Category Archives: Stem Cell Treatment


ISU stem-cell research could enable new treatment for those with blood diseases – Iowa Capital Dispatch

Findings from a group of Iowa State University researchers could lead to the ability to create new blood stem cells from a patients own blood, possibly doing away with the need for bone marrow transplants.

ISU assistant professor of genetics, development and cell biology Raquel Espin Palazon and her team discovered that a microbial sensor that aids in finding bacterial infections, known as Nod1, also plays a key role in the creation of blood stem cells.

Learning this information and finding where in the process it takes place will allow researchers to make strides in producing functional blood stem cells in vitro, which Espin Palazon said cannot currently be done.

We cannot produce blood stem cells that are going to be able to be transplanted and cure diseases, cure leukemia and anemia, Espin Palazon said. So were really trying to find which switches to touch in those protocols in vitro to make those blood stem cells, and this Nod1 is a very important and critical switch.

GET THE MORNING HEADLINES DELIVERED TO YOUR INBOX

SUBSCRIBE

Before an embryos heart even begins to beat, some of the endothelial cells that are forming its vascular system are instead becoming blood stem cells. A lifetimes worth of these will be created before birth. Espin Palazon said they found that the Nod1 microbial receptor needs to be activated before those endothelial cells transform into blood stem cells.

If Nod1 can be activated in immature stem cells taken from a patient, blood stem cells can then be created to treat them.

For some patients diagnosed with blood diseases and disorders, the only treatment available is a bone marrow or umbilical cord blood transplant. According to the Health Resources and Services Administration, about 18,000 people are diagnosed with life-threatening illnesses where these transplants are the only option.

Finding matching donors for these transplants can be very difficult, Espin Palazon said. Even if a match is found and the transplant is successful, the recipient has a more than 50% chance of developing graft-versus-host disease, where the bodys immune system identifies the new blood stem cells as foreign bodies, and attacks them, which can be deadly. Having the ability to create blood stem cells that wouldnt risk being attacked as foreign entities would greatly lower the risks those impacted have to undertake when receiving a transplant.

If we could generate patient-specific blood stem cells in the dish then we dont have to find donors and we wouldnt have the graft-versus-host disease, Espin Palazon said. So that would cure a lot of people.

With these findings, the researcher said theres a good chance that she will get to see new blood stem cells created from patients within her lifetime, maybe even in the next 20 years.

Espin Palazon said her journey to these findings was serendipitous, as it was her interest in the immune system, not blood cell development, that led her here. The professor was working on her doctorate in Spain, her home country, in the late 2000s and studying the immune system when she found that embryos wouldnt develop normally if inflammatory signals like Nod1 were removed.

Trying to find literature on the impact these factors have on embryonic development were unsuccessful, as scientists had largely not looked into the subject, and so she turned her research to this topic.

Its been basically my whole life as a researcher studying this field that was totally neglected before, Espin Palazon said. So being able to have this contribution to the scientific community and humanity with these important signals that are critical to make bloods themselves, its been just amazing.

See the original post:
ISU stem-cell research could enable new treatment for those with blood diseases - Iowa Capital Dispatch

Half of pediatric patients with aHUS benefit from Soliris after… – AHUS News

Treatment withSoliris (eculizumab) helped about half of the children diagnosed with atypical hemolytic uremic syndrome (aHUS) after they received a stem cell transplant, according to a small study.

Among 13 patients who started taking Soliris, seven survived and saw their disease-associated biomarkers normalize. Six died due to complications related to the stem cell transplant.

The study, Eculizumab treatment in paediatric patients diagnosed with aHUS after haematopoietic stem cell transplantation: a HSCT-TMA case series from Japanese aHUS post-marketing surveillance, was published in Bone Marrow Transplantation. The analysis was sponsored by Alexion, now a part of AstraZeneca Rare Disease, which developed Soliris.

aHUS is a type of thrombotic microangiopathy (TMA), a group of diseases wherein blood clots form in small blood vessels. In aHUS, this is caused by abnormal activity of the immune systems complement cascade. While there are often genetic factors, another trigger is typically needed for symptoms to manifest.

One such trigger can be a hematopoietic stem cell transplant (HSCT), which is used to treat a range of blood and autoimmune disorders. It involves transplanting blood cell precursors into a patient to help repopulate their body with healthy blood cells.

