Category Archives: Stem Cell Medicine


Global, The US and Europe Regenerative Medicines Market Outlook 2019-2027 Share, Consequence of COVID-19 on Market, Demand, Top Companies, Trend,…

The global regenerative medicine market is estimated to grow on the back of rising healthcare expenditure with increasing demand for efficient disease treating practices coupled with growing technological developments and discoveries. The world bank reported a rise in global current health expenditure (% GDP) from 9.453% in 2011 to 10.023% in 2016.

The Final Report will cover the impact analysis of COVID-19 on this industry (Global and Regional Market).

Request to Fill the Form to Get Sample Copy of This Report:https://www.kennethresearch.com/sample-request-10166486

Additionally, global regenerative medicines market is estimated to grow at a robust rate on the back of increasing adoption of stem cell technology to address the rising prevalence of chronic diseases. Moreover, emerging applications of gene therapy in regenerative medicines for tackling infectious diseases such as, malaria, HIV, tuberculosis and influenza or to target angiogenesis during cardiac surgery is leading to subsequent expansion in usage base of regenerative medicines around the globe.

Increasing incidences of chronic oncogenic diseases such as cancer with an estimated new cases of 18.1 million in 2018 as per International Agency for Research on Cancer (IARC), is anticipated to display rapid growth in application of regenerative medicines in the upcoming years. Additionally, increasing application of regenerative medicines to treat auto-immune hepatitis, is expected to back the rampant growth in the upcoming years. Moreover, government initiatives to eliminate chronic diseases is anticipated to aid the growth in upcoming years.

For instance, World Health Organization (WHO) launched an initiative to eliminate hepatitis completely by 2030. Furthermore, Regenerative medicines comprising blood stem cell implants can be used to restore healthy bone marrow in patients with leukemia. Besides, experiments in the gene therapy segment to explore benefits for various other medical applications, is expected to propel considerable growth in the regenerative medicines market in the upcoming years.

The Final Report will cover the impact analysis of COVID-19 on this industry (Global and Regional Market).

Request to Fill the Form to Get Sample Copy of This Report:https://www.kennethresearch.com/sample-request-10166486

Application of regenerative medicines in tissue-engineering cartilages, modifying chondrocytes, and other tissue engineering technologies for treating traumatic and degenerative joint diseases is estimated to drive the market growth in the upcoming years. Additionally, increasing use of regenerative medicines in hepatocyte transplants for chronic liver disease treatments and liver failure conditions is propelling an exponential growth in the global market.

Moreover, increasing use of poly-hemoglobin blood substitute produced through regenerative medicines to treat conditions of blood contamination or blood shortages is further propelling growth in the utilization of regenerative medicines in the hospitals, blood banks and research institutes.

Tissue engineering is a field majorly focused on development of tissue and organ substitutes by controlling biological, biophysical and/or Biomechanical parameters in the laboratory. Of late, tissue engineering has gained popularity on the back of its utilization to bioengineer implantable devices, reconstitutedecellularized organs, and manufacture organs using3D bio-printing.

Additionally, rising geriatric population across the globe holds immense opportunities for regenerative medicines in the upcoming years. According to World Bank, population aged 65 and above increased from 7.64% in 2010 to 8.926% of the overall population in 2018. Moreover, change in climatic conditions and increase in sedentary lifestyles has led to drastic demographic changes in developed and developing countries, resulting in growing number of disease cases associated with aging. This aspect is attributed to contribute considerably to the regenerative medicines market growth across the globe

Changing environmental conditions with increasing penetration of ultraviolet rays to the earths surface due to global warming consequently impacting the human health by causing oncologic and dermatology based diseases is attributed to create an upsurge in demand for regenerative medicines during the forthcoming years.

Additionally, increasing exposure of the present population to X-rays and gamma rays due to high nuclear energy involving practices is increasing incidences of cancer, subsequently propelling the regenerative medicines market across North America.

The Final Report will cover the impact analysis of COVID-19 on this industry (Global and Regional Market).

A sharp reduction in the size of secondary care institutions across Europe in the past decade has resulted in the streamlining of healthcare delivery and stimulated more efficient and integrated model of care that is anticipated to lead to complete conquer of the hospital-centric pattern of care over the forthcoming years. These change in patterns of healthcare are attributed to influence the regenerative medicines market positively across Europe

Increasing prevalence of diabetes retinopathy with rising cases of diabetes mellitus across Asia has resulted in rise in adoption of regenerative medicines for cornea regeneration and other ophthalmic applications driving the market subsequently in the continent over the past. Besides, new application discoveries in the field of regenerative medicines through extensive research and development activities across the countries of India, Japan and China are anticipated to boost the market positively during the forecast period

The Final Report will cover the impact analysis of COVID-19 on this industry (Global and Regional Market).

Request for Complete Report:https://www.kennethresearch.com/sample-request-10166486

About Kenneth Research:

Kenneth Research provides market research reports to different individuals, industries, associations, and organizations with the aim of helping them to take prominent decisions. Our research library comprises more than 10,000 research reports provided by more than 15 market research publishers across different industries. Our collection of market research solutions covers both the macro level as well as micro-level categories with relevant and suitable market research titles. As a global market research reselling firm, Kenneth Research provides significant analysis of various markets with pure business intelligence and consulting services on different industries across the globe. In addition to that, our internal research team always keeps a track of the international and domestic market for any economic changes impacting the products demand, growth, and opportunities for new and existing players.

