Category Archives: Stem Cell Treatment


Optimized Tandem CAR T-Cell Therapy Targeted CD19/CD20 Appears Feasible in B-NHL – Targeted Oncology

Optimized tandem CD19/CD20 chimeric antigen receptor (CAR) T-cell therapy induced potent and durable anti-tumor responses as treatment of patients with relapsed/refractory B cell non-Hodgkin lymphoma (B-NHL) with good control of cytokine release syndrome (CRS) and CAR T-related encephalopathy syndrome, according to a phase 1/2 clinical trial presented in a poster at the 2020 American Society of Clinical Oncology (ASCO) Virtual Scientific Program.

After a median of 13.5 months of follow-up (IQR, 33.2-3.3), 84% of patients had an objective response, and 74% had a complete response (CR). The duration of overall response rate (ORR) at 6 months was 94% and 74% at 12 months.

Both the median progression-free and overall survivals had not been reached for patients at the time of data cut-off. At 6 months, the progression-free survival rate was 76%, and at 12 months, it was 59%.

Sixty-two patients experienced CRS (71%), which was grade 1 or 2 in 61% of patients and grade 3 or greater in 10%. The median time to the onset of CRS after infusion was 1 day (range, 1-5). The median duration of CRS was 6 days (range, 1-9). Investigators also noted that the median time to the onset of grade 3 CRS was 1 day (range, 1-2).

The most common adverse events within 1 month of the IV infusion were leukopenia, pyrexia, and anorexia. Only 2 patients (2%) experienced CAR T-cell-related encephalopathy syndrome of grade 3 severity.

Three treatment-related deaths occurred in the study, 2 due to pulmonary infection and 1 due to deposition of CAR T cells in pulmonary alveoli.

Ninety-nine patients were screened for the study, of which 87 received the infusion and 74 were followed for at least 3 months before the data cutoff date. Patients underwent leukapheresis and conditioning chemotherapy, which was followed by a single intravenous infusion of tandem CD19/20 CAR T cells on day 0 at a dose of 0.5x106x106 per kg of body weight.

The majority of patients in the study were under the age of 60 years (82%) and female (53%). Overall, 62% of patients had an ECOG performance status of 0 or 1 versus 38% who had a 2. Upon study entry, 85% had stage III or IV disease and 15% had stage I or II. Patients were diagnosed with either diffuse large B-cell lymphoma (66%), follicular lymphoma (15%), transformed follicular lymphoma (7%), primary mediastinal B-cell lymphoma (6%) or other (6%).

Fifty-six percent of patients had 3 to 5 prior lines of anti-neoplastic therapy, while 27% had 2 or less and 17% had 6 or more. The majority of patients had a lesion diameter less than 10 cm (78%) and had tumor burden SPD of 100 cm2 or more (55%). Eighty percent of the patients were refractory, 20% had relapsed to second-line or later therapy, 14% became refractory after stem cell transplant, and 10% had relapsed after a prior CD19 CAR-T cell therapy.

To be eligible for the study, patients had to be between the ages of 16 and 70 years, and they could not have received prior anti-CD20 monoclonal antibody and anthracycline treatment. Patients had to have an ECOG performance status of 0 to 2 with a life expectancy greater than 3 months and adequate organ function to enroll in the study. Patients also had to have measurable disease according to the IWG Response Criteria for Malignant Lymphoma.

Patients who had a CR with no evidence of disease were ineligible to enroll. If they had definite involvement of the gastrointestinal tract, negative tumor puncture detection in both CD19 and CD20, or had serious uncontrolled medical disorders or active infections, they also could not enroll. Patients were also excluded from the study if they were deemed unsuitable for the trial based on clinical judgement or were pregnant or lactating.

CD19-targeted CAR T cells have been highly effective in the treatment landscape of hematologic malignancies, but the recurrence rate appears high, which is a major obstacle to durable remissions with this therapy. This study aimed to evaluate the safety and tolerability of intravenous tandem CD19/20 CAR T cells among patients with relapsed/refractory NHL.

Secondary objectives of this study also included assessment of efficacy of the study treatment defined by ORR and evaluation of the duration of overall response, progression-free and overall survival. An exploratory objective of the study was to determine in vivo expansion and persistence of the Tandem CD19/CD20 CAR T cells.

The rationale for this study was to address the high recurrence rate observed with CAR T-cell therapy, which often prevents durable remission after treatment. Overall the optimized tandem CAR T treatment appeared feasible in patients with B-NHL. Although many of the patients in the study had heavy tumor burden, were in poor physical condition, or had highly aggressive characteristics, they were still able to achieve a satisfactory ORR and CR rate with the tandem CD19/CD20 CAR-engineered T-cell therapy.

Reference

Ja-Jing Z, Yao W, Zhi-Qiang Wu, et al. Safety and Efficacy of Optimized Tandem CD19/CD20 CAR-Engineered T Cells in Patients with Relapsed/Refractory Non-Hodgkin Lymphoma. J Clin Oncol. 38: 2020 (suppl; abstr 3034). doi: 10.1200/JCO.2020.38.15_suppl.3034

Go here to read the rest:
Optimized Tandem CAR T-Cell Therapy Targeted CD19/CD20 Appears Feasible in B-NHL - Targeted Oncology

ReNeuron encouraged by progress in stroke and RP treatments – Proactive Investors UK

What the company does

Human retinal progenitor cells (hRPC)

Human retinal progenitor cells differentiate into components of the retina.

Reneuron has developed the ability to scale up the manufacturing of hRPCs using a patented low-oxygen cell expansion technology.

The hRPC cell therapy candidate is being evaluated in an ongoing phase I/IIa clinical trial in the US in subjects with a blindness-causing inherited retinal disease, retinitis pigmentosa (RP).

CTX Cells

CTX cell therapy candidate is a treatment for patients left disabled by the effects of a stroke.

Reneurons product is a standardised, clinical and commercial-grade cell therapy product capable of treating all eligible patients presenting with the diseases targeted, without the need for additional immunosuppressive drug treatments.

Data from the Phase II PISCES trial indicated CTX therapy was safe and well-tolerated and produced clinically meaningful and sustained improvement in the level of disability and dependence as well as motor function.

Exosome platform

Exosomes are nanoparticles, released by cells, and contain a number of active proteins and micro RNAs, which are short non-coding RNAs capable of regulating gene expression, that arebelieved to play a key role in cell-to-cell communication.

ExoPr0, Reneurons first CTX-derived exosome therapeutic candidate, has demonstrated potential as both a novel therapeutic candidate as well as a drug delivery vehicle

hRPC

's ()human retinal progenitor cells (hRPC) have scored some early success.

A Phase I/II assessment of a very small group of sufferers of a blindness-causing disease called retinitis pigmentosa saw a significant improvement in vision after treatment.

Six months after treatment there was a mean improvement of 18.5per treated eye, with a mean improvement of 12 letters per treated eye after nine months, whereasinexorable disease progression is the norm for this disease.

With a total of 22 patients now treated and the study still ongoing, ReNeuron said the efficacy in subsequent patients was seen but at a lower rate and magnitude, with improvement in visual acuity ranging from +5 to +11 letters in the treated eye threemonths after treatment.