Certain immune complications can occur that drive TMA symptoms, however, especially in people with underlying genetic risk factors. TMA is associated with high mortality rates after a stem cell transplant and the appropriate treatment strategy remains to be established. Soliris is approved for aHUS and other complement-mediated diseases, and inhibits the C5 protein to prevent the complement cascades activation, potentially making it an appropriate treatment for managing HSCT-TMA.

Here, scientists retrospectively analyzed clinical data from 13 pediatric patients in Japan who received Soliris after being diagnosed with aHUS following an HSCT procedure, whichwas intended to treat various forms of cancer or immune system diseases. TMA symptoms emerged about a month later, on average.

Three children had existing risk factors for aHUS, including a history or family history of TMA. Eleven patients had complications from the procedure that could have caused the complement cascade to overact, according to the scientists.

All the children were treated with other therapies before starting Soliris, which was initiated a median of 16 days after the onset of TMA. Soliris was infused into the vein, or intravenously, in a similar regimen as that approved for aHUS, with patients receiving a median of three doses.

Over a median observation period of nearly six months, seven patients survived, leading to a predicted survival of 53.8% six months after the onset of HSCT-TMA.

Among the survivors, Soliris decreased levels of lactate dehydrogenase, a marker of organ damage, after 22 days. It also increased the count of platelets, blood clotting cells that are lost as a cardinal aHUS symptom, after a median of 280 days (about nine months).

Median blood levels of creatinine, a marker of kidney damage, didnt change, but four of the seven survivors did see improvements. Three children who previously required dialysis, a blood cleaning procedure for when the kidneys are failing, discontinued it by the last follow-up visit.

None of the survivors had a TMA recurrence over a median of 111.5 days (around 3.6 months) after stopping Soliris.

Three patients died due to ongoing side effects that started before Soliris was initiated and two died due to infection-related side effects that arose after immunosuppressive therapy to treat an HSCT-associated immune complication. One patient didnt respond well to Soliris and died due to TMA.

The survival rates in those treated with Soliris after HSCT-TMA were lower than in a previous report. That could be because in that study, Soliris was started early as a first-line treatment and at individualized dosing regimens.

Early treatment with complement inhibitor and early evaluation of treatment response can be a preferential treatment strategy once complement dysfunction is suspected in HSCT-TMA, the researchers wrote.

No significant prognostic risk factors were identified by comparing survivors with non-survivors, which could be attributed in part to the small nature of the study.

Further research into the risk stratification of HSCT-TMA and the use of C5 inhibitors are needed to confirm appropriate use in HSCT-TMA and to identify factors that might predict patients responses to therapy, the researchers said.

See the rest here:
Half of pediatric patients with aHUS benefit from Soliris after... - AHUS News

Three Win Grant for Pediatric AML NK Cell Therapy Trial – Mirage News

Fehniger (left), Bednarski and Pfeiffer

Todd A. Fehniger, MD, PhD, a professor of medicine, and co-principal investigators Jeffrey J. Bednarski, MD, PhD, an associate professor of pediatrics, and Thomas Pfeiffer, MD, an assistant professor of pediatrics, all at Washington University School of Medicine in St. Louis, have received a total of $1.4 million from the Leukemia & Lymphoma Society, the Rising Tide Foundation for Clinical Cancer Research and Siteman Kids. The funding will support a phase 2 clinical trial of a novel cell-based immunotherapy used in conjunction with a stem cell transplant. Developed at Washington University, the immunotherapy is for children with acute myeloid leukemia (AML), a type of blood cancer.

With the goal of reducing relapse after stem cell transplantation, the researchers will treat patients with memory-like natural killer (NK) cells, a type of immune cell, that have been exposed to a protein cocktail that reprograms them to better identify and eliminate cancer cells. The memory-like NK cells will come from the same donor who provided the patient's stem cells and be given about one week after a patient's stem cell transplant.

See the rest here:
Three Win Grant for Pediatric AML NK Cell Therapy Trial - Mirage News

Stem Cell Therapy Market Worth $615 Million | MarketsandMarkets – PR Newswire

CHICAGO, Dec. 12, 2023 /PRNewswire/ --Stem Cell Therapy Marketin terms of revenue was estimated to be worth $286 million in 2023 and is poised to reach $615 million by 2028, growing at a CAGR of 16.5% from 2023 to 2028 according to a new report by MarketsandMarkets. The global stem cell therapy market is expected to grow at a CAGR of 16.8% during the forecast period. The major factors driving the growth of the market are expanding number of clinical trials of stem cell therapies, rise in stem cell research funding and growing number of GMP-certified cell therapy production facilities. However, high costs associated with the development of stem cell therapy and treatment is anticipated to hamper the market growth in coming years.