New Research Reports Available @Kenneth Research:

Competitive Local Exchange Carriers (CLEC) MarketOnline Grocery MarketOil Gas Automation Control (AC) MarketOil and Gas Cementing Services MarketNeuromodulation Devices Market

Original post:
Global, The US and Europe Regenerative Medicines Market Outlook 2019-2027 Share, Consequence of COVID-19 on Market, Demand, Top Companies, Trend,...

Vegan diet, intense cardio and stem cell therapy How Mike Tyson managed to get ripped at 53 as boxing c – talkSPORT.com

Mike Tyson has attributed his incredible body transformation to stem cell therapy and a rigid vegan diet.

The youngest world heavyweight champion in history ballooned to more than 300lbs in weight at his heaviest almost a decade ago.

However, after drastically changing his diet and implementing revolutionary reparative medication, Iron Mike is looking more streamlined and more devastating than ever.

Tyson is reportedly considering making a return to the squared circle at the age of 53, with an announcement on his opponent expected this week.

Whilst training with UFC legends Vitor Belfort and Henry Cejudo, the former undisputed heavyweight champion displayed a significantly more shredded physique.

Prior to officially announcing his desire to return, Tyson was asked by rapper LL Cool J how he would get fighting fit in just six to eight weeks.

He told Rock the Bells Radio show on SiriusXM: Really I would just change my diet and just do cardio work. Cardio has to start, you have to have your endurance to go and do the process of training.

Mike Tyson

So something to do is get in cardio, I would try and get two hours of cardio a day, make sure you get that stuff in. Youre gonna make sure youre eating the right food.

For me its almost like slave food. Doing what you hate to do but doing it like its nothing. Getting up when you dont want to get up. Thats what it is. Its becoming a slave to life.

People think a slave to life is just enjoying drugs and living your life. Being a slave to life means being the best person you can be, being the best you can possibly be, and when you are at the best you can possibly be is when you no longer exist and nobody talks about you. Thats when youre at your best.

Tyson continued: My mind wouldnt belong to me. My mind would belong to somebody that disliked me enough to break my soul, and I would give them my mind for that period of time.

Six weeks of this and Id be in the best shape Ive ever dreamed of being in. As a matter of fact, Im going through that process right now. And you know what else I did, I did stem-cell research.

Stem-cell research (also known as regenerative medicine) promotes the repair response of diseased, dysfunctional or injured tissue using stem cells or their derivatives.

It is the latest advancement in organ transplantation and uses cells instead of donor organs, which are limited in supply.

After LL Cool J asked if that meant Tysons white blood cells had been spun and then put back in, Tyson continued: Yes. As they took the blood it was red and when it came back it was almost transfluid [sic], I could almost see through the blood, and then they injected it in me. And Ive been weird ever since, Ive got to get balanced now.

Getty Images - Getty

The necessity to repair the former heavyweight champion was caused by the excessive weight gain following his retirement in 2005 and his hedonistic lifestyle.

Excessive cocaine abuse left the heavyweight in a serious state of bother and led him to adopt a vegan lifestyle.

He told Totally Vegan Buzz: I was so congested from all the drugs and bad cocaine, I could hardly breathe. Tyson also revealed in the interview, I had high blood pressure, was almost dying, and had arthritis.

During aninterviewwith Oprah Winfrey in 2013, Tysoncredits his plant-based diet for saving his life.

Getty Images

He said: Well, my life is different today because I have stability in my life. Im not on drugs.

Im not out on the streets or in clubs and everything in my life that I do now is structured around the development of my life and my family. I lost weight.

I dropped over 100lbs and I just felt like changing my life, doing something different and I became a vegan.

Read the original:
Vegan diet, intense cardio and stem cell therapy How Mike Tyson managed to get ripped at 53 as boxing c - talkSPORT.com

Hair regeneration using stem cells to treat baldness – BioNews

26 May 2020

Stem cells derived from fat can lead to hair regrowth for people with a common type of baldness, according to a new study.

The South Korean researchersconducted a clinical trial into androgenetic alopecia (AGA), the most common cause of hair loss. The trial showed that the use of extracts of fat tissue termed adipose-derived stem cell constituent extract (ADSC-CE) increasedboth hair thickness and density in patients.

'Recent studies have shown that ADSCs promote hair growth in both men and women with alopecia. However, no randomised, placebo-controlled trial in humans has explored the effects and safety of ADSC-CE in AGA. We aimed to assess the efficacy and tolerability of ADSC-CE in middle-aged patients with AGA in our study, hypothesising that it is an effective and safe treatment agent,' said corresponding author Dr Sang Lee from Pusan National University Yangsan Hospital.

To make their solution, the team disrupted the membrane of stem cells found in fat tissues using a low-frequency ultrasound wave and enriched the secreted stem cell with protein. They recruited 38 patients 29 men and nine women with AGA for the clinical trial. One half applied the ADSC-CE lotion to their scalp with their fingers, and the other applied a placebo solution.

A dot was tattooed on the participants'scalps in order to compare the same spot over time. After 16 weeks, the group that used the ADSC-CE lotion presented a significant increase in hair density with 28.1 percent in comparison to 7.1 percent in the control group, and also hair thickness with 14.2 percent in comparison to 6.3 percent in the control group.

The results from this clinical trial, published in the journal Stem Cells Translational Medicine, presented no side-effects, and provide an alternative to current hair therapeutic strategies that have been associated with loss of libido and erectile disfunction.

Further research is required to understand the molecular mechanisms by which ADSC-CE can affect hair growth in humans. 'The next step should be to conduct similar studies with large and diverse populations in order to confirm the beneficial effects of ADSC-CE on hair growth and elucidate the mechanisms responsible for the action of ADSC-CE in humans,' said Dr Lee.

