Category Archives: Stem Cell Medicine


With Over 280 Therapies Under Evaluation, the Stem Cell Therapy Market is Estimated to be Worth USD 8.5 Billion by 2030, Claims Roots Analysis – Yahoo…

The success of approved stem cell therapies has caused a surge in interest of biopharma developers in this field; many innovator companies are currently progressing proprietary leads across different phases of clinical development, with cautious optimism

LONDON, March 4, 2020 /PRNewswire/ -- Roots Analysishas announced the addition of "Global Stem Cells Market: Focus on Clinical Therapies, 20202030 (Based on Source (Allogeneic, Autologous); Origin (Adult, Embryonic); Type (Hematopoietic, Mesenchymal, Progenitor); Lineage (Amniotic Fluid, Adipose Tissue, Bone Marrow, Cardiosphere, Chondrocytes, Corneal Tissue, Cord Blood, Dental Pulp, Neural Tissue Placenta, Peripheral Blood, Stromal Cells); and Potency (Multipotent, Pluripotent))" report to its list of offerings.

There is a growing body of evidence supporting the vast applicability and superiority of treatment outcomes of stem cell therapies, compared to conventional treatment options. In fact, the unmet needs within this domain have spurred the establishment of many start-ups in recent years.

To order this 500+ page report, which features 185+ figures and 220+ tables, please visit this link

Key Market Insights

Over 280 stem cell therapies are under development, most of which are allogeneic products

More than 50% of the pipeline candidates are in the mid to late phase trials (phase II and above), and allogenic therapies (majority of which are derived from the bone marrow) make up 65% of the pipeline.

70% of pipeline candidates are based on mesenchymal stem cells

It is worth highlighting that the abovementioned therapies are designed to treat musculoskeletal (22%), neurological (21%) and cardiovascular (15%) disorders. On the other hand, hematopoietic stem cell-based products are mostly being evaluated for the treatment of oncological disorders, primarily hematological malignancies.

Close to 85% stem cell therapy developers are based in North America and Asia-Pacific regions

Within these regions, the US, China, South Korea and Japan, have emerged as key R&D hubs for stem cell therapies. It is worth noting that majority of the initiatives in this domain are driven by small / mid-sized companies

Over 1,500 grants were awarded for stem cell research, since 2015

More than 45% of the total amount was awarded under the R01 mechanism (which supports research projects). The NCI, NHLBI, NICHD, NIDDK, NIGMS and OD emerged as key organizations that have offered financial support for time periods exceeding 25 years as well.

Outsourcing has become indispensable to R&D and manufacturing activity in this domain

Presently, more than 80 industry / non-industry players, based in different regions across the globe, claim to provide contract development and manufacturing services to cater to the unmet needs of therapy developers. Examples include (in alphabetical order) Bio Elpida, Cell and Gene Therapy Catapult, Cell Tech Pharmed, GenCure, KBI Biopharma, Lonza, MEDINET, Nikon CeLL innovation, Roslin Cell Therapies, WuXi Advanced Therapies and YposKesi.

North America and Asia-Pacific markets are anticipated to capture over 80% share by 2030

The stem cell therapies market is anticipated to witness an annualized growth rate of over 30% during the next decade. Interestingly, the market in China / broader Asia-Pacific region is anticipated to grow at a relatively faster rate.

Story continues

To request a sample copy / brochure of this report, please visit this link

Key Questions Answered

The USD 8.5 billion (by 2030) financial opportunity within the stem cell therapies market has been analyzed across the following segments:

The report features inputs from eminent industry stakeholders, according to whom stem cell therapies are currently considered to be a promising alternatives for the treatment of a myriad of disease indications, with the potential to overcome challenges associated with conventional treatment options. The report includes detailed transcripts of discussions held with the following experts:

The research covers brief profiles of several companies (including those listed below); each profile features an overview of the company, financial information (if available), stem cell therapy portfolio and an informed future outlook.

For additional details, please visit

https://www.rootsanalysis.com/reports/view_document/stem-cells-market/296.htmlor email sales@rootsanalysis.com

You may also be interested in the following titles:

Contact:Gaurav Chaudhary+1(415)800-3415+44(122)391-1091Gaurav.Chaudhary@rootsanalysis.com

View original content:http://www.prnewswire.com/news-releases/with-over-280-therapies-under-evaluation-the-stem-cell-therapy-market-is-estimated-to-be-worth-usd-8-5-billion-by-2030--claims-roots-analysis-301016239.html

SOURCE Roots Analysis

Follow this link:
With Over 280 Therapies Under Evaluation, the Stem Cell Therapy Market is Estimated to be Worth USD 8.5 Billion by 2030, Claims Roots Analysis - Yahoo...

Stemina’s Human Stem Cell-Based Test Demonstrates Potential to Predict Which Drugs and Chemicals Cause Birth Defects – Business Wire

MADISON, Wis.--(BUSINESS WIRE)--Recently published results from an evaluation of 1,065 chemical and drug substances using the devTOX quickPredict (devTOXqP) screening platform developed by Stemina Biomarker Discovery, Inc. demonstrated the platforms ability to predict developmental toxicity in humans with high accuracy using a cell-based test. In a peer-reviewed article published in Toxicological Sciences, scientists from the U.S. Environmental Protection Agency (EPA) reported that Steminas devTOXqP test predicted the potential for developmental toxicity in a blinded set of chemicals and drugs from the agencys ToxCast program with an accuracy of 82%, where there was clear evidence of toxicity in humans or in animal studies. The agencys research suggests that devTOXqP is a useful tool for predicting developmental toxicants in humans and reducing the need for animal testing.

Through this EPA research, the devTOXqP test demonstrated its potential to detect developmental toxicity across a wide variety of chemicals and pharmaceutical compounds, said Elizabeth Donley, J.D., M.B.A., M.S., chief executive officer of Stemina. In addition to helping meet the EPAs goal of reducing the use of animals in testing chemicals, devTOXqP offers the only species-specific, commercially available platform for evaluating a drug or chemicals potential to cause birth defects in the developing human embryo. We believe this test fits well into global initiatives such as Tox21 and REACH that are seeking to reduce and refine the number of animals used for toxicity testing.

The potential of chemical substances to cause prenatal developmental toxicity is commonly assessed based on observations of fetal malformations and variations in rodent or rabbit studies. Such animal studies are costly, resource-intensive, and the results seen in one species often differ from those seen in other species or from those that might be relevant in humans. Some of the most promising non-animal testing alternatives make use of the self-organizing potential of embryonic stem cells to recapitulate developmental processes that may be sensitive to chemical exposure. The Stemina devTOXqP test uses human embryonic stem cells (hESCs) or human induced pluripotent stem cells (iPSCs) to predict developmental toxicity based on changes in cellular metabolism following drug or chemical exposure. The iPSC is a reprogrammed cell that is able to recapitulate development into all cell types like hESCs but does not come from an embryo.

In the EPA study, 1,065 ToxCast chemicals were first screened in single-concentration for the targeted biomarkers, the ratio of the amino acids ornithine (ORN) to cystine (CYSS), in response to the tested compound. Of the screened chemicals, 17% were predicted by the Stemina assay to cause developmental toxicity. These compounds were then tested at eight concentrations in the devTOXqP test to determine the exposure level at which the compound was considered to be toxic. The assay performance reached 82% accuracy with 67% sensitivity and 84% specificity. The sensitivity of the assay improved when more stringent evidence of toxicity was applied to the animal studies. Statistical analysis of the most potent chemical hits on specific biochemical targets in ToxCast provided insights into the mechanistic underpinnings of the targeted endpoint of the devTOXqP platform. The researchers found that an imbalance in Ornithine/Cystine was highly predictive of a chemicals potential to disrupt the development of an embryo or fetus, halting the pregnancy or producing birth defects.

The extensive nature of this research helps to define the applicability domain of the test in other words, where does it perform well and where will it need to be paired with other endpoints to generate a better understanding of the potential to cause birth defects, said Jessica Palmer, M.S., associate director of toxicology at Stemina. This is just the first step in our longer-term goal of moving away from a reliance on animal tests to predict human response and provides a foundation for building integrated testing systems focused on human cells.

To address concerns about the effects of drugs and chemicals on our health, we need more human-relevant methods to assess toxicity, said Kristie Sullivan, M.P.H., vice president for research policy at the Physicians Committee for Responsible Medicine. We encourage regulatory agencies and companies to consider how the devTOXqP test can improve safety and help reduce animal testing.

The publication titled, Profiling the ToxCast library with a pluripotent human (H9) stem cell line-based biomarker assay for developmental toxicity, can be accessed at: https://doi.org/10.1093/toxsci/kfaa014.

About EPA ToxCast Program

EPA ToxCast Program is developing approaches to predict chemical toxicity using data from high-throughput and high content in vitro assays. The goal of ToxCast is to develop and verify "toxicity signatures," which are algorithms using in vitro and in silico data to predict in vivo toxicities. ToxCast has data for approximately 1,800 chemicals from a broad range of sources including industrial and consumer products, environmental chemicals, and pharmaceutical compounds. More information available here.

About the Physicians Committee for Responsible Medicine

Founded in 1985, the Physicians Committee for Responsible Medicine is a nonprofit organization that promotes preventive medicine, conducts clinical research, and encourages higher standards for ethics and effectiveness in research. http://www.pcrm.org

About Stemina Biomarker Discovery, Inc.