Download an Illustrative overview: https://www.marketsandmarkets.com/pdfdownloadNew.asp?id=48

Browse in-depth TOC on "Stem Cell Therapy Market"

157 - Tables

40 - Figures

203 - Pages

Stem Cell Therapy Market Scope:

Report Coverage

Details

Market Revenue in 2023

$286 million

Estimated Value by 2028

$615 million

Growth Rate

Poised to grow at a CAGR of 16.5%

Market Size Available for

2021-2028

Forecast Period

2023-2028

Forecast Units

Value (USD Million)

Report Coverage

Revenue Forecast, Competitive Landscape, Growth Factors, and Trends

Segments Covered

Cell Source, Type, Therapeutic Application and Region

Geographies Covered

North America, Europe, Asia Pacific, Latin America, the Middle East and Africa.

Report Highlights

Updated financial information / product portfolio of players

Key Market Opportunities

The emergence of iPSCs as an alternative to ESCs

Key Market Drivers

Increased funding for stem cell research

The adipose tissue derived MSCs segment dominated the stem cell therapy market in 2022.

The global stem cell therapy market is segmented into adipose tissue-derivedMSCs, bone marrow-derived MSCs, placenta/umbilical cord-derived MSCs, and other cell sources. Prominent factors such as easy availability of adipose-derived stem cell tissues and its diversified properties properties similar to other mesenchymal stem cells/tissues is likely to uplift the demand for adipose tissue derived MCs.

In 2022, the musculoskeletal disorders led the stem cell therapy market.

Based on therapeutic application, the global stem cell therapy market is segmented intomusculoskeletal disorders, wounds & surgeries, cardiovascular diseases, surgeries, inflammatory & autoimmune diseases, neurological disorders, and other therapeutic applications. The large share of this segment can be attributed increasing prevalence of musculoskeletal diseases. Increasing investment in stem cell therapy for neurological diseases is likely to skyrocket the segment in coming years.

The Asia Pacific region is likely to grow at faster pace during the forecast period.

The Asia Pacific is estimated to be the fastest-growing segment of the market. The growth of the stem cell therapy markets in the region is driven by a rising emphasis on strategic initiatives such as partnerships, collaborations & expansion and increased adoption of stem cell therapies among the patient population. The rising prevalence of cancer and increased investment in research & development of the launch of novel stem cell therapies in the region are some of the major factors anticipated to upsurge the market growth.

Request Sample Pages:https://www.marketsandmarkets.com/requestsampleNew.asp?id=48

Stem Cell Therapy MarketDynamics:

Drivers:

1. Increased funding for stem cell research

Restraints:

1. Ethical concerns related to embryonic stem cells

Opportunities:

1. The emergence of iPSCs as an alternative to ESCs

Challenge:

1. Technical limitations

Key Market Players ofStem Cell Therapy Industry:

The stem cell therapy market is competitive, with a small number of players competing for market shares. Smith+Nephew (UK),MEDIPOST Co., Ltd. (South Korea), Anterogen Co., Ltd. (South Korea), CORESTEM (South Korea), Pharmicell Co., Ltd. (South Korea), NuVasive, Inc. (US), RTI Surgical (US), AlloSource (US), JCR Pharmaceuticals Co., Ltd. (Japan), Takeda Pharmaceutical Company Limited (Japan), Holostem Terapie Avanzate Srl (Italy), Orthofix (US), Regrow Biosciences Pvt Ltd. (India), and STEMPEUTICS RESEARCH PVT LTD. (India) among others are some of the leading players in this market. Most companies in the market focus on organic and inorganic growth strategies, such as product launches, expansions, acquisitions, partnerships, agreements, and collaborations, to increase their product offerings, cater to the unmet needs of customers, increase their profitability, and expand their presence in the global market.

The primary interviews conducted for this report can be categorized as follows:

Get 10% Free Customization on this Report: https://www.marketsandmarkets.com/requestCustomizationNew.asp?id=48

Stem Cell Therapy Market Recent Developments:

Stem Cell Therapy Market - Key Benefits of Buying the Report:

The report will help market leaders/new entrants by providing them with the closest approximations of the revenue numbers for the overall stem cell therapy market and itssubsegments. It will also help stakeholders better understand the competitive landscape and gain more insights to better position their business and make suitable go-to-market strategies. This report will enable stakeholders to understand the market's pulse and provide them with information on the key market drivers, restraints, opportunities, and challenges.