In February, clinicaldata from the PISCES II clinical trial were published in peer-reviewedJournal of Neurology, Neurosurgery, and Psychiatry.

CTX

A peer journal review published in May indicated a CTX human neural stem cell line can rescue deficits associated with an accepted animal model of Huntington's disease, a progressive genetic brain disorder.

ReNeuron has previously presented data demonstrating that its CTX stem cell line, currently undergoing clinical evaluation for the treatment of stroke disability, can cause functional and behavioural recovery in animal models of ischemic (restriction of blood supply) injury.

The new data showed that implantation of CTX cells into a model of Huntington's disease can reduce inflammation, glial scar formation and induce host neurogenesis (the generation of new brain cells) leading to a recovery in behavioural deficits.

Coronavirus

In April, Reneuron said it haddeveloped a line of the human exosomes that can deliver a medically relevant payload: Viral vaccines thatmight help in the fight against coronavirus.

The stem cell specialist added that the disruption from lockdowns would inevitably lead to delays in the recruitment of patients for trials of its treatments for stroke disability and retinitis pigmentosa (RP).

It said it will update on how this will affect the release of top-line data from the two studies once it knows the full impact of the restrictions.

More:
ReNeuron encouraged by progress in stroke and RP treatments - Proactive Investors UK

Global Stem Cell Therapy Market 2020 Research Report Insights and Analysis, Forecast to 2026 – 3rd Watch News

The Stem Cell Therapy market has witnessed growth from USD XX million to USD XX million from 2014 to 2019. With the CAGR of X.X%, this market is estimated to reach USD XX million in 2026.

The report mainly studies the size, recent trends and development status of the Stem Cell Therapy market, as well as investment opportunities, government policy, market dynamics (drivers, restraints, opportunities), supply chain and competitive landscape. Technological innovation and advancement will further optimize the performance of the product, making it more widely used in downstream applications. Moreover, Porters Five Forces Analysis (potential entrants, suppliers, substitutes, buyers, industry competitors) provides crucial information for knowing the Stem Cell Therapy market.

Download PDF Sample of Stem Cell Therapy Market report @ https://www.arcognizance.com/enquiry-sample/1030514

Major Players in the global Stem Cell Therapy market include:, Holostem Terapie Avanzate, Osiris Therapeutics, NuVasive, BIOTIME, Advanced Cell Technology, Caladrius, Pharmicell, JCR Pharmaceuticals, RTI Surgical, AlloSource, MEDIPOST, Anterogen, BrainStorm Cell Therapeutics

On the basis of types, the Stem Cell Therapy market is primarily split into:, Autologous, Allogeneic

On the basis of applications, the market covers:, Musculoskeletal disorders, Wounds and injuries, Cardiovascular diseases, Surgeries, Gastrointestinal diseases, Other applications

Brief about Stem Cell Therapy Market Report with [emailprotected] https://www.arcognizance.com/report/global-stem-cell-therapy-market-report-2019-competitive-landscape-trends-and-opportunities

Geographically, the report includes the research on production, consumption, revenue, market share and growth rate, and forecast (2014-2026) of the following regions:, United States, Europe (Germany, UK, France, Italy, Spain, Russia, Poland), China, Japan, India , Southeast Asia (Malaysia, Singapore, Philippines, Indonesia, Thailand, Vietnam), Central and South America (Brazil, Mexico, Colombia), Middle East and Africa (Saudi Arabia, United Arab Emirates, Turkey, Egypt, South Africa, Nigeria), Other Regions

Chapter 1 provides an overview of Stem Cell Therapy market, containing global revenue, global production, sales, and CAGR. The forecast and analysis of Stem Cell Therapy market by type, application, and region are also presented in this chapter.

Chapter 2 is about the market landscape and major players. It provides competitive situation and market concentration status along with the basic information of these players.

Chapter 3 provides a full-scale analysis of major players in Stem Cell Therapy industry. The basic information, as well as the profiles, applications and specifications of products market performance along with Business Overview are offered.

Chapter 4 gives a worldwide view of Stem Cell Therapy market. It includes production, market share revenue, price, and the growth rate by type.

Chapter 5 focuses on the application of Stem Cell Therapy, by analyzing the consumption and its growth rate of each application.

Chapter 6 is about production, consumption, export, and import of Stem Cell Therapy in each region.

Chapter 7 pays attention to the production, revenue, price and gross margin of Stem Cell Therapy in markets of different regions. The analysis on production, revenue, price and gross margin of the global market is covered in this part.

Chapter 8 concentrates on manufacturing analysis, including key raw material analysis, cost structure analysis and process analysis, making up a comprehensive analysis of manufacturing cost.

Chapter 9 introduces the industrial chain of Stem Cell Therapy. Industrial chain analysis, raw material sources and downstream buyers are analyzed in this chapter.

Chapter 10 provides clear insights into market dynamics.

Chapter 11 prospects the whole Stem Cell Therapy market, including the global production and revenue forecast, regional forecast. It also foresees the Stem Cell Therapy market by type and application.

Chapter 12 concludes the research findings and refines all the highlights of the study.

Chapter 13 introduces the research methodology and sources of research data for your understanding.

Years considered for this report:, Historical Years: 2014-2018, Base Year: 2019, Estimated Year: 2019, Forecast Period: 2019-2026,

Some Point of Table of Content:

Chapter One: Stem Cell Therapy Market Overview

Chapter Two: Global Stem Cell Therapy Market Landscape by Player

Chapter Three: Players Profiles

Chapter Four: Global Stem Cell Therapy Production, Revenue (Value), Price Trend by Type

Chapter Five: Global Stem Cell Therapy Market Analysis by Application

Chapter Six: Global Stem Cell Therapy Production, Consumption, Export, Import by Region (2014-2019)

Chapter Seven: Global Stem Cell Therapy Production, Revenue (Value) by Region (2014-2019)

Chapter Eight: Stem Cell Therapy Manufacturing Analysis

Chapter Nine: Industrial Chain, Sourcing Strategy and Downstream Buyers

Chapter Ten: Market Dynamics

Chapter Eleven: Global Stem Cell Therapy Market Forecast (2019-2026)

