and private sector research funding.

Dr. Gallo made the announcement in conjunction with University of Maryland School of Medicine Dean E. Albert Reece, MD, PhD, MBA and Margaret M. McCarthy PhD, James & Carolyn Frenkil Deans Professor, Chair of the Department of Pharmacology.

Dr. Su is one of the most successful active basic researchers in America, said Dr. Gallo, who is also Co-Founder and Chairman of the International Scientific Leadership Board of the Global Virus Network. His research is groundbreaking, and we are so pleased to have him join IHV and lead our Division of Infectious Agents and Cancer, which under his sound leadership, will flourish.

Dr. McCarthy added:Dr. Sus continuing ground-breaking work in HIV and Hepatitis B will be a huge asset to the Department of Pharmacology. I look forward to working with him on advances that could open the door to new therapeutics.

Dr. Su was a faculty member in the Lineberger Comprehensive Cancer Center and Professor in the Department of Microbiology & Immunology at University of North Carolina-Chapel Hill since 1996. He received his BS degree in Microbiology from Shandong University, his PhD degree in Virology from Harvard University, and did his post-doctoral training in Stem Cell Biology & Immunology at Stanford University. He worked as a senior research scientist at SyStemix/Sandoz (Novartis), focusing on HIV-1 pathogenesis and stem cell-based gene therapy in humanized mice and in patients.

I am excited to continue and expand my research programs at the Institute of Human Virology (IHV), said Dr. Su. I have long been impressed by the Baltimore-DC area's research centers with great basic and clinical research programs. IHV, co-founded and directed by Dr. Robert Gallo, is one of the first research institutes in the U.S. to integrate basic science, population studies and clinical trials to understanding and treating human virus-induced diseases. The Department of Pharmacology, headed by Dr. Margaret McCarthy, in the University of Maryland School of Medicine, has been outstanding in developing novel therapeutics including breast cancer drugs. I look forward to working with my new colleagues at IHV and the Department of Pharmacology, and across the University of Maryland School of Medicine, to expand and translate my research programs to treating human inflammatory diseases including virus infection and cancer.

Dr. Su has extensive research experience in human immunology, virology and stem cell biology. Dr. Su made important contributions to several areas of human immunology and infectious diseases, particularly in studying human immuno-pathology of chronic virus infections. His lab at UNC-Chapel Hill published important findings in identifying novel virological and immunological mechanisms of HIV-1 pathogenesis. Furthermore, his lab established humanized mouse models with both human immune and human liver cells that support HCV or HBV infection, human immune responses and human liver fibrosis. In recent years, Dr. Sus group discovered, and focused on, the pDC-interferon axis in the immuno-pathogenesis and therapy of chronic HIV & HBV infections. The group also started investigation of the pDC-IFN axis in tumor microenvironments and in cancer immune therapy.

Im so pleased to welcome Dr. Su to our faculty. His work advances the mission of the School of Medicine, which is to provide important new knowledge in the area of immunology and chronic disease to discover new approaches for treatments, said Dean Reece, who is also University Executive Vice President for Medical Affairs and the John Z. and Akiko K. Bowers Distinguished Professor. Dr. Sus stellar research capabilities will provide vital opportunities for collaboration across our Institutes and Departments.

About the Institute of Human Virology

Formed in 1996 as a partnership between the State of Maryland, the City of Baltimore, the University System of Maryland and the University of Maryland Medical System, IHV is an institute of the University of Maryland School of Medicine and is home to some of the most globally-recognized and world-renowned experts in all of virology. The IHV combines the disciplines of basic research, epidemiology and clinical research in a concerted effort to speed the discovery of diagnostics and therapeutics for a wide variety of chronic and deadly viral and immune disorders - most notably, HIV the virus that causes AIDS. For more information,www.ihv.organd follow us on Twitter @IHVmaryland.