The report provides insights on the following pointers:

Related Reports:

Stem Cell Assays Market- Global Forecasts to 2027

Biologics Safety Testing Market- Global Forecasts to 2027

Nerve Repair & Regeneration Market- Global Forecasts to 2027

Bone Growth Stimulator Market- Global Forecasts to 2027

Mycoplasma Testing Market- Global Forecasts to 2025

About MarketsandMarkets:

MarketsandMarkets has been recognized as one of America's best management consulting firms by Forbes, as per their recent report.

MarketsandMarkets is a blue ocean alternative in growth consulting and program management, leveraging a man-machine offering to drive supernormal growth for progressive organizations in the B2B space. We have the widest lens on emerging technologies, making us proficient in co-creating supernormal growth for clients.

Earlier this year, we made a formal transformation into one of America's best management consulting firms as per a survey conducted by Forbes.

The B2B economy is witnessing the emergence of $25 trillion of new revenue streams that are substituting existing revenue streams in this decade alone. We work with clients on growth programs, helping themmonetize this $25 trillion opportunity through our service lines - TAM Expansion, Go-to-Market (GTM) Strategy to Execution, Market Share Gain, Account Enablement, and Thought Leadership Marketing.

Built on the 'GIVE Growth' principle, we work with several Forbes Global 2000 B2B companies - helping them stay relevant in a disruptive ecosystem. Our insights and strategies are molded by our industry experts, cutting-edge AI-powered Market Intelligence Cloud, and years of research. TheKnowledgeStore (our Market Intelligence Cloud) integrates our research, facilitates an analysis of interconnections through a set of applications, helping clients look at the entire ecosystem and understand the revenue shifts happening in their industry.

To find out more, visitwww.MarketsandMarkets.com or follow us on Twitter, LinkedIn and Facebook.

Contact:Mr. Aashish Mehra MarketsandMarkets INC. 2860 Dundee Road Suite 430 Northbrook, IL 60062 USA: +1-888-600-6441 Email: [emailprotected] Research Insight: https://www.marketsandmarkets.com/ResearchInsight/stem-cell-technologies-and-global-market.asp Visit Our Website: https://www.marketsandmarkets.com/ Content Source: https://www.marketsandmarkets.com/PressReleases/stem-cells-market.asp

Logo: https://mma.prnewswire.com/media/2297424/MarketsandMarkets_Logo.jpg

SOURCE MarketsandMarkets

See original here:
Stem Cell Therapy Market Worth $615 Million | MarketsandMarkets - PR Newswire

Mayo Clinic researchers say stem cell therapy improves quality of life for patients with advanced heart failure – WXOW.com

ROCHESTER, Minn. A multinational clinical trial involving Mayo Clinic researchers has found stem cell-based therapy improved quality of life for patients with advanced heart failure.

In the study, patients reported their daily hardship lessened when stem cells optimized for heart repair supplemented the standard of care, and the study further documented lower death and hospitalization rates among those treated with cell therapy.

"In this era of global aging, people live longer, yet are at risk of chronic disease imposing a poor quality of life. Heart failure is an emerging epidemic in need of new healing options," says Andre Terzic, M.D., Ph.D., a Mayo Clinic cardiovascular researcher and lead author of the paper. "The stem cell-based approach in the present study demonstrates sustained benefit on physical and emotional health in response to biotherapy."

Dr. Terzic is the Marriott Family Director, Comprehensive Cardiac Regenerative Medicine for the Center for Regenerative Biotherapeutics.

Approximately 800,000 people in the U.S. suffer heart attacks every year.

The study team recruited 315 patients from 39 hospitals in 10 countries who had advanced heart failure despite receiving standard of care. Mayo Clinic says patients were randomly divided into groups that would receive stem cell therapy versus those who would not. Patients assigned to cell treatment underwent cardiac catheterization. Then, stem cells taken from their own bone marrow and programmed to heal damaged heart tissue were delivered to the heart. Patients assigned not to receive stem cells had cardiac catheterization without cell delivery known as the sham treatment.