Chapter Twelve: Research Findings and Conclusion

Chapter Thirteen: Appendix continued

List of tablesList of Tables and FiguresFigure Stem Cell Therapy Product PictureTable Global Stem Cell Therapy Production and CAGR (%) Comparison by TypeTable Profile of AutologousTable Profile of AllogeneicTable Stem Cell Therapy Consumption (Sales) Comparison by Application (2014-2026)Table Profile of Musculoskeletal disordersTable Profile of Wounds and injuriesTable Profile of Cardiovascular diseasesTable Profile of SurgeriesTable Profile of Gastrointestinal diseasesTable Profile of Other applicationsFigure Global Stem Cell Therapy Market Size (Value) and CAGR (%) (2014-2026)Figure United States Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Europe Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Germany Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure UK Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure France Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Italy Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Spain Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Russia Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Poland Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure China Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Japan Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure India Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Southeast Asia Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Malaysia Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Singapore Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Philippines Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Indonesia Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Thailand Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Vietnam Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Central and South America Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Brazil Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Mexico Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Colombia Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Middle East and Africa Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Saudi Arabia Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure United Arab Emirates Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Turkey Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Egypt Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure South Africa Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Nigeria Stem Cell Therapy Revenue and Growth Rate (2014-2026)Figure Global Stem Cell Therapy Production Status and Outlook (2014-2026)Table Global Stem Cell Therapy Production by Player (2014-2019)Table Global Stem Cell Therapy Production Share by Player (2014-2019)Figure Global Stem Cell Therapy Production Share by Player in 2018Table Stem Cell Therapy Revenue by Player (2014-2019)Table Stem Cell Therapy Revenue Market Share by Player (2014-2019)Table Stem Cell Therapy Price by Player (2014-2019)Table Stem Cell Therapy Manufacturing Base Distribution and Sales Area by PlayerTable Stem Cell Therapy Product Type by PlayerTable Mergers & Acquisitions, Expansion PlansTable Holostem Terapie Avanzate ProfileTable Holostem Terapie Avanzate Stem Cell Therapy Production, Revenue, Price and Gross Margin (2014-2019)Table Osiris Therapeutics ProfileTable Osiris Therapeutics Stem Cell Therapy Production, Revenue, Price and Gross Margin (2014-2019)Table NuVasive ProfileTable NuVasive Stem Cell Therapy Production, Revenue, Price and Gross Margin (2014-2019)Table BIOTIME ProfileTable BIOTIME Stem Cell Therapy Production, Revenue, Price and Gross Margin (2014-2019)Table Advanced Cell Technology ProfileTable Advanced Cell Technology Stem Cell Therapy Production, Revenue, Price and Gross Margin (2014-2019)Table Caladrius ProfileTable Caladrius Stem Cell Therapy Production, Revenue, Price and Gross Margin (2014-2019)Table Pharmicell ProfileTable Pharmicell Stem Cell Therapy Production, Revenue, Price and Gross Margin (2014-2019)Table JCR Pharmaceuticals ProfileTable JCR Pharmaceuticals Stem Cell Therapy Production, Revenue, Price and Gross Margin (2014-2019)Table RTI Surgical ProfileTable RTI Surgical Stem Cell Therapy Production, Revenue, Price and Gross Margin (2014-2019)Table AlloSource ProfileTable AlloSource Stem Cell Therapy Production, Revenue, Price and Gross Margin (2014-2019)Table MEDIPOST ProfileTable MEDIPOST Stem Cell Therapy Production, Revenue, Price and Gross Margin (2014-2019)Table Anterogen ProfileTable Anterogen Stem Cell Therapy Production, Revenue, Price and Gross Margin (2014-2019)Table BrainStorm Cell Therapeutics ProfileTable BrainStorm Cell Therapeutics Stem Cell Therapy Production, Revenue, Price and Gross Margin (2014-2019)Table Global Stem Cell Therapy Production by Type (2014-2019)Table Global Stem Cell Therapy Production Market Share by Type (2014-2019)Figure Global Stem Cell Therapy Production Market Share by Type in 2018Table Global Stem Cell Therapy Revenue by Type (2014-2019)Table Global Stem Cell Therapy Revenue Market Share by Type (2014-2019)Figure Global Stem Cell Therapy Revenue Market Share by Type in 2018Table Stem Cell Therapy Price by Type (2014-2019)Figure Global Stem Cell Therapy Production Growth Rate of Autologous (2014-2019)Figure Global Stem Cell Therapy Production Growth Rate of Allogeneic (2014-2019)Table Global Stem Cell Therapy Consumption by Application (2014-2019)Table Global Stem Cell Therapy Consumption Market Share by Application (2014-2019)Table Global Stem Cell Therapy Consumption of Musculoskeletal disorders (2014-2019)Table Global Stem Cell Therapy Consumption of Wounds and injuries (2014-2019)Table Global Stem Cell Therapy Consumption of Cardiovascular diseases (2014-2019)Table Global Stem Cell Therapy Consumption of Surgeries (2014-2019)Table Global Stem Cell Therapy Consumption of Gastrointestinal diseases (2014-2019)Table Global Stem Cell Therapy Consumption of Other applications (2014-2019)Table Global Stem Cell Therapy Consumption by Region (2014-2019)Table Global Stem Cell Therapy Consumption Market Share by Region (2014-2019)Table United States Stem Cell Therapy Production, Consumption, Export, Import (2014-2019)Table Europe Stem Cell Therapy Production, Consumption, Export, Import (2014-2019)Table China Stem Cell Therapy Production, Consumption, Export, Import (2014-2019)Table Japan Stem Cell Therapy Production, Consumption, Export, Import (2014-2019)Table India Stem Cell Therapy Production, Consumption, Export, Import (2014-2019)Table Southeast Asia Stem Cell Therapy Production, Consumption, Export, Import (2014-2019)Table Central and South America Stem Cell Therapy Production, Consumption, Export, Import (2014-2019)continued

If you have any special requirements, please let us know and we will offer you the report as you want.

About Us:Analytical Research Cognizance (ARC)is a trusted hub for research reports that critically renders accurate and statistical data for your business growth. Our extensive database of examined market reports places us amongst the best industry report firms. Our professionally equipped team further strengthens ARCs potential.ARC works with the mission of creating a platform where marketers can have access to informative, latest and well researched reports. To achieve this aim our experts tactically scrutinize every report that comes under their eye.

Contact Us:Ranjeet DengaleDirector SalesAnalytical Research Cognizance+1 (646) 403-4695, +91 90967 44448Email: [emailprotected]

NOTE: Our report does take into account the impact of coronavirus pandemic and dedicates qualitative as well as quantitative sections of information within the report that emphasizes the impact of COVID-19.

As this pandemic is ongoing and leading to dynamic shifts in stocks and businesses worldwide, we take into account the current condition and forecast the market data taking into consideration the micro and macroeconomic factors that will be affected by the pandemic.

Read this article:
Global Stem Cell Therapy Market 2020 Research Report Insights and Analysis, Forecast to 2026 - 3rd Watch News

NexImmune to Present at the Jefferies Virtual Healthcare Conference – GlobeNewswire

GAITHERSBURG, Md., June 01, 2020 (GLOBE NEWSWIRE) -- NexImmune, a clinical-stage biopharma company advancing a new generation of nanoparticle-based therapies for targeted immune system response, today announced thatJohn Trainer, Chief Financial Officer, will present a company overview at theJefferies Virtual Healthcare ConferenceonTuesday, June 2, 2020at3:30 p.m. Eastern time.

About NexImmunes Lead T Cell Therapy Programs

NexImmunes two lead T cell therapy programs, NEXI-001 and NEXI-002, are in Phase 1/2 clinical trials for the treatment of relapsed AML after allogeneic stem cell transplantation and multiple myeloma refractory to >3 prior lines of therapy, respectively. The Company expects initial data in the fourth quarter of 2020.The Companys pipeline also consists of four additional preclinical programs, including cell therapy and injectable product candidates for the treatment of oncology, autoimmune diseases, and infectious diseases.