Stemina Biomarker Discovery is a privately held company focused on the discovery, development and commercialization of molecular biomarkers to improve drug safety and human health. The companys cell-based assays use two innovative technologies: human stem cells and metabolomics. Stemina uses mass spectrometry to analyze the small molecules secreted by human stem cells in response to drugs or chemicals, injury, or disease. The company also uses differentiated human cells in its screens, like heart or neural cells made from human stem cells. The companys first commercial product, devTOX Discovery, launched in 2009, uses human stem cells to screen drug candidates, chemicals, consumer products and cosmetics for their potential effect on the developing human embryo. Subsequently launched drug screening programs, including devTOX quickPredict and Cardio quickPredict, continue the idea of bringing stem cell biology and metabolomics together for biomarker discovery and toxicity screening. For more information, please visit our website at http://www.stemina.com.

Originally posted here:
Stemina's Human Stem Cell-Based Test Demonstrates Potential to Predict Which Drugs and Chemicals Cause Birth Defects - Business Wire

Induced Pluripotent Stem Cells (iPSCs) Market Current Trends Strategies Involved, SWOT Analysis, Business Overview, Industry Challenges, and Forecast…

The Induced Pluripotent Stem Cells (iPSCs) MarketReport 2020 gives a clear understanding of the current market situation which includes of antique and projected upcoming market size based on technological growth, value and volume, projecting cost-effective and leading fundamentals in the Induced Pluripotent Stem Cells (iPSCs) market. Induced Pluripotent Stem Cells (iPSCs) industry report is to recognize, explain and forecast the global Induced Pluripotent Stem Cells (iPSCs) industry based on various aspects such as explanation, application, organization size, distribution mode, region. The Induced Pluripotent Stem Cells (iPSCs) Market report purposefully analyses every sub-segment regarding the individual growth trends, contribution to the total market, and the upcoming forecasts.

Global Induced Pluripotent Stem Cells (iPSCs) Market Segment by Type, covers

Global Induced Pluripotent Stem Cells (iPSCs) Market Segment by Applications, can be divided into

Get Free Exclusive Sample of this Premium Report at @ https://www.esherpamarketreports.com/request-sample/es-379889/

Global Induced Pluripotent Stem Cells (iPSCs) Market Segment by Manufacturers, this report covers:

Table of Contents1 Induced Pluripotent Stem Cells (iPSCs) Market Overview1.1 Product Overview and Scope of Induced Pluripotent Stem Cells (iPSCs)1.2 Induced Pluripotent Stem Cells (iPSCs) Segment by Type1.2.1 Global Induced Pluripotent Stem Cells (iPSCs) Production Growth Rate Comparison by Type 2020 VS 20261.2.2 Compact Type Induced Pluripotent Stem Cells (iPSCs)1.2.3 Standard Type Induced Pluripotent Stem Cells (iPSCs)1.3 Induced Pluripotent Stem Cells (iPSCs) Segment by Application1.3.1 Induced Pluripotent Stem Cells (iPSCs) Consumption Comparison by Application: 2020 VS 20261.4 Global Induced Pluripotent Stem Cells (iPSCs) Market by Region1.4.1 Global Induced Pluripotent Stem Cells (iPSCs) Market Size Estimates and Forecasts by Region: 2020 VS 20261.4.2 North America Estimates and Forecasts (2015-2026)1.4.3 Europe Estimates and Forecasts (2015-2026)1.4.4 China Estimates and Forecasts (2015-2026)1.4.5 Japan Estimates and Forecasts (2015-2026)1.5 Global Induced Pluripotent Stem Cells (iPSCs) Growth Prospects1.5.1 Global Induced Pluripotent Stem Cells (iPSCs) Revenue Estimates and Forecasts (2015-2026)1.5.2 Global Induced Pluripotent Stem Cells (iPSCs) Production Capacity Estimates and Forecasts (2015-2026)1.5.3 Global Induced Pluripotent Stem Cells (iPSCs) Production Estimates and Forecasts (2015-2026)2 Market Competition by Manufacturers2.1 Global Induced Pluripotent Stem Cells (iPSCs) Production Capacity Market Share by Manufacturers (2015-2020)2.2 Global Induced Pluripotent Stem Cells (iPSCs) Revenue Share by Manufacturers (2015-2020)2.3 Market Share by Company Type (Tier 1, Tier 2 and Tier 3)2.4 Global Induced Pluripotent Stem Cells (iPSCs) Average Price by Manufacturers (2015-2020)2.5 Manufacturers Induced Pluripotent Stem Cells (iPSCs) Production Sites, Area Served, Product Types2.6 Induced Pluripotent Stem Cells (iPSCs) Market Competitive Situation and Trends2.6.1 Induced Pluripotent Stem Cells (iPSCs) Market Concentration Rate2.6.2 Global Top 3 and Top 5 Players Market Share by Revenue2.6.3 Mergers & Acquisitions, Expansion3 Production Capacity by Region3.1 Global Production Capacity of Induced Pluripotent Stem Cells (iPSCs) Market Share by Regions (2015-2020)3.2 Global Induced Pluripotent Stem Cells (iPSCs) Revenue Market Share by Regions (2015-2020)3.3 Global Induced Pluripotent Stem Cells (iPSCs) Production Capacity, Revenue, Price and Gross Margin (2015-2020)3.4 North America Induced Pluripotent Stem Cells (iPSCs) Production3.4.1 North America Induced Pluripotent Stem Cells (iPSCs) Production Growth Rate (2015-2020)3.4.2 North America Induced Pluripotent Stem Cells (iPSCs) Production Capacity, Revenue, Price and Gross Margin (2015-2020)3.5 Europe Induced Pluripotent Stem Cells (iPSCs) Production3.5.1 Europe Induced Pluripotent Stem Cells (iPSCs) Production Growth Rate (2015-2020)3.5.2 Europe Induced Pluripotent Stem Cells (iPSCs) Production Capacity, Revenue, Price and Gross Margin (2015-2020)3.6 China Induced Pluripotent Stem Cells (iPSCs) Production3.6.1 China Induced Pluripotent Stem Cells (iPSCs) Production Growth Rate (2015-2020)3.6.2 China Induced Pluripotent Stem Cells (iPSCs) Production Capacity, Revenue, Price and Gross Margin (2015-2020)3.7 Japan Induced Pluripotent Stem Cells (iPSCs) Production3.7.1 Japan Induced Pluripotent Stem Cells (iPSCs) Production Growth Rate (2015-2020)3.7.2 Japan Induced Pluripotent Stem Cells (iPSCs) Production Capacity, Revenue, Price and Gross Margin (2015-2020)4 Global Induced Pluripotent Stem Cells (iPSCs) Consumption by Regions4.1 Global Induced Pluripotent Stem Cells (iPSCs) Consumption by Regions4.1.1 Global Induced Pluripotent Stem Cells (iPSCs) Consumption by Region4.1.2 Global Induced Pluripotent Stem Cells (iPSCs) Consumption Market Share by Region5 Production, Revenue, Price Trend by Type. And More

Click Here For Detailed Table Of Contents

Enquire before purchasing this report @ https://www.esherpamarketreports.com/pre-order-enquiry/es-379889

Reasons To Buy:

Purchase this Report with Full Access @ https://www.esherpamarketreports.com/purchase/es-379889/

Contact Us:

Name: Jason George

Email: [emailprotected]

Call :USA: +1 408 757 0510

Organization: eSherpa Market Reports

About Us:

eSherpa Market Reports is the credible source for gaining the market research reports that will exponentially accelerate your business. We are among the leading report resellers in the business world committed towards optimizing your business. The reports we provide are based on a research that covers a magnitude of factors such as technological evolution, economic shifts and a detailed study of market segment.

Original post:
Induced Pluripotent Stem Cells (iPSCs) Market Current Trends Strategies Involved, SWOT Analysis, Business Overview, Industry Challenges, and Forecast...

Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration – Science…

Abstract

Mesenchymal stem cells (MSCs) encapsulation by three-dimensionally (3D) printed matrices were believed to provide a biomimetic microenvironment to drive differentiation into tissue-specific progeny, which made them a great therapeutic potential for regenerative medicine. Despite this potential, the underlying mechanisms of controlling cell fate in 3D microenvironments remained relatively unexplored. Here, we bioprinted a sweat gland (SG)like matrix to direct the conversion of MSC into functional SGs and facilitated SGs recovery in mice. By extracellular matrix differential protein expression analysis, we identified that CTHRC1 was a critical biochemical regulator for SG specification. Our findings showed that Hmox1 could respond to the 3D structure activation and also be involved in MSC differentiation. Using inhibition and activation assay, CTHRC1 and Hmox1 synergistically boosted SG gene expression profile. Together, these findings indicated that biochemical and structural cues served as two critical impacts of 3D-printed matrix on MSC fate decision into the glandular lineage and functional SG recovery.

Mesenchymal stem cells (MSCs) hold great promise for therapeutic tissue engineering and regenerative medicine, largely because of their capacity for self-renewal and multipotent properties (1). However, their uncertain fate has a major impact on their envisioned therapeutic use. Cell fate regulation requires specific transcription programs in response to environmental cues (2, 3). Once stem cells are removed from their microenvironment, their response to environmental cues, phenotype, and functionality could often be altered (4, 5). In contrast to growing information concerning transcriptional regulation, guidance from the extracellular matrix (ECM) governing MSC identity and fate determination is not well understood. It remains an active area of investigation and may provide previously unidentified avenues for MSC-based therapy.