"Data from one of the largest cardiovascular cell therapy trials, testing a regenerative technology discovered at Mayo Clinic, indicate benefit in both quantity and quality of life in advanced heart disease," saysSatsuki Yamada, M.D., Ph.D., a Mayo Clinic cardiovascular researcher, and first author on the study. "The benefit of regenerative care has been typically evaluated on the basis of clinician-reported outcomes. What's unique in this study is that it was designed to listen to the patient's experience."

This research is published in Stem Cells Translational Medicine.

See the article here:
Mayo Clinic researchers say stem cell therapy improves quality of life for patients with advanced heart failure - WXOW.com

Lab-made stem cell model will offer new way to study Parkinson’s – Parkinson’s News Today

Researchers have developed a wayto generate a family of nerve cells implicated in Parkinsons disease in the lab using human stem cells, according to newly published research.

These cells, found in a brain region called the locus coeruleus (LC), produce a signaling chemical called norepinephrine, or NE. While these cells are known to degenerate early in Parkinsons and other neurological diseases, it is not known exactly why.

The scientists discovered a protein important for the cells growth, which enabled them to be generated in the lab. The team now plans to use the stem cell model to more closely study neurodegenerative disease mechanisms and to test possible therapeutic candidates.

Importantly, according to Yunlong Tao, PhD, the studys first author, we have some new understanding about locus coeruleusdevelopment.

Thats the major finding in this paper, and based on that finding, we are able to generate locus coeruleus norepinephrine neurons, Tao said in a press release from the University of Wisconsin (UW)-Madison, where the study was conducted. Tao, an investigator at Nanjing University, in China, was working as a UW-Madison researcher at the time of the study.

Titled Generation of locus coeruleus norepinephrine neurons from human pluripotent stem cells, the study was published in Nature Biotechnology.

A tiny cluster of nerve cells (neurons) deep in the brain, the locus coeruleus plays a critical role in brain function. The cells there are the main producers of norepinephrine, a signaling chemical best known for its role in mediating so-called fight or flight reactions that occur during stressful situations.

Nerve cells originating in the locus coeruleus extend throughout the brain and spinal cord via an extensive branching system, where they release norepinephrine to regulate heartbeat, blood pressure, arousal, memory, and attention.

The norepinephrine neurons in the locus coeruleus are essential for our life, said Su-Chun Zhang, MD, PhD, a neuroscience and neurology professor at UW-Madison and the studys senior author.

We call it the life center, Zhang said, adding that without these nerve cells, we would probably be extinct from Earth.

Dysfunction of this brain region, therefore, can have severe consequences for brain health. Indeed, locus coeruleus-norepinephrine (LC-NE) cells have been implicated in a range of neurodegenerative diseases, including Parkinsons and Alzheimers disease.

In Parkinsons, the locus coeruleus is one of the first brain regions to start degenerating. This has been associated with a range of the diseases nonmotor symptoms.

People have noticed this for a long time, but they dont know what the function of the locus coeruleus is in this process, Tao said, adding thats also partly because we dont have a good model to mimic the human LC-NE neurons.

Stem cells, which have the capacity to become virtually any other cell type under the right conditions, give rise to basically all mature cells in the body. Scientists can leverage this to generate nerve cells of human origin in the lab. When treated with specific chemicals, stem cells can be prompted to turn into almost any cell type the researchers want to study.

However, this has proven difficult in the past with LC-NE neurons, and several attempts had failed.

In their new study, the team identified that a growth factor protein called ACTIVIN-A is necessary for regulating the development of these cells. Without it, the gene activity needed for precursor cells to become LC-NE neurons cant occur.

By adding in ACTIVIN-A during the process, the scientists could thus develop LC-NE neurons from stem cells. The cells they produced had the expected structural and functional characteristics of LC-NE neurons, including the release of NE and other functions related to their role in breathing and heart rate.

Ultimately, the researchers believe the LC-NE cells can be used to further study how and why these cells seem to die off so early in diseases like Parkinsons.

If this is somewhat causative, then we could potentially do something to prevent or delay the neurodegeneration process, Zhang said.

The availability of functional human LC-NE neurons enables investigation of their roles in psychiatric and neurodegenerative diseases and provides a tool for therapeutics development.

Stem cell-derived neurons will have the genetic and cellular characteristics of the person from whom the stem cells were taken. As such, scientists could generate LC-NE neurons from Parkinsons patients to learn more about how the cells behave and how they respond to therapeutic candidates.