About NexImmune

NexImmune is a Gaithersburg, MD-based clinical-stage biopharma company advancing a new generation of immunotherapies based on its proprietary artificial immune modulation (AIM) technology. The AIM platform is designed to generate a targeted T cell-mediated immune response and is initially being developed as a cell therapy for the treatment of hematologic cancers. AIM nano-particles (AIM-np) act as synthetic dendritic cells to deliver immune-specific signals to targeted T cells and can direct the activation or suppression of cell-mediated immunity. In cancer, AIM-expanded T cells have demonstrated best-in-class anti-tumor properties, including the ability to address key mechanisms of tumor escape and relapse through a unique combination of anti-tumor potency, multi-antigen target-specific killing, and long-term T cell persistence. The modular design of the AIM platform enables rapid expansion across multiple therapeutic areas (autoimmune diseases and infectious diseases), with both cell therapy and injectable products. For more information, visit http://www.neximmune.com.

Media Contact:Mike BeyerSam Brown Inc. Healthcare Communications312-961-2502mikebeyer@sambrown.com

View original post here:
NexImmune to Present at the Jefferies Virtual Healthcare Conference - GlobeNewswire

Stem cell therapy: a potential approach for treatment of influenza virus and coronavirus-induced acute lung injury – BMC Blogs Network

Acute lung injury (ALI) is a devastating disease process involving pulmonary edema and atelectasis caused by capillary membrane injury [1]. The main clinical manifestation is the acute onset of hypoxic respiratory failure, which can subsequently trigger a cascade of serious complications and even death [2]. Thus, ALI causes a considerable financial burden for health care systems throughout the world. ALI can result from various causes, including multiple traumas, large-volume blood transfusions, and bacterial and viral infections [2, 3]. A variety of viruses, including influenza virus, coronavirus (CoV), adenovirus, cytomegalovirus (CMV), and respiratory syncytial virus (RSV), are associated with ALI [4]. Importantly, most viruses, whose hosts are various animal species, can cause severe and rapidly spreading human infections. In the early 2000s, several outbreaks of influenza virus and CoV emerged, causing human respiratory and intestinal diseases worldwide, including the more recent SARS-CoV-2 infection [5,6,7]. To date, SARS-CoV-2 has affected more than 80,000 people, causing nearly 3300 deaths in China and more than 1,800,000 people, causing nearly 110,000 deaths all over the world (http://2019ncov.chinacdc.cn/2019-nCoV/).

Infectious respiratory diseases caused by different viruses are associated with similar respiratory symptoms ranging from the common cold to severe acute respiratory syndrome [8]. This makes the clinical distinction between different agents involved in infection very difficult [8, 9]. Currently, the clinical experience mainly includes antibacterial and antiviral drug treatment derived from handling several outbreaks of influenza virus and human CoVs. Numerous agents have been identified to inhibit the entry and/or replication of these viruses in cell culture or animal models [10]. Although these antiviral drugs can effectively prevent and eliminate the virus, the full recovery from pneumonia and ALI depends on the resistance of the patient. Recently, stem cell-based therapy has become a potential approved tool for the treatment of virus-induced lung injury [11,12,13]. Here, we will give a brief overview of influenza virus and CoVs and then present the cell-based therapeutic options for lung injury caused by different kinds of viruses.

Influenza virus and human CoV are the two most threatening viruses for infectious lung injury [14]. These pathogens can be transmitted through direct or indirect physical contact, droplets, or aerosols, with increasing evidence suggesting that airborne transmission, including via droplets or aerosols, enhances the efficiency of viral transmission among humans and causes uncontrolled infectious disease [15]. Throughout human history, outbreaks and occasional pandemics caused by influenza virus and CoV have led to approximately hundreds of millions of deaths worldwide [16].

Influenza virus is a well-known human pathogen that has a negative-sense RNA genome [17]. According to its distinct antigenic properties, the influenza virus can be divided into 4 subtypes, types A, B, C, and D. Influenza A virus (IAV) lineages in animal populations cause economically important respiratory disease. Little is known about the other human influenza virus types B, C, and D [18]. Further subtypes are characterized by the genetic and antigenic properties of the hemagglutinin (HA) and neuraminidase (NA) glycoproteins [19]. Sporadic and seasonal infections in swine with avian influenza viruses of various subtypes have been reported. The most recent human pandemic virusesH1N1 from swine and H5N1 from aviancause severe respiratory tract disease and lung injury in humans [20, 21].

CoVs, a large family of single-stranded RNA viruses, typically affect the respiratory tract of mammals, including humans. CoVs are further divided into four genera: alpha-, beta-, gamma-, and delta-CoVs. Alpha- and beta-CoVs can infect mammals, and gamma- and delta-CoVs tend to infect birds, but some of these viruses can also be transmitted to mammals [22]. Human CoVs were considered relatively harmless respiratory pathogens in the past. Infections with the human CoV strains 229E, OC43, NL63, and HKU1 usually result in mild respiratory illness, such as the common cold [23]. In contrast, the CoV responsible for the 2002 severe acute respiratory syndrome (SARS-CoV), the 2012 Middle East respiratory syndrome CoV (MERS-CoV), and, more recently, the SARS-CoV-2 have received global attention owing to their genetic variation and rapid spread in human populations [5,6,7].

Usually, the influenza virus can enter the columnar epithelial cells of the respiratory tract, such as the trachea, bronchi, and bronchioles. Subsequently, the influenza virus begins to replicate for an asymptomatic period of time and then migrate to the lung tissue to cause acute lung and respiratory injury [24]. Similar to those with influenza virus infection, patients with SARS, MERS, or SARS-CoV-2 present with various clinical features, ranging from asymptomatic or mild respiratory illness to severe ALI, even with multiple organ failure [5,6,7]. The pathogenesis of ALI caused by influenza virus and human CoV is often associated with rapid viral replication, marked inflammatory cell infiltration, and elevated proinflammatory cytokine/chemokine responses [25]. Interestingly, in IAV- and human CoV-infected individuals, the pulmonary pathology always involves diffuse alveolar damage, but viral RNA is present in only a subset of patients [26]. Some studies suggest that an overly exaggerated immune response, rather than uncontrolled viral spread, is the primary cause in fatal cases caused by virus infection [27]. Several immune cell types have been found to contribute to damaging host responses, providing novel approaches for therapeutic intervention [28].

IAV infection, the most common cause of viral pneumonia, causes substantial seasonal and pandemic morbidity and mortality [29]. Currently, antiviral drugs are the primary treatment strategy for influenza-induced pneumonia. However, antiviral drugs cannot repair damaged lung cells. Here, we summarize the present studies of stem cell therapy for influenza virus-induced lung injury.

Mesenchymal stem/stromal cells (MSCs) constitute a heterogeneous subset of stromal regenerative cells that can be harvested from several adult tissue types, including bone marrow, umbilical cord, adipose, and endometrium [30]. They retain the expression of the markers CD29, CD73, CD90, and CD105 and have a rapid proliferation rate, low immunogenicity, and low tumorigenicity [30]. MSCs also have self-renewal and multidifferentiation capabilities and exert immunomodulatory and tissue repair effects by secreting trophic factors, cytokines, and chemokines [31]. Due to these beneficial biological properties, MSCs and their derivatives are attractive as cellular therapies for various inflammatory diseases, including virus-induced lung injury.