Over the past decade, engineering three-dimensional (3D) ECM to direct MSC differentiation has demonstrated great potential of MSCs in regenerative medicine (6). 3D ECM has been found to be useful in providing both biochemical and biophysical cues and to stabilize newly formed tissues (7). Culturing cells in 3D ECM radically alters the interfacial interactions with the ECM as compared with 2D ECM, where cells are flattened and may lose their differentiated phenotype (8). However, one limitation of 3D materials as compared to 2D approaches was the lack of spatial control over chemistry with 3D materials. One possible solution to this limitation is 3D bioprinting, which could be used to design the custom scaffolds and tissues (9).

In contrast to traditional engineering techniques, 3D cell printing technology is especially advantageous because it can integrate multiple biophysical and biochemical cues spatially for cellular regulation and ensure complex structures with precise control and high reproducibility. In particular, for our final goal of clinical practice, extrusion-based bioprinting may be more appropriate for translational application. In addition, as a widely used bioink for extrusion bioprinting, alginate-based hydrogel could maintain stemness of MSC due to the bioinert property and improve biological activity and printability by combining gelatin (10).

Sweat glands (SGs) play a vital role in thermal regulation, and absent or malfunctioning SGs in a hot environment can lead to hyperthermia, stroke, and even death in mammals (11, 12). Each SG is a single tube consisting of a functionally distinctive duct and secretory portions. It has low regenerative potential in response to deep dermal injury, which poses a challenge for restitution of lost cells after wound (13). A major obstacle in SG regeneration, similar to the regeneration of most other glandular tissues, is the paucity of viable cells capable of regenerating multiple tissue phenotypes (12). Several reports have described SG regeneration in vitro; however, dynamic morphogenesis was not identified nor was the overall function of the formed tissues explored (1416). Recent advances in bioprinting and tissue engineering led to the complexities in the matrix design and fabrication with appropriate biochemical cues and biophysical guidance for SG regeneration (1719).

Here, we adopted 3D bioprinting technique to mimic the regenerative microenvironment that directed the specific SG differentiation of MSCs and ultimately guided the formation and function of glandular tissue. We used alginate/gelatin hydrogel as bioinks in this present study due to its good cytocompatibility, printability, and structural maintenance in long-time culture. Although the profound effects of ECM on cell differentiation was well recognized, the importance of biochemical and structural cues of 3D-printed matrix that determined the cell fate of MSCs remained unknown; thus, the present study demonstrated the role of 3D-printed matrix cues on cellular behavior and tissue morphogenesis and might help in developing strategies for MSC-based tissue regeneration or directing stem cell lineage specification by 3D bioprinting.

The procedure for printing the 3D MSC-loaded construct incorporating a specific SG ECM (mouse plantar region dermis, PD) was shown schematically in Fig. 1A. A 3D cellular construct with cross section 30 mm 30 mm and height of 3 mm was fabricated by using the optimized process parameter (20). The 3D construct demonstrated a macroporous grid structure with hydrogel fibers evenly distributed according to the computer design. Both the width of the fibers and the gap between the fibers were homogeneous, and MSCs were embedded uniformly in the hydrogel matrix fibers to result in a specific 3D microenvironment. (Fig. 1B).

(A) Schematic description of the approach. (B) Full view of the cellular construct and representative microscopic and fluorescent images and the quantitative parameters of 3D-printed construct (scale bars, 200 m). Photo credit: Bin Yao, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA. (C) Representative microscopy images of cell aggregates and tissue morphology at 3, 7, and 14 days of culture (scale bars, 50 m) and scanning electron microscopy (sem) images of 3D structure (scale bars, 20 m). PD+/PD, 3D construct with and without PD. (D) DNA contents, collagen, and GAGs of native tissue and PD. (E) Proliferating cells were detected through Ki67 stain at 3, 7, and 14 days of culture. (F) Live/dead assay show cell viability at days 3, 7, and 14. *P < 0.05.

During the maintenance of constructs for stem cell expansion, MSCs proliferated to form aggregates of cells but self-assembled to an SG-like structure only with PD administration (Fig. 1C and fig. S1, A to C). We carried out DNA quantification assay to evaluate the cellular content in PD and found the cellular matrix with up to 90% reduction, only 3.4 0.7 ng of DNA per milligram tissue remaining in the ECM. We also estimated the proportions of collagen and glycosaminoglycans (GAGs) in ECM through hydroxyproline assay and dimethylmethylene blue assay, the collagen contents could increase to 112.6 11.3%, and GAGs were well retained to 81 9.6% (Fig. 1D). Encapsulated cells were viable, with negligible cell death apparent during extrusion and ink gelation by ionic cross-linking, persisting through extended culture in excess of 14 days. The fluorescence intensity of Ki67 of MSCs cultured in 2D condition decreased from days 3 (152.7 13.4) to 14 (29.4 12.9), while maintaining higher intensity of MSCs in 3D construct (such as 211.8 19.4 of PD+3D group and 209.1 22.1 of PD3D group at day 14). And the cell viability in 3D construct was found to be sufficiently high (>80%) when examined on days 3, 7, and 14. The phenomenon of cell aggregate formation and increased cell proliferation implied the excellent cell compatibility of the hydrogel-based construct and promotion of tissue development of 3D architectural guides, which did not depend on the presence or absence of PD (Fig. 1, E and F).

The capability of 3D-printed construct with PD directing MSC to SGs in vitro was investigated. The 3D construct was dissolved, and cells were isolated at days 3, 7, and 14 for transcriptional analysis. Expression of the SG markers K8 and K18 was higher from the 3D construct with (3D/PD+) than without PD (3D/PD); K8 and K18 expression in the 3D/PD construct was similar to with control that MSCs cultured in 2D condition, which implied the key role of PD in SG specification. As compared with the 2D culture condition, 3D administration (PD+) up-regulated SG markers, which indicated that the 3D structure synergistically boosted the MSC differentiation (Fig. 2A).

(A) Transcriptional expression of K8, K18, Fxyd2, Aqp5, and ATP1a1 in 3D-bioprinted cells with and without PD in days 3, 7, and 14 culture by quantitative real-time polymerase chain reaction (qRT-PCR). Data are means SEM. (B) Comparison of SG-specific markers K8 and K18 in 3D-bioprinted cells with and without PD (K8 and K18, red; DAPI, blue; scale bars, 50 m). (C and D) Comparison of SG secretion-related markers ATP1a1 (C) and Ca2+ (D) in 3D-bioprinted cells with and without PD [ATP1a1 and Ca2+, red; 4,6-diamidino-2-phenylindole (DAPI), blue; scale bars, 50 m].

In addition, we tested secretion-related genes to evaluate the function of induced SG cells (iSGCs). Although levels of the ion channel factors of Fxyd2 and ATP1a1 were increased notably in 2D culture with PD and ATP1a1 up-regulated in the 3D/PD construct, all the secretory genes of Fxyd2, ATP1a1, and water transporter Aqp5 showed the highest expression level in the 3D/PD+ construct (Fig. 2A). Considering the remarkable impact, further analysis focused on 3D constructs.

Immunofluorescence staining confirmed the progression of MSC differentiation. At day 7, cells in the 3D/PD+ construct began to express K8 and K18, which was increased at day 14, whereas cells in the 3D/PD construct did not express K8 and K18 all the time (Fig. 2B and fig. S2A). However, the expression of ATP1a1 (ATPase Na+/K+ transporting subunit alpha 1) and free Ca2+ concentration did not differ between cells in the 3D/PD+ and 3D/PD constructs (Fig. 2, C and D). By placing MSCs in such a 3D environment, secretion might be stimulated by rapid cell aggregation without the need for SG lineage differentiation. Cell aggregationimproved secretion might be due to the benefit of cell-cell contact (fig. S2B) (21, 22).

To map the cell fate changes during the differentiation between MSCs and SG cells, we monitored the mRNA levels of epithelial markers such as E-cadherin, occludin, Id2, and Mgat3 and mesenchymal markers N-cadherin, vimentin, Twist1, and Zeb2. The cells transitioned from a mesenchymal status to a typical epithelial-like status accompanied by mesenchymal-epithelial transition (MET), then epithelial-mesenchymal transition (EMT) occurred during the further differentiation of epithelial lineages to SG cells (fig. S3A). In addition, MET-related genes were dynamically regulated during the SG differentiation of MSCs. For example, the mesenchymal markers N-cadherin and vimentin were down-regulated from days 1 to 7, which suggested cells losing their mesenchymal phenotype, then were gradually up-regulated from days 7 to 10 in their response to the SG phenotype and decreased at day 14. The epithelial markers E-cadherin and occludin showed an opposite expression pattern: up-regulated from days 1 to 5, then down-regulated from days 7 to 10 and up-regulated again at day 14. The mesenchymal transcriptional factors ZEB2 and Twist1 and epithelial transcriptional factors Id2 and Mgat3 were also dynamically regulated.

We further analyzed the expression of these genes at the protein level by immunofluorescence staining (figs. S3B and S4). N-cadherin was down-regulated from days 3 to 7 and reestablished at day 14, whereas E-cadherin level was increased from days 3 to 7 and down-regulated at day 14. Together, these results indicated that a sequential and dynamic MET-EMT process underlie the differentiation of MSCs to an SG phenotype, perhaps driving differentiation more efficiently (23). However, the occurrence of the MET-EMT process did not depend on the presence of PD. Thus, a 3D structural factor might also participate in the MSC-specific differentiation (fig. S3C).