The availability of functional human LC-NE neurons enables investigation of their roles in psychiatric and neurodegenerative diseases and provides a tool for therapeutics development, the researchers wrote.

The team also developed a line of the cells with a fluorescent sensor for detecting norepinephrine levels, which the scientists believe, may be useful to find novel drugs that regulate NE [norepinephrine] release and/or uptake.

As a next step, the scientists plan to look more closely at how ACTIVIN-A regulates LC-NE cell development. In addition, the team will use the stem cell model for experiments aimed at modeling human disease and testing therapeutics.

The application of these cells is quite broad in its significance, Zhang noted.

Link:
Lab-made stem cell model will offer new way to study Parkinson's - Parkinson's News Today

Improvements in Stem Cell Transplants for AML With CRISPR – Targeted Oncology

Guenther Koehne, MD, PhD, deputy director and chief of blood and marrow Transplant, hematologic oncology and benign hematology, Baptist Health Medical Group, discusses a phase 1/2 study (NCT04849910) where he served as the principal investigator. The abstract is being presented at this year's American Society of Hematology 2023 Annual Meeting.

The study is a first-in-human phase 1/2 open-label multicenter trial to establish the safety of trem-cel, a CRISPR/Cas9 gene-edited allograft lacking CD33, as a donor allograft for CD33-positive patients with acute myeloid leukemia at high risk of relapse.

Transcription:

Some patients with high-risk acute myeloid leukemia relapse earlier. And that is also, I think, a big step forward that we now don't consider a acute myeloid leukemia all the same. They are risk-stratified from the beginning : FLT3-positive AMLs, TD53-mutated AML, and some others we know are very high risk of relapse, so they will relapse despite of allogeneic transplants. So what's happening there is now we can certainly come in with post-transplantation maintenance treatments, as we do in multiple myeloma. But that's a little complicated, more complicated, because the markers that are expressed on the leukemia cell that can be targeted are also expressed on the normal healthy hematopoietic stem cell, and therefore, you would eliminate the healthy stem cells at the same time as you're trying to knock off the leukemia cell population. But now, I'm proud to say I'm a principal investigator of a clinical trial that uses CRISPR technology. That is gene editing of downregulating the expression of CD33 on the normal hematopoietic stem cells prior to the transplant. And with that, now we have a CD33 that is highly overexpressed on leukemia cell populations. So if we now have a CD33-negative stem cell product from the donor, and infuse this into the patient, then the patients have a normal reconstitution normal blood production, normal recovery of this white cells, platelets, but the cells are all CD33-negative. And now we can go in with treatments that target CD33.

Read the original:
Improvements in Stem Cell Transplants for AML With CRISPR - Targeted Oncology

The Risks of Stem Cell and Exosome Treatments for Long COVID: A Call for Stricter Regulations – Medriva

In a recent study led by Leigh Turner, PhD, it was revealed that stem cell and exosome treatments are being marketed to patients suffering from long COVID by 36 businesses. These treatments, boasting claims of symptomatic relief, immune boosting, acute COVID infection treatment, and prevention of COVID, have an average cost of $11,322. However, despite their prevalence, these treatments lack extensive scientific evidence and pose potential risks, including serious injury and financial scams. This raises the need for stricter regulation by the Food and Drug Administration (FDA) and the Federal Trade Commission (FTC).

According to the study, the majority of these businesses offering stem cell and exosome treatments for long COVID are based in the U.S. and Mexico. The cost of these therapies ranges from $2,950 to $25,000. Despite the FDA and FTC issuing warning letters to such companies, the marketplace remains vast and largely unregulated. It is noteworthy that long COVID patients, in their desperation for relief, can easily fall prey to entities making appealing therapeutic claims without solid scientific evidence.

While the use of stem cell and exosome treatments for long COVID remains controversial, research has highlighted the potential of Mesenchymal stem cell-derived exosomes (MSC-Exos) in the treatment of lung diseases. They are considered a more stable and safer option than traditional cell therapies. MSC-Exos deliver non-coding RNAs (ncRNAs) to communicate with target cells, inhibiting inflammatory factors, reducing oxidative stress, promoting normal lung cell proliferation, and reducing apoptosis. Some researchers are exploring the detailed mechanisms of MSC-Exos in the clinical treatment of lung disease by developing standardized culture, isolation, purification, and administration strategies.