Read this article:
Hair regeneration using stem cells to treat baldness - BioNews

Human Embryonic Stem Cell Market Analysis with Key Players, Applications, Trends and Forecast to 2027 – Jewish Life News

The Covid-19 (coronavirus) pandemic is impacting society and the overall economy across the world. The impact of this pandemic is growing day by day as well as affecting the supply chain. The COVID-19 crisis is creating uncertainty in the stock market, massive slowing of supply chain, falling business confidence, and increasing panic among the customer segments. The overall effect of the pandemic is impacting the production process of several industries including Life Science, and many more. Trade barriers are further restraining the demand- supply outlook.

The human embryonic stem cells are obtained from the undifferentiated inner mass cell of the human embryo and human fetal tissue. The human embryonic stem cell can replicate indefinitely and produce non-regenerative tissue such as myocardial and neural cells. This potential of human embryonic stem cell allows them to provide an unlimited amount of tissue for transplantation therapies to treat a wide range of degenerative diseases. Hence, human embryonic stem cells are used in the treatment of various diseases such as Alzheimers disease, cancer, blood and genetic disorders related to the immune system and others.

Download a Sample Report Explore further @ https://www.theinsightpartners.com/sample/TIPRE00005165/

The global human embryonic stem cell market is expected to grow in upcoming years, factors driving the growth of market are rise in incidences of neurological disorders, increase in investment by government and other organization for research activities, awareness among people about stem cell therapeutic potency for disease treatment. On the other hand emerging stem cell banking services is expected to offer lucrative opportunities in growth of human embryonic stem cell market.

Key Players Influencing the Market:

1. BD

2. Takara Bio Inc.

3. Geron

4. Thermo Fisher Scientific Inc.

5. ViaCyte, Inc.

6. R&D Systems, Inc.

7. QIAGEN

8. CellGenix GmbH

9. Vitrolife

10. Lonza

Market Segmentation :

The global human embryonic stem cell market is segmented on the basis of product type, application and end user. Based on product type, the market is segmented as totipotent stem cell, pluripotent stem cell and unipotent stem cell. On the basis of application, the global human embryonic stem cell market is segmented into regenerative medicine, stem cell biology research, tissue engineering and toxicology testing. Based on end users, the market is segmented as therapeutics companies, cell & tissue banks, tools & reagents companies and others.

The report provides a detailed overview of the industry including both qualitative and quantitative information. It provides overview and forecast of the global human embryonic stem cell market based on various segments. It also provides market size and forecast estimates from year 2017 to 2027 with respect to five major regions, namely; North America, Europe, Asia-Pacific (APAC), Middle East and Africa (MEA) and South & Central America. The human embryonic stem cell market by each region is later sub-segmented by respective countries and segments. The report covers analysis and forecast of 18 countries globally along with current trend and opportunities prevailing in the region.

The report analyzes factors affecting human embryonic stem cell market from both demand and supply side and further evaluates market dynamics effecting the market during the forecast period i.e., drivers, restraints, opportunities and future trend. The report also provides exhaustive PEST analysis for all five regions namely; North America, Europe, APAC, MEA and South & Central America after evaluating political, economic, social and technological factors effecting the human embryonic stem cell market in these regions.

Request for Buy Report @ https://www.theinsightpartners.com/buy/TIPRE00005165/

Reasons to Buy the Report:

About Us:

The Insight Partners is a one stop industry research provider of actionable intelligence. We help our clients in getting solutions to their research requirements through our syndicated and consulting research services. We are a specialist in Technology, Healthcare, Manufacturing, Automotive and Defense.

Contact Us:

The Insight partners,

Phone: +1-646-491-9876Email:[emailprotected]

See more here:
Human Embryonic Stem Cell Market Analysis with Key Players, Applications, Trends and Forecast to 2027 - Jewish Life News

Biobanks Market – Rising need for replacement organs and the steady advancement in the replacement drive growth of market – BioSpace

Biobanks are essentially repositories for storing biological substances derived from humans, which may include organs, bio-specimens, plasma, saliva, and blood. With a vast rise in the number of organ replacement surgeries globally and significant advancements made in the fields of transfusion and replacement technologies, the role of the biobanks market has become more concrete in the healthcare sector in recent years.

The global biobanks market has witnessed expansion at a significant pace in the recent years owing to the vast rise in prevalence of a number of chronic diseases and the increased demand for personal medicine. The massive rise in incidence rate of conditions such as diabetes, cancer, neurovascular diseases, cardiovascular diseases, and respiratory diseases has compelled government bodies to take stronger actions in terms of investments in biobanks and increasing awareness about them. The global market for biobanks works in coherence with these efforts by adding pace to the process of drug discovery and the treatment of chronic diseases that are caused by activities such as smoking, consumption of alcohol, obesity, and unhealthy lifestyles.

Get Brochure of the Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=2321

Heavy investment by a proactive government has boosted the North America biobanks market to the leading position in the global biobanks market, followed closely by Europe. Both regions are home to several bioscience companies and host a large number of drug discovery and research activities. Asia Pacific still remains the region with the most promising growth potential as the region shown high promise owing to an increase in investments from both government and non-government organizations, along with a large and increasingly affluent population base that is gaining awareness about the market.