To investigate the underlying mechanism of biochemical cues in lineage-specific cell fate, we used quantitative proteomics analysis to screen the ECM factors differentially expressed between PD and dorsal region dermis (DD) because mice had eccrine SGs exclusively present in the pads of their paws, and the trunk skin lacks SGs. In total, quantitative proteomics analyses showed higher expression levels of 291 proteins in PD than DD. Overall, 66 were ECM factors: 23 were significantly up-regulated (>2-fold change in expression). We initially determined the level of proteins with the most significant difference after removing keratins and fibrin: collagen triple helix repeat containing 1 (CTHRC1) and thrombospondin 1 (TSP1) (fig. S5). Western blotting was performed to further confirm the expression level of CTHRC1 and TSP1, and we then confirmed that immunofluorescence staining at different developmental stages in mice revealed increased expression of CTHRC1 in PD with SG development but only slight expression in DD at postnatal day 28, while TSP1 was continuously expressed in DD and PD during development (Fig. 3, A to C). Therefore, TSP1 was required for the lineage-specific function during the differentiation in mice but was not dispensable for SG development.

(A and B) Differential expression of CTHRC1 and TSP1in PD and back dermis (DD) ECM of mice by proteomics analysis (A) and Western blotting (B). (C) CTHRC1 and TSP1 expression in back and plantar skin of mice at different developmental times. (Cthrc1/TSP1, red; DAPI, blue; scale bars, 50 m).

According to previous results of the changes of SG markers, 3D structure and PD were both critical to SG fate. Then, we focused on elucidating the mechanisms that underlie the significant differences observed in 2D and 3D conditions with or without PD treatment. To this end, we performed transcriptomics analysis of MSCs, MSCs treated with PD, MSCs cultured in 3D construct, and MSC cultured in 3D construct with PD after 3-day treatment. We noted that the expression profiles of MSCs treated with 3D, PD, or 3D/PD were distinct from the profiles of MSCs (Fig. 4A). Through Gene Ontology (GO) enrichment analysis of differentially expressed genes, it was shown that PD treatment in 2D condition induced up-regulation of ECM and inflammatory response term, and the top GO term for MSCs in 3D construct was ECM organization and extracellular structure organization. However, for the MSCs with 3D/PD treatment, we found very significant overrepresentation of GO term related to branching morphogenesis of an epithelial tube and morphogenesis of a branching structure, which suggested that 3D structure cues and biochemical cues synergistically initiate the branching of gland lineage (fig S6). Heat maps of differentially expressed ECM organization, cell division, gland morphogenesis, and branch morphogenesis-associated genes were shown in fig. S7. To find the specific genes response to 3D structure cues facilitating MSC reprogramming, we analyzed the differentially expressed genes of four groups of cells (Fig. 4B). The expression of Vwa1, Vsig1, and Hmox1 were only up-regulated with 3D structure stimulation, especially the expression of Hmox1 showed a most significant increase and even showed a higher expression addition with PD, which implied that Hmox1 might be the transcriptional driver of MSC differentiation response to 3D structure cues. Differential expression of several genes was confirmed by quantitative polymerase chain reaction (qPCR): Mmp9, Ptges, and Il10 were up-regulated in all the treated groups. Likewise, genes involving gland morphogenesis and branch morphogenesis such as Bmp2, Tgm2, and Sox9 showed higher expression in 3D/PD-treated group. Bmp2 was up-regulated only in 3D/PD-treated group, combined with the results of GO analysis, we assumed that Bmp2 initiated SG fate through inducing branch morphogenesis and gland differentiation (Fig. 4C).

(A) Gene expression file of four groups of cells (R2DC, MSCs; R2DT, MSC with PD treatment; R3DC, MSC cultured in 3D construct; and R3DT, MSC treated with 3D/PD). (B) Up-regulated genes after treatment (2DC, MSCs; 2DT, MSC with PD treatment; 3DC, MSC cultured in 3D construct; and 3DT, MSC treated with 3D/PD). (C) Differentially expressed genes were further validated by RT-PCR analysis. [For all RT-PCR analyses, gene expression was normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with 40 cycles, data are represented as the means SEM, and n = 3].

To validate the role of HMOX1 and CTHRC1 in the differentiation of MSCs to SG lineages, we analyzed the gene expression of Bmp2 by regulating the expression of Hmox1 and CTHRC1 based on the 3D/PD-treated MSCs. The effects of caffeic acid phenethyl ester (CAPE) and tin protoporphyrin IX dichloride (Snpp) on the expression of Hmox1 were evaluated by quantitative real-time (qRT)PCR. Hmox1 expression was significantly activated by CAPE and reduced by Snpp. Concentration of CTHRC1 was increased with recombinant CTHRC1 and decreased with CTHRC1 antibody. That is, it was negligible of the effects of activator and inhibitor of Hmox1 and CTHRC1 on cell proliferation (fig. S8, A and B). Hmox1 inhibition or CTHRC1 neutralization could significantly reduce the expression of Bmp2, while Hmox1 activation or increased CTHRC1 both activated Bmp2 expression. Furthermore, Bmp2 showed highest expression by up-regulation of Hmox1 and CTHRC1 simultaneously and sharply decreased with down-regulation of Hmox1 and CTHRC1 at the same time (Fig. 5A). Immunofluorescent staining revealed that the expression of bone morphogenetic protein 2 (BMP2) at the translational level with CTHRC1 and Hmox1 regulation showed a similar trend with transcriptional changes (Fig. 5B). Likewise, the expression of K8 and K18 at transcriptional and translational level changed similarly with CTHRC1 and Hmox1 regulation (fig. S9, A and B). These results suggested that CTHRC1 and Hmox1 played an essential role in SG fate separately, and they synergistically induced SG direction from MSCs (Fig. 5C).

(A and B) Transcriptional analysis (A) and translational analysis (PD, MSCs; PD+, MSCs with 3D/PD treatment; CAPE, MSCs treated with 3D/PD and Hmox1 activator; Snpp, MSCs treated with 3D/PD and Hmox1 inhibitor; Cthrc1, MSCs treated with 3D/PD and recombinant CTHRC1; anti, MSCs treated with 3D/PD and CTHRC1 antibody: +/+, MSCs treated with 3D/PD and Hmox1 activator and recombinant CTHRC1; and /, MSCs treated with 3D/PD and Hmox1 inhibitor and CTHRC1 antibody. Data are represented as the means SEM and n = 3) (B) of bmp2 with regulation of CTHRC1 and Hmox1. (C) The graphic illustration of 3D-bioprinted matrix directed MSC differentiation. CTHRC1 is the main biochemical cues during SG development, and structural cues up-regulated the expression of Hmox1 synergistically initiated branching morphogenesis of SG. *P < 0.05.

Next, we sought to assess the repair capacity of iSGCs for in vivo implications, the 3D-printed construct with green fluorescent protein (GFP)labeled MSCs was transplanted in burned paws of mice (Fig. 6A). We measured the SG repair effects by iodine/starch-based sweat test at day 14. Only mice with 3D/PD treatment showed black dots on foot pads (representing sweating), and the number increased within 10 min; however, no black dots were observed on untreated and single MSC-transplanted mouse foot pads even after 15 min (Fig. 6B). Likewise, hematoxylin and eosin staining analysis revealed SG regeneration in 3D/PD-treated mice (Fig. 6C). GFP-positive cells were characterized as secretory lumen expressing K8, K18, and K19. Of note, the GFP-positive cells were highly distributed in K14-positive myoepithelial cells of SGs but were absent in K14-positive repaired epidermal wounds (Fig. 6, D and E). Thus, differentiated MSCs enabled directed restitution of damaged SG tissues both at the morphological and functional level.

(A) Schematic illustration of approaches for engineering iSGCs and transplantation. (B) Sweat test of mice treated with different cells. Photo credit: Bin Yao, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA. (C) Histology of plantar region without treatment and transplantation of MSCs and iSGCs (scale bars, 200 m). (D) Involvement of GFP-labeled iSGCs in directed regeneration of SG tissue in thermal-injured mouse model (K14, red; GFP, green; DAPI, blue; scale bar, 200 m). (E) SG-specific markers K14, K19, K8, and K18 detected in regenerated SG tissue (arrows). (K14, K19, K8, and K18, red; GFP, green; scale bars, 50 m).

A potential gap in MSC-based therapy still exists between current understandings of MSC performance in vivo in their microenvironment and their intractability outside of that microenvironment (24). To regulate MSCs differentiation into the right phenotype, an appropriate microenvironment should be created in a precisely controlled spatial and temporal manner (25). Recent advances in innovative technologies such as bioprinting have enabled the complexities in the matrix design and fabrication of regenerative microenvironments (26). Our findings demonstrated that directed differentiation of MSCs into SGs in a 3D-printed matrix both in vitro and in vivo was feasible. In contrast to conventional tissue-engineering strategies of SG regeneration, the present 3D-printing approach for SG regeneration with overall morphology and function offered a rapid and accurate approach that may represent a ready-to-use therapeutic tool.