Its important to note that the link between stem cell treatments and COVID-19 isnt entirely new. A study conducted during the recent COVID-19 outbreak in China revealed that pediatric patients who had received hematopoietic stem cell transplants were more susceptible to COVID-19 infection. This vulnerability was particularly high in recipients over 100 days post-transplant. This study, while not directly connected to the stem cell and exosome treatments for long COVID, does provide some insight into the interaction between stem cell treatments and COVID-19.

While there are ongoing clinical trials and research exploring the use of stem cell and exosome treatments for long COVID, the current lack of substantial scientific evidence calls for caution. Potential benefits for managing long-term symptoms of COVID-19 are promising, but more rigorous scientific studies are needed to confirm these benefits and to understand the risks involved.

Given the potentially serious risks and the high cost of these treatments, there is an urgent need for stricter regulations to prevent financial scams and to ensure patient safety. It is crucial that the FDA and FTC take more robust actions to regulate this marketplace. Until then, patients and healthcare professionals should approach such treatments with caution, critically evaluating claims and seeking treatments that are backed by solid scientific evidence.

View original post here:
The Risks of Stem Cell and Exosome Treatments for Long COVID: A Call for Stricter Regulations - Medriva

FDA approves CRISPRCas9 therapy for sickle cell disease – ASBMB Today

Officials at the U.S. Food and Drug Administration todayannouncedapproval ofthe first CRISPRCas9 therapeutic to treat sickle cell disease. The cell therapy is the only cure to date for patients who are not eligible for stem cell transplants. The FDA approved the therapy for patients age 12 to 35.

Casgevy uses CRISPRCas9 technology to edit a patients own hematopoietic stem cells to produce high levels of fetal hemoglobin, which is not normally expressed at adulthood and drowns out the damaging effects of sickle hemoglobin.

The therapeutic, exagamglogene autotemcel, sold as Casgevy, from CRISPR Therapeutics and Vertex Pharmaceuticals, uses CRISPRCas9 technology to edit a patients own hematopoietic stem cells to produce high levels of fetal hemoglobin, which is not normally expressed in adulthood and drowns out the damaging effects of their sickle hemoglobin. The therapy was approved in the United Kingdom in November.

Sickle cell disease is a debilitating, genetic disorder that causes abnormal red blood cell development. It affects approximately 7.74 million individuals worldwide. Red blood cells are normally disk-shaped and move easily throughout the blood, carrying oxygen to vital organs. In a patient with sickle cell disease, red blood cells are warped, or sickle-shaped, which can lead to impaired blood flow and cause stroke, infection, eye issues, severe pain crises and premature death.

The therapeutic specifically targets BCL11A, a repressor of the fetal hemoglobin gene, using a guide RNA. The precise target site is a residue within the BCL11A enhancer region, which, once modified by the Cas9 nuclease, takes the brakes off the fetal hemoglobin gene, leaving transcription and later translation free to occur.

Victoria Gray, a mother of four from Mississippi, was the first sickle cell patient to receive Casgevy in a 2019 clinical trial. Prior to the treatment, Gray said she had to rush to the emergency room at least once a month and often stay in the hospital for weeks at a time due to her painful crises. Since receiving Casgevy, she has had no emergency room visits, hospital stays or crises, she said.

I feel cured, Gray said. My life has changed dramatically with just a leap of faith.

Emmanuelle Charpentier is a biochemist, microbiologist and geneticist, recognized as an expert in regulatory mechanisms underlying processes of infection and immunity in bacterial pathogens.

Emmanuelle Charpentier is a cofounder of CRISPR Therapeutics and the director of and a scientific member at the Max Planck Unit for the Science of Pathogens. Charpentier shared the 2020 Nobel Prize in chemistry for the development of CRISPRCas9 with Jennifer Doudna, an RNA biochemist at the University of California, Berkeley.

Peter Marks, director of the FDAs Center for Biologics Evaluation and Research, commented on today's action.These approvals represent an important medical advance with the use of innovative cell-based gene therapies to target potentially devastating diseases and improve public health, Marks said. Todays actions follow rigorous evaluations of the scientific and clinical data needed to support approval, reflecting the FDAs commitment to facilitating development of safe and effective treatments for conditions with severe impacts on human health.

The FDA approved Casgevy based on three studies showing that the drug is a safe and effective treatment for sickle cell disease. In the most recent safety and efficacy clinical trial, patients like Gray who received the therapeutic sustained long-term high levels of total hemoglobin, similar to what is seen in healthy adults, and most were blood transfusionindependent and free of painful crises for at least one year after treatment.