Global Biobanks Market: Overview

The global biobanks market owes its conception to the rising need for replacement organs and the steady advancement in the replacement and transfusion technologies regarding a number of bodily substances. Though the technology and need to store organs and other bio-entities had been available for a long time, the global biobanks market took on a more important role in the healthcare sector following the increasing research in genomics. In the new millennium, the development of the personalized medicine field has been the vital driver for the global biobanks market. The likely advancement of the latter, thanks to helpful government regulations, is likely to make the crucial difference for the global biobanks market in the near future.

The steady technological advancement in the healthcare sector in the last few decades has now led to a scenario where the full potential of biobanks can be harnessed. As a result, the global biobanks market is projected to exhibit steady growth over the coming years.

Buy this Premium Report @ https://www.tmrresearch.com/checkout?rep_id=2321&ltype=S

Global Biobanks Market: Key Trends

The rising interest in personalized medicine is the prime driver for the global biobanks market. Personalized medicine has only become a viable branch of modern medicine after steady research in genomics and the way various patients react to various medicines. The biobanks market has thus come into the spotlight thanks to their role as a steady supplier of human biomaterials for research as well as direct application. The increasing research in genomics following the findings of the Human Genome Project is thus likely to remain a key driver for the global biobanks market in the coming years.

The utilization of biobanks in stem cell research has been hampered in several regions by ethical concerns regarding the origin of stem cells. Nevertheless, the potential of stem cells in the healthcare sector is immense, and is likely to have a decisive impact on the trajectory of the global biobanks market in the coming years. Many countries have, in recent years, adopted a supportive stance towards stem cell research, aiding the growth of the biobanks market. Continued government support is thus likely to remain vital for the global biobanks market in the coming years.

Global Biobanks Market: Market Potential

The leading role of the U.S. in the global biobanks market is unlikely to change in the coming years. The easy availability of government-supported healthcare infrastructure and the presence of several industry giants in the region has driven the biobanks market in the U.S.

Northwell Health, the largest healthcare provider in New York State, earlier in 2017 initiated a new biobank aimed at creating precision therapies against various types of cancer. Launched in collaboration with Indivumed, the biobank will provide catalogued biomaterials for research into lung, colorectal, breast, and pancreatic cancer. This would enable targeted, gene-specific studies of a variety of cancer samples, leading to a more comprehensive understanding of cancer. Such well-funded collaboration efforts are crucial for the developing biobanks market.

Global Biobanks Market: Geographical Dynamics

Led by the fertile healthcare research scenario in the U.S., North America is likely to retain a dominant share in the global biobanks market in the coming years. Steady support from institutes such as the NIH is likely to be vital for the North America biobanks market.

Check Table of Contents of this Report @ https://www.tmrresearch.com/sample/sample?flag=T&rep_id=2321

Emerging Asia Pacific economies such as India and China could emerge with a significant share in the global biobanks market in the coming years. The healthcare sector in both countries has received steady public or private funding in the last few years. India is also a global leader in medical tourism and is likely to receive an increasing number of patients in the coming years, leading to promising prospects for the global biobanks market in the region.

Global Biobanks Market: Competitive Dynamics

Due to the dynamic nature of the global biobanks market, with advancements in diagnostic fields often determining the direction of the market, the market is heavily fragmented. It is likely to retain a significant degree of fragmentation in the coming years thanks to the diversity in the application segments of the biobanks market. The leading players in the global biobanks market include BioCision, Tecan Group, VWR, Beckman Coulter Inc., and Thermo Fisher Scientific.

About TMR Research

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

TMR Research,

3739 Balboa St # 1097,

San Francisco, CA 94121

United States

Tel: +1-415-520-1050

Visit Site: https://www.tmrresearch.com/

See the article here:
Biobanks Market - Rising need for replacement organs and the steady advancement in the replacement drive growth of market - BioSpace

Clinical Outcomes Using RYONCIL(TM) (remestemcel-L) in Children and Adults With Severe Inflammatory Graft Versus Host Disease Published in Three…

Key points:

NEW YORK, May 25, 2020 (GLOBE NEWSWIRE) -- Mesoblast Limited (Nasdaq:MESO; ASX:MSB), global leader in cellular medicines for inflammatory diseases, today announced that clinical outcomes of its allogeneic mesenchymal stem cell (MSC) medicine RYONCIL (remestemcel-L) in children and adults with steroid-refractory acute graft versus host disease (GVHD) have been published in three peer-reviewed articles and an accompanying editorial in the May issue of Biology of Blood and Marrow Transplantation, the official publication of the American Society for Transplantation and Cellular Therapy.

Mesoblast Chief Medical Officer Dr Fred Grossman said: Results from these three trials show a consistent pattern of safety and efficacy for RYONCIL (remestemcel-L) in patients with the greatest levels of inflammation and the most severe grades of acute GVHD. These clinical outcomes provide a compelling rationale for use of remestemcel-L in children and adults with other conditions associated with severe inflammation and cytokine release, including acute respiratory distress syndrome (ARDS) and systemic vascular manifestations of COVID-19 infection.”

In the accompanying editorial, Dr Jacques Galipeau, Professor and Assistant Dean of Medicine at the Stem Cell & Regenerative Medicine Center at the University of WisconsinMadison and Chair of the International Society of Cell and Gene Therapy (ISCT) MSC Committee, concluded that after more than a decade of clinical study involving three distinct advanced trials, it appears that remestemcel-L might well have finally met the regulatory requirements for marketing approval in the United States for steroid refractory acute GVHD in children, and it is to be determined whether this industrial MSC product will find utility for adults afflicted by acute GVHD or other indications.