Furthermore, bioprinting MSCs successfully repaired the damaged SG in vivo, suggesting that it can improve the regenerative potential of exogenous differentiated MSCs, thereby leading to translational applications. Notably, the GFP-labeled MSC-derived glandular cells were highly distributed in K14-positive myoepithelial cells of newly formed SGs but were absent in K14-positive repaired epidermal wounds. Compared with no black dots were observed on single MSC-transplanted mouse foot pads, the black dots (representing sweating function) can be observed throughout the entire examination period, and the number increased within 10 min on MSC-bioprinted mouse foot pads. Thus, differentiated MSCs by 3D bioprinting enabled exclusive restitution of damaged SG tissues morphologically and functionally.

Although several studies indicated that engineering 3D microenvironments enabled better control of stem cell fates and effective regeneration of functional tissues (2730), there were no studies concerning the establishment of 3D-bioprinted microenvironments that can preferentially induce MSCs differentiating into glandular cells with multiple tissue phenotypes and overall functional tissue. To find an optimal microenvironment for promoting MSC differentiation into specialized progeny, biochemical properties are considered as the first parameter to ensure SG specification. In this study, we used mouse PD as the main composition of a tissue-specific ECM. As expected, this 3D-printed PD+ microenvironment drove the MSC fate decision to enhance the SG phenotypic profile of the differentiated cells. By ECM differential protein expression analysis, we identified that CTHRC1 was a critical biochemical regulator of 3D-printed matrix for SG specification. TSP1 was required for the lineage-specific function during the differentiation in mice but was not dispensable for SG development. Thus, we identified CTHRC1 as a specific factor during SG development. To our knowledge, this is the first demonstration of CTHRC1 involvement in dictating MSC differentiation to SG, highlighting a potential therapeutic tool for SG injury.

The 3D-printed matrix also provided architectural guides for further SG morphogenesis. Our results clearly show that the 3D spatial dimensionality allows for better cell proliferation and aggregation and affect the characteristics of phenotypic marker expression. Notably, the importance of 3D structural cues on MSC differentiation was further proved by MET-EMT process during differentiation, where the influences did not depend on the presence of biochemical cues. To fully elucidate the underlying mechanisms, we first examined how 3D structure regulating stem cell fate choices. According to our data, Hmox1 is highly up-regulated in 3D construct, which were supposed to response to hypoxia, with a previously documented role in MSC differentiation (31, 32). It is suggested that 3D microenvironment induced rapid cell aggregation leading to hypoxia and then activated the expression of Hmox1.

Through regulation of the expression of Hmox1 and addition or of CTHRC1 in the matrix, we confirmed that each of them is critical for SG reprogramming, respectively. Thus, biochemical and structural cues of 3D-printed matrix synergistically creating a microenvironment could enhance the accuracy and efficiency of MSC differentiation, thereby leading to resulting SG formation. Although we further need a more extensive study examining the role of other multiple cues and their possible overlap function in regulating MSC differentiation, our findings suggest that CTHRC1 and Hmox1 provide important signals that cooperatively modulate MSC lineage specification toward sweat glandular lineage. The 3D structure combined with PD stimulated the GO functional item of branch morphogenesis and gland formation, which might be induce by up-regulation of Bmp2 based on the verification of qPCR results. Although our results could not rule out the involvement of other factors and their possible overlapping role in regulating MSC lineage specification toward SGs, our findings together with several literatures suggested that BMP2 plays a critical role in inducing branch morphogenesis and gland formation (3335).

In summary, our findings represented a novel strategy of directing MSC differentiation for functional SG regeneration by using 3D bioprinting and pave the way for a potential therapeutic tool for other complex glandular tissues as well as further investigation into directed differentiation in 3D conditions. Specifically, we showed that biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation, and our results highlighted the importance of 3D-printed matrix cues as regulators of MSC fate decisions. This avenue opens up the intriguing possibility of shifting from genetic to microenvironmental manipulations of cell fate, which would be of particular interest for clinical applications of MSC-based therapies.

The main aim and design of the study was first to determine whether by using 3D-printed microenvironments, MSCs can be directed to differentiate and regenerate SGs both morphologically and functionally. Then, to investigate the underlying molecular mechanism of biochemical and structural cues of 3D-printed matrix involved in MSCs reprogramming. The primary aims of the study design were as follows: (i) cell aggregation and proliferation in a 3D-bioprinted construct; (ii) differentiation of MSCs at the cellular phenotype and functional levels in the 3D-bioprinted construct; (iii) the MET-EMT process during differentiation; (iv) differential protein expression of the SG niche in mice; (v) differential genes expression of MSCs in 3D-bioprinted construct; (vi) the key role of CTHRC1 and HMOX1 in MSCs reprogramming to SGCs; and (vii) functional properties of regenerated SG in vivo.

Gelatin (Sigma-Aldrich, USA) and sodium alginate (Sigma-Aldrich, USA) were dissolved in phosphate-buffered saline (PBS) at 15 and 1% (w/v), respectively. Both solutions were sterilized under 70C for 30 min three times at an interval of 30 min. The sterilized solutions were packed into 50-ml centrifuge tubes, stored at 4C, and incubated at 37C before use.

From wild-type C57/B16 mice (Huafukang Co., Beijing) aged 5 days old, dermal homogenates were prepared by homogenizing freshly collected hairless mouse PD with isotonic phosphate buffer (pH 7.4) for 20 min in an ice bath to obtain 25% (w/v) tissue suspension. The supernatant was obtained after centrifugation at 4C for 20 min at 10,000g. The DNA content was determined using Hoechst 33258 assay (Beyotime, Beijing). The fluorescence intensity was measured to assess the amount of remaining DNA within the decellularized ECMs and the native tissue using a fluorescence spectrophotometer (Thermo Scientific, Evolution 260 Bio, USA). The GAGs content was estimated via 1,9-dimethylmethylene blue solution staining. The absorbance was measured with microplate reader at wavelength of 492 nm. The standard curve was made using chondroitin sulfate A. The total COL (Collagen) content was determined via hydroxyproline assay. The absorbance of the samples was measured at 550 nm and quantified by referring to a standard curve made with hydroxyproline.

MSCs were bioprinted with matrix materials by using an extrusion-based 3D bioprinter (Regenovo Co., Bio-Architect PRO, Hangzhou). Briefly, 10 ml of gelatin solution (10% w/v) and 5 ml of alginate solution (2% w/v) were warmed under 37C for 20 min, gently mixed as bioink and used within 30 min. MSCs were collected from 100-mm dishes, dispersed into single cells, and 200 l of cell suspension was gently mixed with matrix material under room temperature with cell density 1 million ml1. PD (58 g/ml) was then gently mixed with bioink. Petri dishes at 60 mm were used as collecting plates in the 3D bioprinting process. Within a temperature-controlled chamber of the bioprinter, with temperature set within the gelation region of gelatin, the mixture of MSCs and matrix materials was bioprinted into a cylindrical construct layer by layer. The nozzle-insulation temperature and printing chamber temperature were set at 18 and 10C, respectively; nozzles with an inner diameter of 260 m were chosen for printing. The diameter of the cylindrical construct was 30 mm, with six layers in height. After the temperature-controlled bioprinting process, the printed 3D constructs were immersed in 100-mM calcium chloride (Sigma-Aldrich, USA) for 3 min for cross-linking, then washed with Dulbeccos modified Eagle medium (DMEM) (Gibco, USA) medium for three times. The whole printing process was finished in 10 min. The 3D cross-linked construct was cultured in DMEM in an atmosphere of 5% CO2 at 37C. The culture medium was changed to SG medium [contains 50% DMEM (Gibco, New York, NY) and 50% F12 (Gibco) supplemented with 5% fetal calf serum (Gibco), 1 ml/100 ml penicillin-streptomycin solution, 2 ng/ml liothyronine sodium (Gibco), 0.4 g/ml hydrocortisone succinate (Gibco), 10 ng/ml epidermal growth factor (PeproTech, Rocky Hill, NJ), and 1 ml/100 ml insulin-transferrin-selenium (Gibco)] 2 days later. The cell morphology was examined and recorded under an optical microscope (Olympus, CX40, Japan).

Fluorescent live/dead staining was used to determine cell viability in the 3D cell-loaded constructs according to the manufacturers instructions (Sigma-Aldrich, USA). Briefly, samples were gently washed in PBS three times. An amount of 1 M calcein acetoxymethyl (calcein AM) ester (Sigma-Aldrich, USA) and 2 M propidium iodide (Sigma-Aldrich, USA) was used to stain live cells (green) and dead cells (red) for 15 min while avoiding light. A laser scanning confocal microscopy system (Leica, TCSSP8, Germany) was used for image acquisition.

The cell-printed structure was harvested and fixed with a solution of 4% paraformaldehyde. The structure was embedded in optimal cutting temperature (OCT) compound (Sigma-Aldrich, USA) and sectioned 10-mm thick by using a cryotome (Leica, CM1950, Germany). The sliced samples were washed repeatedly with PBS solution to remove OCT compound and then permeabilized with a solution of 0.1% Triton X-100 (Sigma-Aldrich, USA) in PBS for 5 min. To reduce nonspecific background, sections were treated with 0.2% bovine serum albumin (Sigma-Aldrich, USA) solution in PBS for 20 min. To visualize iSGCs, sections were incubated with primary antibody overnight at 4C for anti-K8 (1:300), anti-K14 (1:300), anti-K18 (1:300), anti-K19 (1:300), anti-ATP1a1 (1:300), anti-Ki67 (1:300), antiN-cadherin (1:300), antiE-cadherin (1:300), anti-CTHRC1 (1:300), or anti-TSP1 (1:300; all Abcam, UK) and then incubated with secondary antibody for 2 hours at room temperature: Alexa Fluor 594 goat anti-rabbit (1:300), fluorescein isothiocyanate (FITC) goat anti-rabbit (1:300), FITC goat anti-mouse (1:300), or Alexa Fluor 594 goat anti-mouse (1:300; all Invitrogen, CA). Sections were also stained with 4,6-diamidino-2-phenylindole (Beyotime, Beijing) for 15 min. Stained samples were visualized, and images were captured under a confocal microscope.