Several studies on IAV-infected animal models have shown the beneficial effects of the administration of different tissue-derived MSCs [32,33,34,35]. H5N1 virus infection reduces alveolar fluid clearance (AFC) and enhances alveolar protein permeability (APP) in human alveolar epithelial cells, which can be inhibited by coculture with human bone marrow-derived MSCs (BMSCs) [32]. Mechanistically, this process can be mediated by human BMSC secreted angiopoietin-1 (Ang1) and keratinocyte growth factor (KGF) [32]. Moreover, in vivo experiments have shown that human BMSCs have a significant anti-inflammatory effect by increasing the number of M2 macrophages and releasing various cytokines and chemokines, such as interleukin (IL)-1, IL-4, IL-6, IL-8, and IL-17 [32]. Similar anti-inflammatory effects have been achieved in another virus-induced lung injury model. The intravenous injection of mouse BMSCs into H9N2 virus-infected mice significantly attenuates H9N2 virus-induced pulmonary inflammation by reducing chemokine (GM-CSF, MCP-1, KC, MIP-1, and MIG) and proinflammatory cytokine (IL-1, IL-6, TNF-, and IFN-) levels, as well as reducing inflammatory cell recruitment into the lungs [33]. Another study on human BMSCs cocultured with CD8+ T cells showed that MSCs inhibit the proliferation of virus-specific CD8+ T cells and the release of IFN- by specific CD8+ T cells [36].

In addition, human umbilical cord-derived MSCs (UC-MSCs) were found to have a similar effect as BMSCs on AFC, APP, and inflammation by secreting growth factors, including Ang1 and hepatocyte growth factor (HGF), in an in vitro lung injury model induced by H5N1 virus [34]. UC-MSCs also promote lung injury mouse survival, increase the body weight, and decreased the APP levels and inflammation in vivo [34]. Unlike Ang1, KGF, and HGF mentioned above, basic fibroblast growth factor 2 (FGF2) plays an important role in lung injury therapy via immunoregulation. The administration of the recombinant FGF2 protein improves H1N1-induced mouse lung injury and promotes the survival of infected mice by recruiting and activating neutrophils via the FGFR2-PI3K-AKT-NFB signaling pathway [37]. FGF2-overexpressing MSCs have an enhanced therapeutic effect on lipopolysaccharide-induced ALI, as assessed by the proinflammatory factor level, neutrophil quantity, and histopathological index of the lung [38].

MSCs secrete various soluble factors and extracellular vesicles (EVs), which carry lipids, proteins, DNA, mRNA, microRNAs, small RNAs, and organelles. These biologically active components can be transferred to recipient cells to exert anti-inflammatory, antiapoptotic, and tissue regeneration functions [39]. EVs isolated from conditioned medium of pig BMSCs have been demonstrated to have anti-apoptosis, anti-inflammation, and antiviral replication functions in H1N1-affected lung epithelial cells and alleviate H1N1-induced lung injury in pigs [35]. Moreover, the preincubation of EVs with RNase abrogates their anti-influenza activity, suggesting that the anti-influenza activity of EVs is due to the transfer of RNAs from EVs to epithelial cells [35]. Exosomes are a subset of EVs that are 50200nm in diameter and positive for CD63 and CD81 [40]. Exosomes isolated from the conditioned medium of UC-MSCs restore the impaired AFC and decreased APP in alveolar epithelial cells affected by H5N1 virus [34]. In addition, the ability of UC-MSCs to increase AFC is superior to that of exosomes, which indicates that other components secreted by UC-MSCs have synergistic effects with exosomes [34].

Despite accumulating evidence demonstrating the therapeutic effects of MSC administration in various preclinical models of lung injury, some studies have shown contrasting results. Darwish and colleagues proved that neither the prophylactic nor therapeutic administration of murine or human BMSCs could decrease pulmonary inflammation or prevent the progression of ALI in H1N1 virus-infected mice [41]. In addition, combining MSC administration with the antiviral agent oseltamivir was also found to be ineffective [41]. Similar negative results were obtained in another preclinical study. Murine or human BMSCs were administered intravenously to H1N1-induced ARDS mice [42]. Although murine BMSCs prevented influenza-induced thrombocytosis and caused a modest reduction in lung viral load, murine or human BMSCs failed to improve influenza-mediated lung injury as assessed by weight loss, the lung water content, and bronchoalveolar lavage inflammation and histology, which is consistent with Darwishs findings [42]. However, the mild reduction in viral load observed in response to murine BMSC treatment suggests that, on balance, MSCs are mildly immunostimulatory in this model [42]. Although there are some controversial incidents in preclinical research, the transplant of menstrual-blood-derived MSCs into patients with H7N9-induced ARDS was conducted at a single center through an open-label clinical trial (http://www.chictr.org.cn/). MSC transplantation significantly lowered the mortality and did not result in harmful effects in the bodies of the patients [43]. This clinic study suggests that MSCs significantly improve the survival rate of influenza virus-induced lung injury.

The effects of exogenous MSCs are exerted through their isolation and injection into test animals. There are also some stem/progenitor cells that can be activated to proliferate when various tissues are injured. Basal cells (BCs), distributed throughout the pseudostratified epithelium from the trachea to the bronchioles, are a class of multipotent tissue-specific stem cells from various organs, including the skin, esophagus, and olfactory and airway epithelia [44, 45]. Previously, TPR63+/KRT5+ BCs were shown to self-renew and divide into club cells and ciliated cells to maintain the pseudostratified epithelium of proximal airways [46]. Several studies have shown that TPR63+/KRT5+ BCs play a key role in lung repair and regeneration after influenza virus infection. When animals typically recover from H1N1 influenza infection, TPR63+/KRT5+ BCs accumulate robustly in the lung parenchyma and initiate an injury repair process to maintain normal lung function by differentiating into mature epithelium [47]. Lineage-negative epithelial stem/progenitor (LNEP) cells, present in the normal distal lung, can activate a TPR63+/KRT5+ remodeling program through Notch signaling after H1N1 influenza infection [48]. Moreover, a population of SOX2+/SCGB1A/KRT5 progenitor cells can generate nascent KRT5+ cells as an early response to airway injury upon H1N1 influenza virus infection [49]. In addition, a rare p63+Krt5 progenitor cell population also responds to H1N1 virus-induced severe injury [50]. This evidence suggests that these endogenous lung stem/progenitor cells (LSCs) play a critical role in the repopulation of damaged lung tissue following severe influenza virus infection (Table2).

Taken together, the present in vitro (Table1) and in vivo (Table2) results show that MSCs and LSCs are potential cell sources to treat influenza virus-induced lung injury.

Lung injury caused by SARS, MERS, or SARS-CoV-2 poses major clinical management challenges because there is no specific treatment that has been proven to be effective for each infection. Currently, virus- and host-based therapies are the main methods of treatment for spreading CoV infections. Virus- and host-based therapies include monoclonal antibodies and antiviral drugs that target the key proteins and pathways that mediate viral entry and replication [51].The major challenges in the clinical development of novel drugs include a limited number of suitable animal models for SARS-CoV, MERS-CoV, and SARS-CoV-2 infections and the current absence of new SARS and MERS cases [51]. Although the number of cases of SARS-CoV-2-induced pneumonia patients is continuously increasing, antibiotic and antiviral drugs are the primary methods to treat SARS-CoV-2-infected patients. Similar to that of IAV, human CoV-mediated damage to the respiratory epithelium results from both intrinsic viral pathogenicity and a robust host immune response. The excessive immune response contributes to viral clearance and can also worsen the severity of lung injury, including the demise of lung cells [52]. However, the present treatment approaches have a limited effect on lung inflammation and regeneration.