The trials highlighted in the three articles all evaluated the same treatment regimen of RYONCIL, with patients receiving twice weekly intravenous infusions of 2 million cells per kg body weight over a four-week period. RYONCIL was well-tolerated in all studies with no identified safety concerns. The three trials were:

1. Study 275: An Expanded Access Program in 241 children across 50 centers in eight countries where RYONCIL was used as salvage therapy for steroid-refractory acute GVHD in patients who failed to respond to steroid therapy as well as multiple other agents.

2. Study GVHD001/002: A Phase 3 single-arm trial in 55 children across 20 centers in the United States where RYONCIL was used as the first line of treatment for children who failed to respond to steroids for acute GVHD.

3. Study 280: A Phase 3 randomized placebo-controlled trial in 260 patients, including 28 children, across 72 centers in seven countries where RYONCIL or placebo were added to second line therapy in patients with steroid-refractory acute GVHD who failed to respond to steroid treatment.

About Acute Graft Versus Host Disease Acute GVHD occurs in approximately 50% of patients who receive an allogeneic bone marrow transplant (BMT). Over 30,000 patients worldwide undergo an allogeneic BMT annually, primarily during treatment for blood cancers, and these numbers are increasing.1 In patients with the most severe form of acute GVHD (Grade C/D or III/IV) mortality is as high as 90% despite optimal institutional standard of care.2,3 There are currently no FDA-approved treatments in the United States for children under 12 with steroid-refractory acute GVHD.

About RYONCILTM Mesoblast’s lead product candidate, RYONCIL (remestemcel-L), is an investigational therapy comprising culture-expanded mesenchymal stem cells derived from the bone marrow of an unrelated donor. It is administered to patients in a series of intravenous infusions. RYONCIL is believed to have immunomodulatory properties to counteract the inflammatory processes that are implicated in SR-aGVHD by down-regulating the production of pro-inflammatory cytokines, increasing production of anti-inflammatory cytokines, and enabling recruitment of naturally occurring anti-inflammatory cells to involved tissues.

References 1. Niederwieser D, Baldomero H, Szer J. Hematopoietic stem cell transplantation activity worldwide in 2012 and a SWOT analysis of the Worldwide Network for Blood and Marrow Transplantation Group including the global survey. Bone Marrow Transplant 2016; 51(6):778-85. 2. Westin, J., Saliba, RM., Lima, M. (2011) Steroid-refractory acute GVHD: predictors and outcomes. Advances in Hematology 2011;2011:601953. 3. Axt L, Naumann A, Toennies J (2019) Retrospective single center analysis of outcome, risk factors and therapy in steroid refractory graft-versus-host disease after allogeneic hematopoietic cell transplantation. Bone Marrow Transplantation 2019;54(11):1805-1814.

About Mesoblast Mesoblast Limited (Nasdaq:MESO; ASX:MSB) is a world leader in developing allogeneic (off-the-shelf) cellular medicines. The Company has leveraged its proprietary mesenchymal lineage cell therapy technology platform to establish a broad portfolio of commercial products and late-stage product candidates. The Company’s proprietary manufacturing processes yield industrial-scale, cryopreserved, off-the-shelf, cellular medicines. These cell therapies, with defined pharmaceutical release criteria, are planned to be readily available to patients worldwide.

Mesoblast’s Biologics License Application to seek approval of its product candidate RYONCIL (remestemcel-L) for pediatric steroid-refractory acute graft versus host disease (acute GVHD) has been accepted for priority review by the United States Food and Drug Administration (FDA), and if approved, product launch in the United States is expected in 2020. Remestemcel-L is also being developed for other inflammatory diseases in children and adults including moderate to severe acute respiratory distress syndrome. Mesoblast is completing Phase 3 trials for its product candidates for advanced heart failure and chronic low back pain. Two products have been commercialized in Japan and Europe by Mesoblast’s licensees, and the Company has established commercial partnerships in Europe and China for certain Phase 3 assets.

Mesoblast has a strong and extensive global intellectual property (IP) portfolio with protection extending through to at least 2040 in all major markets. This IP position is expected to provide the Company with substantial commercial advantages as it develops its product candidates for these conditions.

Mesoblast has locations in Australia, the United States and Singapore and is listed on the Australian Securities Exchange (MSB) and on the Nasdaq (MESO). For more information, please see http://www.mesoblast.com, LinkedIn: Mesoblast Limited and Twitter: @Mesoblast

Forward-Looking Statements This announcement includes forward-looking statements that relate to future events or our future financial performance and involve known and unknown risks, uncertainties and other factors that may cause our actual results, levels of activity, performance or achievements to differ materially from any future results, levels of activity, performance or achievements expressed or implied by these forward-looking statements. We make such forward-looking statements pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995 and other federal securities laws. Forward-looking statements include, but are not limited to, statements about the initiation, timing, progress and results of Mesoblast and its collaborators’ clinical studies; Mesoblast and its collaborators’ ability to advance product candidates into, enroll and successfully complete, clinical studies; the timing or likelihood of regulatory filings and approvals; and the pricing and reimbursement of Mesoblast’s product candidates, if approved; the potential benefits of strategic collaboration agreements and Mesoblast’s ability to maintain established strategic collaborations; Mesoblast’s ability to establish and maintain intellectual property on its product candidates and Mesoblast’s ability to successfully defend these in cases of alleged infringement; the scope of protection Mesoblast is able to establish and maintain for intellectual property rights covering its product candidates and technology. You should read this press release together with our risk factors, in our most recently filed reports with the SEC or on our website. Uncertainties and risks that may cause Mesoblast’s actual results, performance or achievements to be materially different from those which may be expressed or implied by such statements, and accordingly, you should not place undue reliance on these forward-looking statements. We do not undertake any obligations to publicly update or revise any forward-looking statements, whether as a result of new information, future developments or otherwise.