To harvest the cells in the construct, the 3D constructs were dissolved by adding 55 mM sodium citrate and 20 mM EDTA (Sigma-Aldrich, USA) in 150 mM sodium chloride (Sigma-Aldrich, USA) for 5 min while gently shaking the petri dish for better dissolving. After transfer to 15-ml centrifuge tubes, the cell suspensions were centrifuged at 200 rpm for 3 min, and the supernatant liquid was removed to harvest cells for further analysis.

Total RNA was isolated from cells by using TRIzol reagent (Invitrogen, USA) following the manufacturers protocol. RNA concentration was measured by using a NanoPhotometer (Implen GmbH, P-330-31, Germany). Reverse transcription involved use of a complementary DNA synthesis kit (Takara, China). Gene expression was analyzed quantitatively by using SYBR green with the 7500 Real-Time PCR System (Takara, China). The primers and probes for genes were designed on the basis of published gene sequences (table S1) (National Center for Biotechnology Information and PubMed). The expression of each gene was normalized to that for glyceraldehyde-3-phosphate dehydrogenase and analyzed by the 2-CT method. Each sample was assessed in triplicate.

The culture medium was changed to SG medium with 2 mM CaCl2 for at least 24 hours, and cells were loaded with fluo-3/AM (Invitrogen, CA) at a final concentration of 5 M for 30 min at room temperature. After three washes with calcium-free PBS, 10 M acetylcholine (Sigma-Aldrich, USA) was added to cells. The change in the Fluo 3 fluorescent signal was recorded under a laser scanning confocal microscopy.

Cell proliferation was evaluated through CCK-8 (Cell counting kit-8) assay. Briefly, cells were seeded in 96-well plates at the appropriate concentration and cultured at 37C in an incubator for 4 hours. When cells were adhered, 10 l of CCK-8 working buffer was added into the 96-well plates and incubated at 37C for 1 hour. Absorbance at 450 nm was measured with a microplate reader (Tecan, SPARK 10M, Austria).

Proteomics of mouse PD and DD involved use of isobaric tags for relative and absolute quantification (iTRAQ) in BGI Company, with differentially expressed proteins detected in PD versus DD. Twofold greater difference in expression was considered significant for further study.

Tissues were grinded and lysed in radioimmunoprecipitation assay buffer (Beyotime, Nanjing). Proteins were separated by 12% SDSpolyacrylamide gel electrophoresis and transferred to a methanol-activated polyvinylidene difluoride membrane (GE Healthcare, USA). The membrane was blocked for 1 hour in PBS with Tween 20 containing 5% bovine serum albumin (Sigma-Aldrich, USA) and probed with the antibodies anti-CTHRC1 (1:1000) and anti-TSP1 (1:1000; both Abcam, UK) overnight at 4C. After 2 hours of incubation with goat anti-rabbit horseradish peroxidaseconjugated secondary antibody (Santa Cruz Biotechnology, CA), the protein bands were detected by using luminal reagent (GE Healthcare, ImageQuant LAS 4000, USA).

Total RNA was prepared with TRIzol (Invitrogen), and RNA sequencing was performed using HiSeq 2500 (Illumina). Genes with false discovery rate < 0.05, fold difference > 2.0, and mean log intensity > 2.0 were considered to be significant.

CAPE or Snpp was gently mixed with bioink at a concentration of 10 M. Physiological concentration of CTHRC1 was measured by enzyme linked immunosorbent assay (ELISA) (80 ng/ml), and then recombinant CTHRC1 or CTHRC1 antibody was added into the bioink at a concentration of 0.4 g/ml. The effect of inhibitor and activator was estimated by qRT-PCR or ELISA.

Mice were anesthetized with pentobarbital (100 mg/kg) and received subcutaneous buprenorphine (0.1 mg/kg) preoperatively. Full-thickness scald injuries were created on paw pads with soldering station (Weller, WSD81, Germany). Mice recovered in clean cages with paper bedding to prevent irritation or infection. Mice were monitored daily and euthanized at 30 days after wounding. Mice were maintained in an Association for Assessment and Accreditation of Laboratory Animal Careaccredited animal facility, and procedures were performed with Institutional Animal Care and Use Committeeapproved protocols.

MSCs in 3D-printed constructs with PD were cultured with DMEM for 2 days and then replaced with SG medium. The SG medium was changed every 2 days, and cells were harvested on day 12. The K18+ iSGCs were sorting through flow cytometry and injected into the paw pads (1 106 cells/50 l) of the mouse burn model by using Microliter syringes (Hamilton, 7655-01, USA). Then, mice were euthanized after 14 days; feet were excised and fixed with 10% formalin (Sigma-Aldrich, USA) overnight for paraffin sections and immunohistological analysis.

The foot pads of anesthetized treated mice were first painted with 2% (w/v) iodine/ethanol solution then with starch/castor oil solution (1 g/ml) (Sigma-Aldrich, USA). After drying, 50 l of 100 M acetylcholine (Sigma-Aldrich, USA) was injected subcutaneously into paws of mice. Pictures of the mouse foot pads were taken after 5, 10, and 15 min.

All data were presented as means SEM. Statistical analyses were performed using GraphPad Prism7 statistical software (GraphPad, USA). Significant differences were calculated by analysis of variance (ANOVA), followed by the Bonferroni test when performing multiple comparisons between groups. P < 0.05 was considered as a statistically significant difference.

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/6/10/eaaz1094/DC1

Fig. S1. Biocompatibility of 3D-bioprinted construct and cellular morphology in 2D monolayer culture.

Fig. S2. Expression of SG-specific and secretion-related markers in MSCs and SG cells in vitro.

Fig. S3. Transcriptional and translational expression of epithelial and mesenchymal markers in 3D-bioprinted cells with and without PD.

Fig. S4. Expression of N- and E-cadherin in MSCs and SG cells in 2D monolayer culture.

Fig. S5. Proteomic microarray assay of differential gene expression between PD and DD ECM in postnatal mice.

Fig. S6. GO term analysis of differentially expressed pathways.

Fig. S7. Heat maps illustrating differential expression of genes implicated in ECM organization, cell division, and gland and branch morphogenesis.

Fig. S8. The expression of Hmox1 and the concentration of CTHRC1 on treatment and the related effects on cell proliferation.

Fig. S9. The expression of K8 and K18 with Hmox1 and CTHRC1 regulation.

Table S1. Primers for qRT-PCR of all the genes.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

Acknowledgments: Funding: This study was supported in part by the National Nature Science Foundation of China (81571909, 81701906, 81830064, and 81721092), the National Key Research Development Plan (2017YFC1103300), Military Logistics Research Key Project (AWS17J005), and Fostering Funds of Chinese PLA General Hospital for National Distinguished Young Scholar Science Fund (2017-JQPY-002). Author contributions: B.Y. and S.H. were responsible for the design and primary technical process, conducted the experiments, collected and analyzed data, and wrote the manuscript. Y.W. and R.W. helped perform the main experiments. Y.Z. and T.H. participated in the 3D printing. W.S. and Z.L. participated in cell experiments and postexamination. S.H. and X.F. collectively oversaw the collection of data and data interpretation and revised the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Originally posted here:
Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration - Science...

With Over 280 Therapies Under Evaluation, the Stem Cell Therapy Market is Estimated to be Worth USD 8.5 Billion by 2030, Claims Roots Analysis – P&T…

The success of approved stem cell therapies has caused a surge in interest of biopharma developers in this field; many innovator companies are currently progressing proprietary leads across different phases of clinical development, with cautious optimism

LONDON, March 4, 2020 /PRNewswire/ -- Roots Analysishas announced the addition of "Global Stem Cells Market: Focus on Clinical Therapies, 20202030 (Based on Source (Allogeneic, Autologous); Origin (Adult, Embryonic); Type (Hematopoietic, Mesenchymal, Progenitor); Lineage (Amniotic Fluid, Adipose Tissue, Bone Marrow, Cardiosphere, Chondrocytes, Corneal Tissue, Cord Blood, Dental Pulp, Neural Tissue Placenta, Peripheral Blood, Stromal Cells); and Potency (Multipotent, Pluripotent))" report to its list of offerings.

There is a growing body of evidence supporting the vast applicability and superiority of treatment outcomes of stem cell therapies, compared to conventional treatment options. In fact, the unmet needs within this domain have spurred the establishment of many start-ups in recent years.

To order this 500+ page report, which features 185+ figures and 220+ tables, please visit this link

Key Market Insights

Over 280 stem cell therapies are under development, most of which are allogeneic products

More than 50% of the pipeline candidates are in the mid to late phase trials (phase II and above), and allogenic therapies (majority of which are derived from the bone marrow) make up 65% of the pipeline.