Stem cell therapy for influenza virus-induced lung injury shows promise in preclinical models. Although it is difficult to establish preclinical models of CoV-induced lung injury, we consider stem cell therapies to be effective approaches to improve human CoV-induced lung injury. Acute inflammatory responses are one of the major underlying mechanisms for virus-induced lung injury. Innate immune cells, including neutrophils and inflammatory monocytes-macrophages (IMMs), are major innate leukocyte subsets that protect against viral lung infections [53]. Both neutrophils and IMMs are rapidly recruited to the site of infection and play crucial roles in the host defense against viruses. Neutrophils and IMMs can activate Toll-like receptors (TLRs) and produce interferons (IFNs) and other cytokines/chemokines [54]. There are two functional effects produced by the recruitment of neutrophils and IMMs: the orchestration of effective adaptive T cell responses and the secretion of inflammatory cytokines/chemokines [55]. However, excessive inflammatory cytokine and chemokine secretion impairs antiviral T cell responses, leading to ineffective viral clearance and reduced survival [56].

MSCs are known to suppress both innate and adaptive immune responses. MSCs have been suggested to inhibit many kinds of immune cells, including T cells, B cells, dendritic cells (DCs), and natural killer (NK) cells in vitro and in vivo [57] (Fig.1). Several molecules, including IL-1, TNF-, and INF-, most of which are produced by inflammatory cells, are reported to be involved in MSC-mediated immunosuppression [58]. Furthermore, MSCs can produce numerous immunosuppressive molecules, such as IL-6, PGE2, IDO, and IL-10, in response to inflammatory stimuli. PGE2 has been reported to mediate the MSC-mediated suppression of T cells, NK cells, and macrophages. Moreover, PGE2 has been found to act with IDO to alter the proliferation of T cells and NK cells [59]. In contrast, MSCs have come to be recognized as one type of adult stem cell actively participating in tissue repair by closely interacting with inflammatory cells and various other cell types [60]. Numerous reports have demonstrated that MSCs can release an array of growth and inhibitory factors, such as EGF, FGF, PDGF, and VEGF, and express several leukocyte chemokines, such as CXCL9, CCL2, CXCL10, and CXCL11. These factors provide an important microenvironment to activate adaptive immunity for lung repair [61]. Thus, the dual functions of MSCs may improve lung recovery after human CoV-induced ALI. Recently, MSCs was transplanted intravenously to enrolled patients with COVID-19 pneumonia. After treatment, the pulmonary function and symptoms of these patients were significantly improved. Meanwhile, the peripheral lymphocytes were increased, the C-reactive protein decreased, the level of TNF- was significantly decreased, and the overactivated cytokine-secreting immune cells disappeared. In addition, a group of regulatory DC cell population dramatically increased. Thus, the intravenous transplantation of MSCs was effective for treatment in patients with COVID-19 pneumonia [62, 63].

Stem cell therapies for treatment of influenza virus and coronavirus-induced lung injury. CoVs, coronavirus; MSCs, mesenchymal stem/stromal cells; LSCs, lung stem/progenitor cells; NK cells, natural killer cells; DC cells, dendritic cells

In addition, endogenous LSCs also play an important role in lung cell reconstitution after virus-induced ALI. In particular, TPR63+/KRT5+ airway BCs comprise approximately equal numbers of stem cells and committed precursors and give rise to differentiated luminal cells during steady state and epithelial repair after lung injury [44, 64]. Research has shown that KRT5+ cells repopulate damaged alveolar parenchyma following influenza virus infection [47]. However, there is still little evidence for the role of altered TPR63+/KRT5+ stem cells during lung injury repair caused by human CoVs.

In summary, exogenous MSCs may modulate human CoV-induced lung injury repair and regeneration through their immunoregulatory properties. These cells are capable of interacting with various types of immune cell, including neutrophils, macrophages, T cells, B cells, NK cells, and DCs. Furthermore, viral infections can activate endogenous LSCs to produce new lung cells and maintain lung function (Fig.1). Thus, we propose that MSCs and LSCs are two potential cell sources for treating human CoV-induced lung injury.

Originally posted here:
Stem cell therapy: a potential approach for treatment of influenza virus and coronavirus-induced acute lung injury - BMC Blogs Network

Startup targets glioblastoma tumors with CAR-T therapy – FierceBiotech

One of the major breakthroughs in cancer treatment is CAR-T technology, which involves genetically modifyinga patients own immune cells so they can recognize and attack cancer. But while the innovationhas benefited patients with certain blood malignancies, progress in solid tumors remains limited.

Now, scientists at McMaster University and the University of Toronto have developed a CAR-T therapy for the aggressive brain cancer glioblastoma. It helped reduce tumor burden and improved survival in mouse models, according to a new study published in the journal Cell Stem Cell.

The researchers were so encouraged by the findings that they launched a startup called Empirica Therapeutics, which aims to bring the CAR-T drug into clinical trials in recurrent glioblastoma patients by 2022.

For each CAR-T construct, T cells are modified to produce a special structure called a chimeric antigen receptor (CAR) that gives the cells the ability to recognize a specific protein on cancer cells. The two FDA-approved CAR-Ts, Novartis Kymriah and Gilead Sciences Yescarta, are directed toward CD19. TheCAR-T cell Empirica is developing targets CD133, also known as prominin-1.

In a 2003 Cancer Research study, a McMaster University team identified a group of neural stem cells from human brain tumors that bear CD133 on their surface. They found these CD133-expressing cells could differentiate into cells identical to the original tumor, suggesting these stem cells are necessary for glioblastoma tumor growth.

For the current study, the team tested three types of treatments in lab dishes and in mice. The first was a human IgG antibody that binds to CD133 on glioblastoma cells. The second was a bispecific T-cell engager antibody (BiTE), which can recruit cytotoxic T cells to kill tumor cells. The third was the CAR-T, known at Empirica as eCAR-133.

We found that the CAR-T therapy had enhanced activity compared to the other two therapeutics in preclinical models of human glioblastoma, Parvez Vora, the studys first author and director of preclinical development at Empirica, said in a statement.

Moreover, the CAR-T drug didnt induce any acute systemic toxicity in mice, showing it wouldnt disrupt hematopoiesis, a vital process in the human body that leads to the formation of blood cells, Vora said.

RELATED:Killing brain tumors with CAR-Ts built with scorpion venom

The potent clinical responses from CAR-T cells in blood cancers have sparked interest in exploring the approach in solid tumors, including hard-to-treat glioblastoma. A research team at City of Hope recently designed a novel CAR based on chlorotoxin, a toxin found in scorpion venom, and recorded promising results of the CAR-T cells in mice with glioblastoma xenografts.

There are many obstacles ahead. For one thing, the glioblastoma tumor microenvironment is notoriously immunosuppressive, which could dampen CAR-T cells activity once they arrive at the tumor site.