Release authorized by the Chief Executive.

For further information, please contact:

View post:
Clinical Outcomes Using RYONCIL(TM) (remestemcel-L) in Children and Adults With Severe Inflammatory Graft Versus Host Disease Published in Three...

Novel Therapies Needed: Poor Prognosis of Patients With TP53-Mutated Myeloid Malignancies – Cancer Therapy Advisor

Poorprognosis and limited efficacy of intensive chemotherapy approaches forpatients with TP53-mutated myeloidmalignancies were confirmed in study results published in Leukemia &Lymphoma.

Jan Philipp Bewersdorf, MD, of the department of internal medicine, section of hematology at the Yale School of Medicine in New Haven, Connecticut, and colleagues conducted the single-center retrospective cohort study from September 1, 2015, to May 31, 2019 (follow-up ended on July 4, 2019). The aims of the study were to describe the clinical, cytogenetic, and molecular characteristics of patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) with TP53 mutations and to analyze patient responses and outcomes with different treatment modalities.

Ofthe 83 participants in the study, the majority were Caucasian (88%); 51.8% werewomen and the median age was 69 years. Most patients had complex karyotypes(90%), and nearly 40% of patients developed therapy-related malignancies.

Frontline treatment included intensive chemotherapy (24.1%), low-intensity treatment (42.2%), best supportive care or hydroxyurea only (22.9%), targeted therapy (3.6%), or other treatments (8.4%).

Themedian follow up was 6.4 months. The median overall survival (OS) and 1-year OSrate were 7.6 months and 22.6%, respectively. Among patients with AML, the medianOS was 6.7 months and 1-year OS rate was 16%. Among patients with MDS, themedian OS was 10 months and the 1-year OS rate was 31.1%.

Forpatients with AML, intensive chemotherapy did not improve median OS compared withlow-intensity treatment (8.8 months vs 9.4 months, respectively; hazard ratio[HR], 0.63). The 1-year OS rates for intensive chemotherapy and low-intensitytherapy were 25.0% and 14.3%, respectively (P =.46); complete response rates were 45.0% and 14.3%, respectively.

Amongparticipents with MDS, no patients received induction chemotherapy as frontlinetreatment. For the 19 patients with MDS who received hypomethylating agent-basedtherapies, the median OS was 12.1 months. For patients who received hydroxyureaor best supportive care only, the median OS was 0.8 months.

Notably,the 11 patients who underwent allogeneic hematopoietic stem cell transplant (alloHSCT)had a significantly longer median OS than those who did not (HR, 0.08; P =.002).Therefore, the authors suggested the alloHSCT should be considered for eligiblepatients with TP53-mutated myeloidneoplasms.

Limitationsof the study included the retrospective design, small sample size, and shortfollow-up durations.

Inconclusion, our data confirm the limited efficacy of intensive chemotherapyapproaches for TP53-mutated patientswith myeloid neoplasms and suggest that a minority of patients achievelong-term survival with alloHSCT, wrote the authors.

Reference

Bewersdorf JP, Shallis RM, Gowda L, et al. Clinical outcomes and characteristics of patients with TP53-mutated acute myeloid leukemia or myelodysplastic syndromes: a single center experience [published online May 2, 2020]. Leuk Lymphoma. doi: 10.1080/10428194.2020.1759051

This article originally appeared on Hematology Advisor

Read more from the original source:
Novel Therapies Needed: Poor Prognosis of Patients With TP53-Mutated Myeloid Malignancies - Cancer Therapy Advisor

COVID-19 Stem Cell Therapies Pipeline, 2020 Report – ResearchAndMarkets.com – Business Wire

DUBLIN--(BUSINESS WIRE)--The "COVID-19 Stem Cell Therapies Pipeline" report has been added to ResearchAndMarkets.com's offering.

Complementing the slew of vaccines in development are the upcoming stem cell therapies, aimed at boosting patients' immune systems and eliminating pathogens. The COVID-19 Stem Cell Therapies Pipeline report provides comprehensive data analysis of 22 organizations developing stem cell therapies for COVID-19 globally from the Americas, Europe, the Middle East and Africa (EMEA), and Asia-Pacific region (APAC).

Some report features include:

The report covers stem cell therapy market with detailed review of their cell therapy research and development including the stages of production (pre-clinical, clinical and commercial). In addition, it pulls together insights from interviews and surveys with key opinion leaders. It seeks to holistically inform the community on the current status of COVID-19 stem cell therapy development and discover future opportunities for collaboration, technology transfer and co-development.

Key Topics Covered

Section 1

Section 2: COVID-19 Stem Cell Therapies Pipeline in the Americas

Section 3: COVID-19 Stem Cell Therapies Pipeline in EMEA

Section 4: COVID-19 Stem Cell Therapies Pipeline in APAC

Companies Mentioned

For more information about this report visit https://www.researchandmarkets.com/r/kpp6tj

View original post here:
COVID-19 Stem Cell Therapies Pipeline, 2020 Report - ResearchAndMarkets.com - Business Wire

Role of science highlighted in pandemic fight – Chinadaily.com.cn –

Members of the medical team from Beijing's China-Japan Friendship Hospital visit a novel coronavirus pneumonia patient in an ICU ward at Tongji Hospital in Wuhan, Central China's Hubei province, on March 25, 2020. [Photo by Zhu Xingxin/chinadaily.com.cn]

Experts exploring new, innovative approaches to tackle novel coronavirus

Science and technology have played, and will continue to play, a decisive role in mitigating the pandemic, whether it is by discovering new features about the novel coronavirus, looking for new treatment or vaccines or offering expertise in psychological services, experts said.