About the University of Maryland School of Medicine

The University of Maryland School of Medicine was chartered in 1807 and is the first public medical school in the United States and continues today as an innovative leader in accelerating innovation and discovery in medicine. The School of Medicine is the founding school of the University of Maryland and is an integral part of the 11-campus University System of Maryland. Located on the University of Marylands Baltimore campus, the School of Medicine works closely with the University of Maryland Medical Center to provide a research-intensive, academic and clinically based education. With 43 academic departments, centers and institutes and a faculty of more than 3,000 physicians and research scientists plus more than $400 million in extramural funding, the School is regarded as one of the leading biomedical research institutions in the U.S. with top-tier faculty and programs in cancer, brain science, surgery and transplantation, trauma and emergency medicine, vaccine development and human genomics, among other centers of excellence. The School is not only concerned with the health of the citizens of Maryland and the nation, but also has a global vision, with research and treatment facilities in more than 30 countries around the world. For more information, visitwww.medschool.umaryland.edu.

View post:
Leading Human Immunology and Infectious Disease Experts to Join UM School of Medicines Institute of Human Virology - Newswise

UB researcher narrows time window for administering specific treatment to infants with Krabbe disease – UB Now: News and views for UB faculty and…

A team of UB researchers has published a paper in Nature Communications that is helping to define the best time to give a specific treatment to infants born with Krabbe disease (KD). This treatment has been found to prolong life for these infants for as long as a few years.

The paper was published online in Nature Communication Oct. 23.

Daesung Shin, assistant professor in the Department of Biotechnical and Clinical Laboratory Sciences and the Neuroscience Program, both in the Jacobs School of Medicine and Biomedical Sciences at UB, is the lead investigator. He also conducts research at UBs Hunter James Kelly Research Institute.

KD is an inherited disorder that destroys myelin, the protective coating of nerve cells in the brain and throughout the nervous system. In most cases, signs and symptoms of Krabbe disease develop in babies before 6 months of age, and the disease usually results in death by age 2. When it develops in older children and adults, the course of the disease can vary greatly.

The progressive neurologic disorder is caused by a deficiency of galactosylceramidase (GALC). GALC is an enzyme that breaks down galactosylceramide, an important component of myelin, which ensures the rapid transmission of nerve impulses.

Although there is no cure for KD, hematopoietic stem cell therapy (HSCT), a therapy that makes blood cells, reduces neurologic deterioration and improves developmental advances. These benefits are dependent on the severity of the disease at the time the stem cells are transplanted, and are only beneficial if delivered at a clinically defined pre-symptomatic time point before symptoms appear.

Even though it is widely accepted that early treatment is essential for the most positive outcome, the precise therapeutic window for treatment and what happens during this early time have never been elucidated, Shin says.

To address that issue, his team used mutations to create a novel mouse model of KD.

We engineered an inducible knockout mouse for the GALC gene deletion in specific cells at specific times, which provided us with the opportunity to directly ask when and where GALC enzyme is required for brain development, Shin explains.

We were particularly interested in the role of early developmental GALC function, he says. Our study not only revealed a key developmental process that requires GALC in the perinatal period, but also demonstrated that temporal GALC expression is likely a major contributor to brainstem development.

The researchers found that by increasing GALC levels at or before this newly defined perinatal period they could improve the effectiveness of therapeutic interventions for KD.

For the first time, our work showed the mechanistic evidence to explain why treatment must occur so early, with the defined critical postnatal period at days 4-6 in mice, and demonstrated that temporal GALC expression during this time is a major contributor to brainstem development, Shin says. Augmenting GALC levels at or prior to this newly defined period would likely improve the efficacy of therapeutic interventions for Krabbe patients.

While the time scale between mice and humans is considerably different, the sequence of key events in brain maturation between the two is consistent, he notes. It was estimated that the mouse nervous system at postnatal days 4-6 corresponds to a gestational age of 32 weeks in humans. Therefore, we anticipate that if our result is correct, then in utero treatments at, or prior to, 32 weeks should have better outcomes than conventional postnatal treatment for Krabbe babies.

Shin says his team will further identify which cell type needs to be targeted with therapy.

This work will directly impact the design of novel treatment options for KD patients, he says, noting that KD studies are at the basis of research on other, more common neurodegenerative diseases, such as multiple sclerosis and Parkinsons disease. Therefore, the teams work will have implications beyond KD.