Besides CD133, other glioblastoma CAR-T targets that have been floated include IL-13Ra2 from City of Hope researchers, CSPG4froma team at the University of North Carolina, NKG2DL and EGFRvIII, among others.One possibility could be a combo of CAR-T and BiTEtechnologies. Last year, a team led by Massachusetts General Hospital designeda CAR-T that also expressed BiTE to activate bystander T cells against tumors. The CAR-T/BiTE cells eliminated tumors in mouse models of glioblastoma.

The Empirica scientists are also exploring combination strategies for their CD133-targeting CAR-T to treat glioblastoma."We hope that our work will now advance the development of really new and promising treatment options for these patients," said co-author Sheila Singh, professor in the department of surgery at McMaster and CEO of the startup.

See the original post here:
Startup targets glioblastoma tumors with CAR-T therapy - FierceBiotech

Coronavirus (COVID-19) Business Impact Stem Cell Therapy Market Size Analysis 2019-2027 – Cole of Duty

Analysis of the Global Stem Cell Therapy Market

A recently published market report on the Stem Cell Therapy market highlights the pitfalls that companies might come across due to the unprecedented outbreak of COVID-19 (Coronavirus). Buyers can request comprehensive market analysis of Coronavirus and its impact on the Stem Cell Therapy market to mitigate revenue losses.

This market research report on the Stem Cell Therapy market published by Stem Cell Therapy derives current insights about the competitive landscape of the Stem Cell Therapy market. Further, the report unfolds detailed analysis of different segments of the Stem Cell Therapy market and offers a thorough understanding of the growth potential of each market segment over the assessment period (20XX-20XX).

According to the analysts at Stem Cell Therapy , the Stem Cell Therapy market is predicted to register a CAGR growth of ~XX% during the assessment and reach a value of ~US$ XX by the end of 20XX. The report analyzes the micro and macro-economic factors that are projected to influence the growth of the Stem Cell Therapy market in the coming decade.

Get Free Sample PDF (including COVID19 Impact Analysis, full TOC, Tables and Figures) of Market Report @ https://www.marketresearchhub.com/enquiry.php?type=S&repid=2642779&source=atm

Key Insights Highlighted in the Report

Segmentation of the Stem Cell Therapy Market

The presented report elaborate on the Stem Cell Therapy market into different segments and ponders over the current and future business potentials of each segment. The report showcases the year-on-year growth of each segment and ponders upon the different factors that are likely to influence the growth of each market segment.

The various segments of the Stem Cell Therapy market explained in the report include:

Competition AnalysisIn the competitive analysis section of the report, leading as well as prominent players of the global Stem Cell Therapy market are broadly studied on the basis of key factors. The report offers comprehensive analysis and accurate statistics on revenue by the player for the period 2015-2020. It also offers detailed analysis supported by reliable statistics on price and revenue (global level) by player for the period 2015-2020.On the whole, the report proves to be an effective tool that players can use to gain a competitive edge over their competitors and ensure lasting success in the global Stem Cell Therapy market. All of the findings, data, and information provided in the report are validated and revalidated with the help of trustworthy sources. The analysts who have authored the report took a unique and industry-best research and analysis approach for an in-depth study of the global Stem Cell Therapy market.The following players are covered in this report:Osiris TherapeuticsNuVasiveChiesi PharmaceuticalsJCR PharmaceuticalPharmicellMedi-postAnterogenMolmedTakeda (TiGenix)Stem Cell Therapy Breakdown Data by TypeAutologousAllogeneicStem Cell Therapy Breakdown Data by ApplicationMusculoskeletal DisorderWounds & InjuriesCorneaCardiovascular DiseasesOthers

Do You Have Any Query Or Specific Requirement? Ask to Our Industry [emailprotected] https://www.marketresearchhub.com/enquiry.php?type=E&repid=2642779&source=atm

Important doubts related to the Stem Cell Therapy market clarified in the report:

Why Choose Stem Cell Therapy

You can Buy This Report from Here @ https://www.marketresearchhub.com/checkout?rep_id=2642779&licType=S&source=atm

Visit link:
Coronavirus (COVID-19) Business Impact Stem Cell Therapy Market Size Analysis 2019-2027 - Cole of Duty

COVID-19: Responding to the business impacts of Allogeneic Stem Cell Therapy Revenue, Opportunity, Forecast and Value Chain 2019-2020 – Cole of Duty

Allogeneic Stem Cell Therapy Market 2018: Global Industry Insights by Global Players, Regional Segmentation, Growth, Applications, Major Drivers, Value and Foreseen till 2024

The report provides both quantitative and qualitative information of global Allogeneic Stem Cell Therapy market for period of 2018 to 2025. As per the analysis provided in the report, the global market of Allogeneic Stem Cell Therapy is estimated to growth at a CAGR of _% during the forecast period 2018 to 2025 and is expected to rise to USD _ million/billion by the end of year 2025. In the year 2016, the global Allogeneic Stem Cell Therapy market was valued at USD _ million/billion.

This research report based on Allogeneic Stem Cell Therapy market and available with Market Study Report includes latest and upcoming industry trends in addition to the global spectrum of the Allogeneic Stem Cell Therapy market that includes numerous regions. Likewise, the report also expands on intricate details pertaining to contributions by key players, demand and supply analysis as well as market share growth of the Allogeneic Stem Cell Therapy industry.

Get Free Sample PDF (including COVID19 Impact Analysis, full TOC, Tables and Figures) of Market Report @ https://www.marketresearchhub.com/enquiry.php?type=S&repid=2632386&source=atm

Allogeneic Stem Cell Therapy Market Overview:

The Research projects that the Allogeneic Stem Cell Therapy market size will grow from in 2018 to by 2024, at an estimated CAGR of XX%. The base year considered for the study is 2018, and the market size is projected from 2018 to 2024.

The report on the Allogeneic Stem Cell Therapy market provides a birds eye view of the current proceeding within the Allogeneic Stem Cell Therapy market. Further, the report also takes into account the impact of the novel COVID-19 pandemic on the Allogeneic Stem Cell Therapy market and offers a clear assessment of the projected market fluctuations during the forecast period. The different factors that are likely to impact the overall dynamics of the Allogeneic Stem Cell Therapy market over the forecast period (2019-2029) including the current trends, growth opportunities, restraining factors, and more are discussed in detail in the market study.

Leading manufacturers of Allogeneic Stem Cell Therapy Market:

The key players covered in this studyEscape Therapeutics, Inc.Lonza Group Ltd.Osiris Therapeutics (Smith & Nephew)NuVasiveChiesi PharmaceuticalsJCR PharmaceuticalPharmicellAnterogenMolMed S.p.A.Takeda (TiGenix)

Market segment by Type, the product can be split intoAdult Stem Cell TherapyHuman Embryonic Stem Cell TherapyInduced Pluripotent Stem Cell TherapyOthersMarket segment by Application, split intoMusculoskeletal DisorderWounds & InjuriesCardiovascular DiseasesOthers

Market segment by Regions/Countries, this report coversNorth AmericaEuropeChinaJapanSouth Korea

The study objectives of this report are:To analyze global Allogeneic Stem Cell Therapy status, future forecast, growth opportunity, key market and key players.To present the Allogeneic Stem Cell Therapy development in North America, Europe, China, Japan and South Korea.To strategically profile the key players and comprehensively analyze their development plan and strategies.To define, describe and forecast the market by type, market and key regions.