But science does not always proceed in an unambiguous straight line toward progress. These undertakings, especially those involve pushing boundaries deeper into the unknown, are time-consuming, complicated and unpredictable. So it is important for the public to understand the scientific process to fully respect and appreciate these efforts, they said.

As President Xi Jinping has said, the COVID-19 epidemic is the "fastest spreading, most infectious and most challenging public health emergency since the birth of New China". He has also stressed that epidemic control efforts require the support of science and technology and urged scientists who are working on treatment and a vaccine to accelerate their research while upholding rigorous scientific practices and ensuring their products are safe.

With the leadership of Xi and joint efforts by the whole of society, the epidemic is now under control in China, said Huai Jinpeng, executive vice-president of the China Association for Science and Technology.

"But the disease is still spreading across the globe, and there is a strong downward pressure for the world economy and a noticeable spike in instability and uncertainty," he said at a meeting with the nation's science officials on April 30.

During this critical juncture, Chinese scientists need to be even more hardworking and pragmatic, and make a greater contribution to the nation's post-epidemic socioeconomic recovery with science and innovation, Huai said.

At the same time, they also need to expand their network of cooperation at home and abroad. Science officials and workers should maintain high ethical and professional standards, and be a role model for society, he added.

Wan Gang, president of the China Association for Science and Technology, said the nation's science workers were immediately mobilized to tackle the epidemic when the outbreak began, and have provided crucial scientific support in controlling the disease and assisting the socioeconomic recovery.

Communication is also a key aspect of the overall disease prevention and control effort, he said, adding that the various COVID-19 related information platforms under the association have attracted over 7 billion views in the past few months.

When Chinese microbiologist Wang Jun volunteered to go to Wuhan, Hubei province, to help the city's hospitals research the novel coronavirus, he said he felt like he was heading into a "battlefield".

The motive behind his action was simple. "Our institute (the Institute of Microbiology of the Chinese Academy of Sciences) has been researching the virus since the outbreak began," Wang said on April 20.

"With Wuhan being the first place to have reported the disease, I had a gut feeling that there must have been many questions that our front-line medical staff didn't even know existed, so we had to go to the battlefront to learn about the situation and their needs," he said.

Since the outbreak began, the academy has sent dozens of researchers to Wuhan. Their work has played a major role in the overall epidemic control effort. Their five main objectives were viral research, creating new diagnostic tools, testing clinical treatments, health evaluation for recovered patients and psychological counseling.

Wang said his team had discovered that children, who were believed to be less susceptible to COVID-19, could still spread the disease even when their symptoms were mild, making them potential asymptomatic carriers that might float under the diagnostic radar.

The virus also has some very intricate immunological effects that would make case tracing via antibody tests more difficult, so "more research is definitely needed", he added.

Jin Qi, director of the Chinese Academy of Medical Sciences' Institute of Pathogen Biology, said that scientists' understanding of the novel coronavirus remains limited and is constantly expanding, and with new information unearthed, new questions would emerge.

For example, most researchers agreed that a 14-day quarantine is generally sufficient for a patient to show symptoms, but there are now rare cases in which patients experience the onset of symptoms well after the two-week period, Jin said.

Drugs and vaccines

Wang Guiqiang, head of Peking University First Hospital's department of infectious diseases, said at a seminar in late April that drugs and vaccines are crucial for stopping the pandemic for good, but this will require time and effort by scientists around the globe.

China has three vaccines, one vectorwhich uses just a gene from the coronavirusand two inactivated, currently in Phase II clinical trials. The vector vaccine is spearheaded by Chen Wei, a senior preventive medical expert, and the results for the Phase II trial are set to be published in May, according to official sources.

The two inactivated vaccines were developed respectively by the Wuhan Institute of Biological Products Co Ltd and Sinovac Research & Development Co Ltd.

Zhong Nanshan, a renowned respiratory expert, told People's Daily last month that although there has not been a wonder cure found for COVID-19, some drugs have proved to be effective to some extent.

"We're testing a variety of drugs, such as chloroquine, and experiment results have shown the drug is definitely effective," he said, adding that scientists are analyzing the data and would publish their findings soon.

Some traditional Chinese medicines, including Lianhua Qingwen Capsules, are also being studied. For the capsule, Zhong said although its anti-viral effect against COVID-19 isn't that pronounced, it does have a "remarkable anti-inflammatory effect" that can help patients recover quicker.

A major component of all scientific work is about testing available knowledge and methods, but not all tests can return positive results. Discovering what works, and, sometimes more importantly, what doesn't work and why, is crucial in expanding humanity's knowledge of the disease.

Cao Bin, vice-president of China-Japan Friendship Hospital, said at a seminar last month that they had found Lopinavir/Ritonavir, a combination of anti-HIV drugs that showed potential in treating COVID-19 in the early days of the outbreak, did not produce desirable results.

In late April, the Lancet medical journal published a study by Cao on his clinical trials on remdesivir in China. The study said the experimental drug from the United States did not significantly speed up the recovery of critically ill patients compared with the control group.

The authors warn that interpretation of their study is limited because it only recruited 237 adults, rather than the target of 453 patients, due to the rapid decline of COVID-19 cases in China. They concluded that more research is needed.