70% of pipeline candidates are based on mesenchymal stem cells

It is worth highlighting that the abovementioned therapies are designed to treat musculoskeletal (22%), neurological (21%) and cardiovascular (15%) disorders. On the other hand, hematopoietic stem cell-based products are mostly being evaluated for the treatment of oncological disorders, primarily hematological malignancies.

Close to 85% stem cell therapy developers are based in North America and Asia-Pacific regions

Within these regions, the US, China, South Korea and Japan, have emerged as key R&D hubs for stem cell therapies. It is worth noting that majority of the initiatives in this domain are driven by small / mid-sized companies

Over 1,500 grants were awarded for stem cell research, since 2015

More than 45% of the total amount was awarded under the R01 mechanism (which supports research projects). The NCI, NHLBI, NICHD, NIDDK, NIGMS and OD emerged as key organizations that have offered financial support for time periods exceeding 25 years as well.

Outsourcing has become indispensable to R&D and manufacturing activity in this domain

Presently, more than 80 industry / non-industry players, based in different regions across the globe, claim to provide contract development and manufacturing services to cater to the unmet needs of therapy developers. Examples include (in alphabetical order) Bio Elpida, Cell and Gene Therapy Catapult, Cell Tech Pharmed, GenCure, KBI Biopharma, Lonza, MEDINET, Nikon CeLL innovation, Roslin Cell Therapies, WuXi Advanced Therapies and YposKesi.

North America and Asia-Pacific markets are anticipated to capture over 80% share by 2030

The stem cell therapies market is anticipated to witness an annualized growth rate of over 30% during the next decade. Interestingly, the market in China / broader Asia-Pacific region is anticipated to grow at a relatively faster rate.

To request a sample copy / brochure of this report, please visit this link

Key Questions Answered

The USD 8.5 billion (by 2030) financial opportunity within the stem cell therapies market has been analyzed across the following segments:

The report features inputs from eminent industry stakeholders, according to whom stem cell therapies are currently considered to be a promising alternatives for the treatment of a myriad of disease indications, with the potential to overcome challenges associated with conventional treatment options. The report includes detailed transcripts of discussions held with the following experts:

The research covers brief profiles of several companies (including those listed below); each profile features an overview of the company, financial information (if available), stem cell therapy portfolio and an informed future outlook.

For additional details, please visit

https://www.rootsanalysis.com/reports/view_document/stem-cells-market/296.htmlor email sales@rootsanalysis.com

You may also be interested in the following titles:

Contact:Gaurav Chaudhary+1(415)800-3415+44(122)391-1091Gaurav.Chaudhary@rootsanalysis.com

Logo: https://mma.prnewswire.com/media/742223/Roots_Analysis_Logo.jpg

Read more:
With Over 280 Therapies Under Evaluation, the Stem Cell Therapy Market is Estimated to be Worth USD 8.5 Billion by 2030, Claims Roots Analysis - P&T...

Stem Cell Market Size Worth $17.9 Billion by 2027 | CAGR: 8.2%: Grand View Research, Inc. – PR Newswire UK

SAN FRANCISCO, March 2, 2020 /PRNewswire/ -- The global stem cell marketsize is expected to reach USD 17.9 billion by 2027, expanding at a CAGR of 8.2%, according to a new report by Grand View Research, Inc. Recent advances in tissue engineering strategies hold the potential to draw attention to the treatment of several chronic disorders. Moreover, automation in adult and cord blood processing and storage is expected to drive market growth significantly.

Key suggestions from the report:

Read 190 page research report with ToC on "Stem Cells Market Size, Share & Trends Analysis Report By Product (Adult Stem Cells, HESC), By Application, By Technology, By Therapy, By Region, And Segment Forecasts, 2020 - 2027" at: https://www.grandviewresearch.com/industry-analysis/stem-cells-market

The development of banking facilities and resultant enhancement of stem cell production, storage, and characterization are also expected to enhance the volumetric capabilities of this therapy, globally. This would lead to revenue generation in the global market.

Regenerative medicine and cellular therapies are considered to transform the healthcare industry in a few years. Therefore, key players are focused on developing advanced therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, degenerative eye disorders, cancer, and stroke. Most of these therapies are under clinical trials and are expected to be launched soon.

Furthermore, the presence of a strong, diverse clinical pipeline is expected to accelerate revenue generation in the global market. Easy access to data through genomic, proteomic, and EHR databases has encouraged companies to investigate various therapies to aid in the treatment of previously untreatable conditions.

Grand View Research has segmented the global stem cells market on the basis of product, application, technology, therapy, and region:

Find more research reports on Biotechnology Industry, by Grand View Research:

Gain access to Grand View Compass, our BI enabled intuitive market research database of 10,000+ reports

About Grand View Research

Grand View Research, U.S.-based market research and consulting company, provides syndicated as well as customized research reports and consulting services. Registered in California and headquartered in San Francisco, the company comprises over 425 analysts and consultants, adding more than 1200 market research reports to its vast database each year. These reports offer in-depth analysis on 46 industries across 25 major countries worldwide. With the help of an interactive market intelligence platform, Grand View Research helps Fortune 500 companies and renowned academic institutes understand the global and regional business environment and gauge the opportunities that lie ahead.

Contact:

Sherry James Corporate Sales Specialist, USA Grand View Research, Inc. Phone: +1-415-349-0058 Toll Free: 1-888-202-9519 Email: sales@grandviewresearch.comWeb: https://www.grandviewresearch.comFollow Us: LinkedIn| Twitter

Logo: https://mma.prnewswire.com/media/661327/Grand_View_Research_Logo.jpg

SOURCE Grand View Research, Inc.

Go here to read the rest:
Stem Cell Market Size Worth $17.9 Billion by 2027 | CAGR: 8.2%: Grand View Research, Inc. - PR Newswire UK

Avectas and CCRM partner on cell engineering – BioPharma-Reporter.com

The Solupore platform looks to support the burgeoning industry pipeline of cell and gene therapies by supporting the non-viral cell engineering of therapeutics.

At present, a shortage in capacity for the production of viral vectors, used in the development of cell and gene therapies, has resulted in waiting lists being established for companies to have access to the limited supply.

Avectas and CCRM (Centre for Commercialization of Regenerative Medicine) have partnered with the aim of addressing this need, by facilitating the Solupore platform into the clinic.

According to Avectas, its platform utilizes a membrane disruptive approach to deliver nucleic acids and proteins to cells. The Irish company is currently developing a closed continuous system for good manufacturing practice (GMP) manufacturing.

In terms of the benefits of its method of cell engineering, the company stated that unlike industry standards, Avectas technology is gentle to the cells allowing rapid recovery and functionality. There is no stall time in cell proliferation resulting in a faster cell engineering process.

The technology is also scalable and can be adjusted to the volume of cells needed for clinical therapies, suggested Avectas. The potential molecules that could be generated by this approach include mRNA, proteins and gene editing tools.

For its part, CCRM is a non-profit organization that is able to offer expertise in stem cell and biomaterials technologies through its strategic advisory board, which combines expertise from Canadian and US universities, amongst other global participants.

In addition, the CCRM has a network of industry companies, which features Amgen, Pfizer, Pall, and Roche.

Michael Maguire, CEO of Avectas, said: We are delighted to partner with CCRMto leverage their deep experience in cell manufacturing processes to support the translation of our Solupore platform towards clinical applications.

As well as looking to partner with immuno-oncology and gene editing business to produce their drug candidates, Avectas noted that it is also looking to in-license therapeutic molecules to build its own pipeline of potential products.

Read more:
Avectas and CCRM partner on cell engineering - BioPharma-Reporter.com

Regenerative Medicine Market Analysis Growth Demand, Key Players, Share Size, and Forecast To 2025 – Monroe Scoop

Regenerative Medicine Market: Snapshot

Regenerative medicine is a part of translational research in the fields of molecular biology and tissue engineering. This type of medicine involves replacing and regenerating human cells, organs, and tissues with the help of specific processes. Doing this may involve a partial or complete reengineering of human cells so that they start to function normally.

Get Sample Copy of the Report @https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1889

Regenerative medicine also involves the attempts to grow tissues and organs in a laboratory environment, wherein they can be put in a body that cannot heal a particular part. Such implants are mainly preferred to be derived from the patients own tissues and cells, particularly stem cells. Looking at the promising nature of stem cells to heal and regenerative various parts of the body, this field is certainly expected to see a bright future. Doing this can help avoid opting for organ donation, thus saving costs. Some healthcare centers might showcase a shortage of organ donations, and this is where tissues regenerated using patients own cells are highly helpful.

There are several source materials from which regeneration can be facilitated. Extracellular matrix materials are commonly used source substances all over the globe. They are mainly used for reconstructive surgery, chronic wound healing, and orthopedic surgeries. In recent times, these materials have also been used in heart surgeries, specifically aimed at repairing damaged portions.

Cells derived from the umbilical cord also have the potential to be used as source material for bringing about regeneration in a patient. A vast research has also been conducted in this context. Treatment of diabetes, organ failure, and other chronic diseases is highly possible by using cord blood cells. Apart from these cells, Whartons jelly and cord lining have also been shortlisted as possible sources for mesenchymal stem cells. Extensive research has conducted to study how these cells can be used to treat lung diseases, lung injury, leukemia, liver diseases, diabetes, and immunity-based disorders, among others.