Benjamin Oakes, CEO and cofounder of Scribe Therapeutics, said The approval is just the tip of the iceberg. It's a really beautiful proof of concept for what CRISPR genome editing can do. The real vision and mission for the whole CRISPR field should be to create safer, more effective therapies that can be brought more broadly to patients.

Benjamin Oakes is cofounder and CEOof Scribe Therapeutics.

Oakes said he and his colleagues are developing the next generation of CRISPR gene therapies using an engineered CasX protein that cuts DNA more precisely than Cas9.

According to the Institute for Clinical and Economic Review, Casgevy could be priced at up to $1.93 million to be cost-effective, a measure that estimates how much it costs to gain a unit of a health outcome, such as a life year gained or a death prevented. With this price tag, ICER estimated that 15% of eligible patients could be treated over a five-year period.

In 2022, patients with sickle cell disease incurred out-of-pocket medical costs totaling up to $44,000, with insurers covering approximately $1.7 million per patient. Economists predict that gene therapies like Casgevy could cost a single state Medicare program more than$30 million per year.

The FDA will evaluate a second gene therapy for sickle cell disease, bluebird bios lovo-cel, later this month. Unlike Casgevy, lovo-cel uses a lentiviral vector to introduce a modified beta globin gene into patient stem cells. This modified gene produces an antisickling hemoglobin protein, which is designed to inhibit the polymerization of mutant sickle hemoglobin, making it less likely to form blockages in the circulation.

See more here:
FDA approves CRISPRCas9 therapy for sickle cell disease - ASBMB Today

FDA Approves A CRISPR-Based Therapy for Sickle Cell Disease – geneonline

FDA Approves A CRISPR-Based Therapy for Sickle Cell Disease

After CASGEVY (exagamglogene autotemcel) passed the U.S. Food and Drug Administrations (FDA) Biologics License Application (BLA) in June this year (2023), Vertex Pharmaceuticals and CRISPR Therapeutics announced its FDA approval on December 8. CASGEVY is the first FDA-approved treatment utilizing the novel genome-editing technology CRISPR, marking an innovative advance in gene therapy and offering a glimmer of hope for patients with severe sickle cell disease (SCD). Approximately 16,000 patients aged 12 years and older with recurrent Vaso-Occlusive Crisis (VOC) are now eligible to receive this innovative one-time treatment.

Related article: Vertex and CRISPR Collaborate Again with $330 Million Diabetes Gene Editing Deal

The administration of CASGEVY requires specialized knowledge in stem cell transplantation. Vertex is actively collaborating with proficient hospitals to establish Authorized Treatment Centers (ATCs) throughout the United States. Notable institutions involved in this initiative include Boston Medical Center, Childrens National Hospital, and City of Hope Childrens Cancer Center, among others. These ATCs are set to play a pivotal role in facilitating the delivery of CASGEVY to eligible patients. The companies have outlined plans to introduce additional ATCs in the forthcoming weeks, expanding accessibility for patients in need.

CASGEVY, a genome-editing cell therapy, leverages CRISPR/Cas9 technology to edit autologous CD34+ hematopoietic stem cells. This targeted approach aims to diminish BCL11A expression, leading to an increased production of fetal hemoglobin (HbF). Through the reduction or elimination of vaso-occlusive crises, CASGEVY holds the promise of significantly enhancing the quality of life for individuals affected by sickle cell disease (SCD). The therapy has obtained conditional marketing authorization in the United Kingdom and Bahrain. Regulatory agencies in Europe and Saudi Arabia are actively reviewing CASGEVY, with ongoing assessments for its investigational use in treating transfusion-dependent thalassemia (TDT).

The approval marks a significant milestone, not just in the landscape of sickle cell disease (SCD) treatments but also in advancing the frontier of CRISPR-based therapies. The success of CASGEVY represents a noteworthy leap forward in the realm of genetic medicine, offering hope and potential therapeutic avenues for those who require them.

GeneOnlines Weekly News Highlights: Nov 13-Nov 17

2023-11-20

Vertex and Lonza Collaborate to Revolutionize Type 1 Diabetes Treatment

2023-06-29

Vertex and CRISPR Collaborate Again with $330 Million Diabetes Gene Editing Deal

2023-03-28

Follow this link:
FDA Approves A CRISPR-Based Therapy for Sickle Cell Disease - geneonline