Co-authors on the research were Nadav I. Weinstock, MD-PhD student, and Conlan Kreher, former masters student, both of the HJKRI and the Department of Biochemistry in the Jacobs School; Jacob Favret, research technician in the Department of Biotechnical and Clinical Laboratory Sciences; Lawrence Wrabetz and M. Laura Feltri, both co-directors of the HJKRI and members of the departments of Biochemistry and Neurology, as well as the Neuroscience Program.

Duc Nguyen and Ernesto R. Bongarzone of the Department of Anatomy and Cell Biology in the College of Medicine at the University of Illinois at Chicago also participated in the research.

The project was initiated with the support from Empire State development fund for HJKRI, and further developed and finalized by the R01, R56 and R03 grants from National Institutes for Health-National Institute for Neurological Disorders and Stroke awarded to Shin.

More:
UB researcher narrows time window for administering specific treatment to infants with Krabbe disease - UB Now: News and views for UB faculty and...

FibroGenesis Announces the Filing of its 250th Patent for Fibroblast Cell Therapy Platform – PRNewswire

World Leader in Fibroblast Technology Advances Intellectual Property Position with their 250th Patent Filed Today.

"Our scientific team is creating new opportunities for this "super cell," commented Tom Ichim, Ph.D., Chief Scientific Officer of FibroGenesis. "Internal data and emerging third party validation, shows our proprietary universal donor fibroblast-based product outperforms existing approaches. Our broad intellectual property establishes FibroGenesis as the gatekeeper for anyone entering this space."

"As we continue to organically expand our intellectual property portfolio, we are humbled by the equally expanding clinical capabilities of this unique cell source," said Pete O'Heeron, Chief Executive Officer, FibroGenesis. "Our new clinical programs are providing evidence of a cell source superior to stem cells and our proprietary position gives us the protection to continue our growth."

About FibroGenesis

Based in Houston, Texas, FibroGenesis, is a regenerative medicine company developing an innovative solution for chronic disease treatment using human dermal fibroblasts. Currently, FibroGenesis holds 250 U.S. and international issued patents/patents pending across a variety of clinical pathways, including Disc Degeneration, Multiple Sclerosis, Parkinson's, Chronic Traumatic Encephalopathy, Cancer, Diabetes, Liver Failure and Heart Failure. Funded entirely by angel investors, FibroGenesis represents the next generation of medical advancement in cell therapy.

Visit http://www.Fibro-Genesis.com.

SOURCE FibroGenesis

http://www.Fibro-Genesis.com

Original post:
FibroGenesis Announces the Filing of its 250th Patent for Fibroblast Cell Therapy Platform - PRNewswire

FROM THE LABS: Hispanic Heritage Spotlight: Interview with Dr. Nino Rainusso – Baylor College of Medicine News

From the Labs sat down with Dr. Nino Rainusso, assistant professor of pediatrics hematology/oncology and a member of the Dan L Duncan Comprehensive Cancer Center at Baylor College of Medicine. Dr. Rainusso shared what inspired him to become a pediatric oncologist, his experience finding a research position in a Baylor lab and something few know about him.

I was born and raised in Per where I attended medical school at Universidad Peruana Cayetano Heredia. Early in my training I realized that if I wanted to better understand the medical conditions of my patients, I had to be involved in biomedical research. I wanted to become a physician-scientist in the field of pediatric neurology. This changed when I met my wife. Her brother had neuroblastoma, a common pediatric cancer that frequently develops in nerves associated with the adrenal glands located on top of the kidneys. When he died of the cancer, my career took a different path. Instead of spending my life as a pediatric neurologist, I became a pediatric oncologist.

During my rotations in medical school, I saw that doctors were exceptionally good at providing medical care for their patients but didnt have time to do research. That motivated me to come to the U.S. where I would have opportunities to continue my career as a physician-scientist.

After I completed my residency in general pediatrics at the University of Illinois at Chicago, I was accepted at Baylor for my fellowship in pediatric oncology. I dove into research in the second and third years. Having many patients with different types of tumors for which the treatment outcome has not significantly changed for the last 30 years meant that there was a wealth of research opportunities. One day, I attended a talk about cancer stem cells that inspired me to apply that approach to pediatric solid tumors.