Pushing boundaries

Through strong government support and hard work, Chinese scientists are also exploring new and innovative ways to tackle the novel coronavirus.

Zhang Linqi, a professor at Tsinghua University School of Medicine in Beijing, said his team has been using antibodies to "drive a wedge" between the virus' spike proteinits "key" for entering cellsand the receptor that it binds to.

That would effectively block the virus from entry. It has been very effective in animal tests, and may serve to inspire new vaccine candidates, he said at an online seminar in late April.

Scientists have discovered that there is a small but potent section of the spike protein that does most of the work called the receptor-binding domain, or RBD.

Knowing that, Zhang's team, along with scientists from Shenzhen Third People's Hospital, found two antibodies that, together, can insert themselves at the junction of the RBD and the cell's receptor, blocking the virus from latching onto the cell.

Zhang said they are testing the blocking effect in possible vaccines, and early results are "really encouraging". But research is still in its early stages and more rigorous studies and tests are needed, he added.

Hu Baoyang, executive president of the Chinese Academy of Sciences' Institute of Stem Cell and Regenerative Medicine, said since arriving in Wuhan on March 1, his team had been busy testing stem cell therapy to calm the overreacting immune system and repair the lung tissue of severe and critically ill patients.

In the 46 days that followed, Hu and his team traveled to 13 hospitals and screened over 650 candidate patients for this innovative treatment. At a news briefing on April 16, Sun Yanrong, deputy director of the China National Center for Biotechnology Development, said over 200 patients in Wuhan had received stem cell therapy, and current results show the treatment can improve the recovery rate of severely ill patients and is generally safe.

However, stem cell therapy is far from perfect. Stem cells can differentiate into various types of cells, and some might turn cancerous, according to the University of Nebraska Medical Center. Some stem cells are also difficult to isolate and cultivate in large quantities, so more research and testing are also needed.

"Labs are our bastions, and our scientific research is the weapon against the epidemic," Hu said.

Read this article:
Role of science highlighted in pandemic fight - Chinadaily.com.cn -

UB investigators uncover cellular mechanism involved in Krabbe disease – UB Now: News and views for UB faculty and staff – University at Buffalo…

A group of UB researchers have published a paper that clarifies certain cellular mechanisms that could lead to improved outcomes in patients with globoid cell leukodystrophy, commonly known as Krabbe disease.

The paper, titled Macrophages Expressing GALC Improve Peripheral Krabbe Disease by a Mechanism Independent of Cross-Correction, was published May 5 in the journal Neuron.

The research was led by Lawrence Wrabetz and M. Laura Feltri. Wrabetz and Feltri head the Hunter James Kelly Research Institute and both are professors in the departments of Biochemistry and Neurology in the Jacobs School of Medicine and Biomedical Sciences at UB.

The institute is named for the son of former Buffalo Bills quarterback Jim Kelly. Hunter Kelly died at age 8 in 2005 from complications of Krabbe disease.

Krabbe disease is a progressive and fatal neurologic disorder that usually affects newborns and causes death before a child reaches the age of 2 or 3.

Traditionally, hematopoietic stem cell transplantation, also known as a bone marrow transplant, has improved the long-term survival and quality of life of patients with Krabbe disease, but it is not a cure.

It has long been assumed that the bone marrow transplant works by a process calledcross-correction, in which an enzyme called GALC is transferred from healthy cells to sick cells.

Using a new Krabbe disease animal model and patient samples, the UB researchers determinedthatin reality cross-correctiondoes not occur. Rather, the bone marrow transplant helps patients through a different mechanism.

The researchers first determined which cells are involved in Krabbe disease and by which mechanism. They discovered that both myelin-forming cells, or Schwann cells, and macrophages require the GALC enzyme, which is missing in Krabbe patients due to genetic mutation.

Schwann cells require GALC to prevent the formation of a toxic lipid called psychosine, which causes myelin destruction and damage to neurons. Macrophages require GALC to aid with the degradation of myelin debris produced by the disease.

The research showed that hematopoietic stem cell transplantation does not work bycross-correction, but by providing healthy macrophages with GALC.

According to Feltri, the data reveal that improvingcross-correctionwould be a way to makebone marrow transplants and other experimental therapies such as gene therapy more effective.

Bone marrow transplantation and other treatments for lysosomal storage disorders, such as enzyme replacement therapy, have historically had encouraging but limited therapeutic benefit, says study first author Nadav I. Weinstock, an MD-PhD student in the Jacobs School. Our work defined the precise cellular and mechanistic benefit of bone marrow transplantation in Krabbe disease, while also shedding light on previously unrecognized limitations of this approach.

Future studies, using genetically engineered bone marrow transplantation or other novelapproaches,may one day build on our findings and eventually bridge the gap for effectively treating patients with lysosomal disease, he continues.

UB investigators included Daesung Shin, research assistant professor at the Hunter James Kelly Research Institute; Nicholas Silvestri, clinical associate professor of neurology, Jacobs School; Narayan Dhimal, PhD student; Chelsey B. Reed, MD-PhD student; and undergraduate student Oliver Sampson.

Also participating in the research were Eric E. Irons, MD-PhD student, and Joseph T.Y. Lau, a distinguished faculty member from the Department of Molecular and Cellular Biology at Roswell Park Comprehensive Cancer Center.

The research was funded by multiple grants from the National Institutes of Health awarded to Weinstock, Shin, Wrabetz and Feltri, and also supported by Hunters Hope.

Read this article:
UB investigators uncover cellular mechanism involved in Krabbe disease - UB Now: News and views for UB faculty and staff - University at Buffalo...