Global Regenerative Medicine Market: Overview

The global market for regenerative medicine market is expected to grow at a significant pace throughout the forecast period. The rising preference of patients for personalized medicines and the advancements in technology are estimated to accelerate the growth of the global regenerative medicine market in the next few years. As a result, this market is likely to witness a healthy growth and attract a large number of players in the next few years. The development of novel regenerative medicine is estimated to benefit the key players and supplement the markets growth in the near future.

Global Regenerative Medicine Market: Key Trends

The rising prevalence of chronic diseases and the rising focus on cell therapy products are the key factors that are estimated to fuel the growth of the global regenerative medicine market in the next few years. In addition, the increasing funding by government bodies and development of new and innovative products are anticipated to supplement the growth of the overall market in the next few years.

On the flip side, the ethical challenges in the stem cell research are likely to restrict the growth of the global regenerative medicine market throughout the forecast period. In addition, the stringent regulatory rules and regulations are predicted to impact the approvals of new products, thus hampering the growth of the overall market in the near future.

Global Regenerative Medicine Market: Market Potential

The growing demand for organ transplantation across the globe is anticipated to boost the demand for regenerative medicines in the next few years. In addition, the rapid growth in the geriatric population and the significant rise in the global healthcare expenditure is predicted to encourage the growth of the market. The presence of a strong pipeline is likely to contribute towards the markets growth in the near future.

Global Regenerative Medicine Market: Regional Outlook

In the past few years, North America led the global regenerative medicine market and is likely to remain in the topmost position throughout the forecast period. This region is expected to account for a massive share of the global market, owing to the rising prevalence of cancer, cardiac diseases, and autoimmunity. In addition, the rising demand for regenerative medicines from the U.S. and the rising government funding are some of the other key aspects that are likely to fuel the growth of the North America market in the near future.

Furthermore, Asia Pacific is expected to register a substantial growth rate in the next few years. The high growth of this region can be attributed to the availability of funding for research and the development of research centers. In addition, the increasing contribution from India, China, and Japan is likely to supplement the growth of the market in the near future.

Request TOC of the Report @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1889

Global Regenerative Medicine Market: Competitive Analysis

The global market for regenerative medicines is extremely fragmented and competitive in nature, thanks to the presence of a large number of players operating in it. In order to gain a competitive edge in the global market, the key players in the market are focusing on technological developments and research and development activities. In addition, the rising number of mergers and acquisitions and collaborations is likely to benefit the prominent players in the market and encourage the overall growth in the next few years.

Some of the key players operating in the regenerative medicine market across the globe areVericel Corporation, Japan Tissue Engineering Co., Ltd., Stryker Corporation, Acelity L.P. Inc. (KCI Licensing), Organogenesis Inc., Medtronic PLC, Cook Biotech Incorporated, Osiris Therapeutics, Inc., Integra Lifesciences Corporation, and Nuvasive, Inc.A large number of players are anticipated to enter the global market throughout the forecast period.

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Read more:
Regenerative Medicine Market Analysis Growth Demand, Key Players, Share Size, and Forecast To 2025 - Monroe Scoop

Autologous Stem Cell And Non-Stem Cell Based Therapies Market 2020-2025 || Leading Players Fibrocell, Genesis Biopharma, Georgia Health Sciences…

Todays businesses call for the highly focused, comprehensive and detail-oriented information about the market so that they get a clear idea about the market landscape. The Autologous Stem Cell And Non-Stem Cell Based Therapies market research report is generated with a combination of detailed industry insights, and use of latest tools and technology. The study of this market research report covers a market attractiveness analysis, wherein each segment is targeted based on its market size, growth rate, and general attractiveness. The Autologous Stem Cell And Non-Stem Cell Based Therapies market research report plays a key role in developing the strategies for sales, advertising, marketing, and promotion.

TheGlobalAutologous Stem Cell and Non-Stem Cell Based Therapies Marketis expected to reach USD113.04 billion by 2025, from USD 87.59 billion in 2017 growing at a CAGR of 3.7% during the forecast period of 2018 to 2025. The upcoming market report contains data for historic years 2015 & 2016, the base year of calculation is 2017 and the forecast period is 2018 to 2025.

For In depth Information Get Sample Copy of this Report @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-autologous-stem-cell-and-non-stem-cell-based-therapies-market&raksh

Some of the major players operating in the global autologous stem cell and non-stem cell based therapies market areAntria (Cro), Bioheart, Brainstorm Cell Therapeutics, Cytori, Dendreon Corporation, Fibrocell, Genesis Biopharma, Georgia Health Sciences University, Neostem, Opexa Therapeutics, Orgenesis, Regenexx, Regeneus, Tengion, Tigenix, Virxsys and many more.

Market Definition:Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market

In autologous stem-cell transplantation persons own undifferentiated cells or stem cells are collected and transplanted back to the person after intensive therapy. These therapies are performed by means of hematopoietic stem cells, in some of the cases cardiac cells are used to fix the damages caused due to heart attacks. The autologous stem cell and non-stem cell based therapies are used in the treatment of various diseases such as neurodegenerative diseases, cardiovascular diseases, cancer and autoimmune diseases, infectious disease.

According to World Health Organization (WHO), cardiovascular disease (CVD) causes more than half of all deaths across the European Region. The disease leads to death or frequently it is caused by AIDS, tuberculosis and malaria combined in Europe. With the prevalence of cancer and diabetes in all age groups globally the need of steam cell based therapies is increasing, according to article published by the US National Library of Medicine National Institutes of Health, it was reported that around 382 million people had diabetes in 2013 and the number is growing at alarming rate which has increased the need to improve treatment and therapies regarding the diseases.

Browse Detailed TOC Herehttps://www.databridgemarketresearch.com/toc/?dbmr=global-autologous-stem-cell-and-non-stem-cell-based-therapies-market&raksh

Market Segmentation:Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market

Competitive Analysis:Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market

The global autologous stem cell and non-stem cell based therapies market is highly fragmented and the major players have used various strategies such as new product launches, expansions, agreements, joint ventures, partnerships, acquisitions, and others to increase their footprints in this market. The report includes market shares of autologous stem cell and non-stem cell based therapies market for global, Europe, North America, Asia Pacific and South America.

Major Autologous Stem Cell and Non-Stem Cell Based Therapies Market Drivers and Restraints:

Introduction of novel autologous stem cell based therapies in regenerative medicine

Reduction in transplant associated risks

Prevalence of cancer and diabetes in all age groups

High cost of autologous cellular therapies

Lack of skilled professionals

Reasons to Purchase this Report

Customization of the Report:

Speak to Author of the report @https://www.databridgemarketresearch.com/speak-to-analyst/?dbmr=global-autologous-stem-cell-and-non-stem-cell-based-therapies-market&raksh

About Data Bridge Market Research:

Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.

Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.

Contact Us

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475Mail:[emailprotected]

Follow this link:
Autologous Stem Cell And Non-Stem Cell Based Therapies Market 2020-2025 || Leading Players Fibrocell, Genesis Biopharma, Georgia Health Sciences...

Why Aimmune Therapeutics Shares Fell 23.3% in February – Nasdaq

What happened

Shares of Aimmune Therapeutics (NASDAQ: AIMT) fell 23.3% in February, according to data provided by S&P Global Market Intelligence, as the launch of its new peanut allergy treatment took time to unfold.

Aimmune rose 40% last year as investors anticipated Palforzia, the firsttreatment approved by the Food and Drug Administration for peanut allergy in children. The regulatory agency approved the treatment on Jan. 31, and now investors are waiting to see how the first weeks of sales progress. The process is taking time because of the risk management procedure involved in the launch.

Image source: Getty Images.

Palforzia, an orally administered powder made of peanut protein, works by desensitizing patients to the allergen. In order to lower risk in case a new patient suffers a reaction to the therapy, the FDA has set up the Risk Evaluation and Mitigation Strategy (REMS) program. Physicians and patients must enroll in REMS and follow guidelines before treatment can begin. This process, along with the FDA's standard procedure of examining and releasing the first batches of biologic product, lengthened the timeline from approval to sales. Aimmune said during its recent earnings call that it expects to record the first Palforzia sales this month.

Getting physicians and patients on board in the next few months will be crucial for Aimmune. DBVTechnologies (NASDAQ: DBVT) is close behind, with an FDA decision on its peanut allergy drug expected in August. Aimmune now has the advantage of being first to market, before rivals enter with competing products. Aimmune is also expecting a decision on Palforzia from the Europeanregulatory agency in the fourth quarter, and said a decision in Switzerland could come in mid-2021.

All of these elements represent catalysts for the shares over the next year or so. If Aimmune can assure its position as market leader, the shares of this biotech company will benefit in the long term.

10 stocks we like better than Aimmune TherapeuticsWhen investing geniuses David and Tom Gardner have a stock tip, it can pay to listen. After all, the newsletter they have run for over a decade, Motley Fool Stock Advisor, has tripled the market.*

David and Tom just revealed what they believe are the ten best stocks for investors to buy right now... and Aimmune Therapeutics wasn't one of them! That's right -- they think these 10 stocks are even better buys.

See the 10 stocks

*Stock Advisor returns as of December 1, 2019

Adria Cimino has no position in any of the stocks mentioned. The Motley Fool has no position in any of the stocks mentioned. The Motley Fool has a disclosure policy.

The views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.

See the original post here:
Why Aimmune Therapeutics Shares Fell 23.3% in February - Nasdaq