I joined Dr. Jeff Rosens lab at Baylor. I liked his lab for its open-minded environment and collaborative atmosphere that many Baylor labs have.

I was not sure about what his response would be when I proposed to work in his group.

He has spent his entire life doing research in breast cancer and I, with little lab experience under my belt, was proposing to do research in osteosarcoma stem cells. Osteosarcoma is the most common bone cancer in children and young adults. I was expecting that he would try to change my mind, but instead he said, OK, welcome! I loved it! I am very grateful that I ended up working in Jeffs lab. He has been a wonderful mentor, and I learned a lot working in his group.

When it was time for me to have my own lab, I joined Dr. Jason Yusteins group at Texas Childrens Cancer & Hematology Centers. We took a new approach to study osteosarcoma. One limitation of studying this condition is working with cell lines, which do not seem to recapitulate most of the characteristics of tumors in patients.

We decided to generate patient-derived tumor xenografts models of pediatric sarcomas where the tissue from a patients tumor is implanted into immunosuppressed mice. These tumors closely resemble the characteristics of the original tumor allowing to have better understanding of cancer biology and to evaluate novel therapies.

We collaborate with other investigators to test new treatments such us immunotherapy in these xenograft models, which may put us a step closer to bringing more effective therapies to patients. I believe that our research would not be possible without the participation of multiple colleagues at Texas Childrens Hospital and the nurturing scientific environment provided by Baylor College of Medicine.

My close friends Alicia and Miguel are superb science teachers in a high school that serves economically disadvantaged communities.

Their schools have many dropouts and one of the reasons seems to be lack of opportunities for students to know what they could become.

Most students, not only Hispanics, are not aware of what scientists do or what a research lab looks like.

One idea could be to sponsor science fairs in these schools and award prizes that also include student tours of Baylor or Texas Childrens lab facilities. Students also need to be aware of scholarships they could apply for to pursue a higher education.

Finally, academic institutions and researchers may also participate in school talks to promote a better understanding of science and its direct repercussions in our daily life and to reduce the mistrust in science, which is a growing topic of significant concern.

I am a Star Wars fan so my office has many items from a galaxy far, far away.

By Ana Mara Rodrguez, Ph.D.

See the rest here:
FROM THE LABS: Hispanic Heritage Spotlight: Interview with Dr. Nino Rainusso - Baylor College of Medicine News

Protective protein could help keep blood young and healthy – New Atlas

A new study led by the University of Edinburgh and Queen Mary University of London has identified a protein that plays a crucial role in protecting the bodys blood stem cells from damage during infection, a finding that could lead to new ways to slow down the aging process.

Hematopoietic stem cells (HSCs) are found in bone marrow, and from there they produce other blood and immune cells. When an infection strikes the body, HSCs are known to ramp up production to fight it off but thats raised some questions for scientists in the past. In particular, how do they protect themselves from damage while working overtime?

We know that inflammatory pathways induced by infection force blood stem cells to rapidly produce immune cells to help combat infections, says Kamil Kranc, corresponding author of the study. However, these pathways can eventually exhaust stem cells or cause their premature aging, and it is important to understand how this can be stopped.

In the new study, the researchers identified a protein called YTHDF2 that seems to be responsible for this important job. When an infection arises, the HSCs produce far more immune cells, but at the same time that triggers inflammatory processes that can damage the stem cells. The study found that the YTHDF2 protein regulates genes that control those inflammatory processes, protecting the stem cells from premature aging.

To investigate the role of YTHDF2, the team engineered mice to be deficient in the protein, then administered a chemical that acts like a viral infection. Sure enough, the mices HSCs appeared to suffer chronic inflammation, altering the production of different blood cell types. Interestingly, the blood of these young animals began to resemble that of much older mice.

The new study seems to agree with previous reports that blood transfusions from young animals to older ones can improve the health of the recipient, and even slow the progression of diseases like Alzheimer's. As such, the team says that future work could investigate whether manipulating levels of YTHDF2 may be a potential anti-aging treatment.

The research was published in the Journal of Experimental Medicine.

Source: University of Edinburgh

Continue reading here:
Protective protein could help keep blood young and healthy - New Atlas