In this study, the years considered to estimate the market size of Allogeneic Stem Cell Therapy are as follows:History Year: 2015-2019Base Year: 2019Estimated Year: 2020Forecast Year 2020 to 2026For the data information by region, company, type and application, 2019 is considered as the base year. Whenever data information was unavailable for the base year, the prior year has been considered.

Do You Have Any Query Or Specific Requirement? Ask to Our Industry [emailprotected] https://www.marketresearchhub.com/enquiry.php?type=E&repid=2632386&source=atm

Some important highlights from the report include:

You can Buy This Report from Here @ https://www.marketresearchhub.com/checkout?rep_id=2632386&licType=S&source=atm

The Questions Answered by Allogeneic Stem Cell Therapy Market Report:

And Many More.

See original here:
COVID-19: Responding to the business impacts of Allogeneic Stem Cell Therapy Revenue, Opportunity, Forecast and Value Chain 2019-2020 - Cole of Duty

AUGUSTMAN Grooming Awards 2020 Part IV: Best Head-To-Toe Treatment Services For Gentlemen – AUGUSTMAN

Introducing the best in mens grooming for the year. The fourth and final segment in this series is a compilation of trusted head-to-toe treatment services every gentleman should indulge in to look and feel your best.Sometimes its better to leave things to an experts hands.

Treatment: CO2 Skin Renewal Facial Treatment, Porcelain

This treatment helps to deal with adult skin issues ranging from acne to ageing. To address the latter, a combination of a C02 mask and cryoprobes work to promote collagen production, boost blood circulation and tighten sagging skin. A hydrating enzyme mask then restores moisture and dissolves acne-causing grime and debris. Theres nothing to complain about when we left the compound with improved skin.Available at Porcelain for $298.50

Treatment: The Ultimate Shave Experience, Truefitt + Hill

We found out why people say its better to leave things to the experts. At this salon, the barber put us through an aromatic hot towel treatment to both soften our facial hair and help us relax. Swift and gentle strokes of the straight razor gave us a close shave, leaving our skin baby smooth and looking dapper fresh. We also appreciate the massage, which made us forget our worries and feel good to be alive.Available at Truefitt + Hill for $80

Treatment: Miracle Stem Cell Treatment, PHS Hairscience

This may not be as effective as a hair transplant, but it is a much less painful alternative to revive dormant hair follicles. The treatment uses the brands potent Miracle Stem Cell Solution, which contains a blend of growth factors, botanical stem cells and nutrients that nourish the scalp and encourage hair growth. DHT blockers neutralise the effects of androgen, the hormonal culprit behind hair loss.Available at PHS Hairscience for $297

Treatment: Rescue & Release Massage, Raffles Spa

Whether you pick the 60- or 90- minute option, this massage provides soothing relief from the tensions that city life inflicts. Swedish techniques were used to loosen tight knots, and this release of built-up tension left us feeling calmer and more in touch with our senses. The luxurious oils used in the treatment also left our skin feeling moisturised and nourished. Make time to use the baths to reap fuller relaxation benefits.Available at Raffles Hotel from $245

Excerpt from:
AUGUSTMAN Grooming Awards 2020 Part IV: Best Head-To-Toe Treatment Services For Gentlemen - AUGUSTMAN

On the Origins of Modern Biology and the Fantastic: Part 18 Nalo Hopkinson and Stem Cell Research – tor.com

She just wanted to be somewhere safe, somewhere familiar, where people looked and spoke like her and she could stand to eat the food. Midnight Robber by Nalo Hopkinson

Midnight Robber (2000) is about a woman, divided. Raised on the high-tech utopian planet of Touissant, Tan-Tan grows up on a planet populated by the descendants of a Caribbean diaspora, where all labor is performed by an all-seeing AI. But when she is exiled to Touissants parallel universe twin planet, the no-tech New Half-Way Tree, with her sexually abusive father, she becomes divided between good and evil Tan-Tans. To make herself and New Half-Way Tree whole, she adopts the persona of the legendary Robber Queen and becomes a legend herself. It is a wondrous blend of science fictional tropes and Caribbean mythology written in a Caribbean vernacular which vividly recalls the history of slavery and imperialism that shaped Touissant and its people, published at a time when diverse voices and perspectives within science fiction were blossoming.

Science fiction has long been dominated by white, Western perspectives. Vernes tech-forward adventures and Wells sociological allegories established two distinctive styles, but still centered on white imperialism and class struggle. Subsequent futures depicted in Verne-like pulp and Golden Age stories, where lone white heroes conquered evil powers or alien planets, mirrored colonialist history and the subjugation of non-white races. The civil rights era saw the incorporation of more Wellsian sociological concerns, and an increase in the number of non-white faces in the future, but they were often tokensparts of a dominant white monoculture. Important figures that presaged modern diversity included Star Treks Lieutenant Uhura, played by Nichelle Nichols. Nichols was the first black woman to play a non-servant character on TV; though her glorified secretary role frustrated Nichols, her presence was a political act, showing there was space for black people in the future.

Another key figure was the musician and poet Sun Ra, who laid the aesthetic foundation for what would become known as the Afrofuturist movement (the term coined by Mark Dery in a 1994 essay), which showed pride in black history and imagined the future through a black cultural lens. Within science fiction, the foundational work of Samuel Delany and Octavia Butler painted realistic futures in which the histories and cultural differences of people of color had a place. Finally, an important modern figure in the decentralization of the dominant Western perspective is Nalo Hopkinson.

A similarly long-standing paradigm lies at the heart of biology, extending back to Darwins theoretical and Mendels practical frameworks for the evolution of genetic traits via natural selection. Our natures werent determined by experience, as Lamarck posited, but by genes. Therefore, genes determine our reproductive fitness, and if we can understand genes, we might take our futures into our own hands to better treat disease and ease human suffering. This theory was tragically over-applied, even by Darwin, who in Descent of Man (1871) conflated culture with biology, assuming the Wests conquest of indigenous cultures meant white people were genetically superior. After the Nazis committed genocide in the name of an all-white future, ideas and practices based in eugenics declined, as biological understanding of genes matured. The Central Dogma of the 60s maintained the idea of a mechanistic meaning of life, as advances in genetic engineering and the age of genomics enabled our greatest understanding yet of how genes and disease work. The last major barrier between us and our transhumanist future therefore involved understanding how genes determine cellular identity, and as well see, key figures in answering that question are stem cells.

***

Hopkinson was born December 20, 1960 in Kingston, Jamaica. Her mother was a library technician and her father wrote, taught, and acted. Growing up, Hopkinson was immersed in the Caribbean literary scene, fed on a steady diet of theater, dance, readings, and visual arts exhibitions. She loved to readfrom folklore, to classical literature, to Kurt Vonnegutand loved science fiction, from Spock and Uhura on Star Trek, to Le Guin, James Tiptree Jr., and Delany. Despite being surrounded by a vibrant writing community, it didnt occur to her to become a writer herself. What they were writing was poetry and mimetic fiction, Hopkinson said, whereas I was reading science fiction and fantasy. It wasnt until I was 16 and stumbled upon an anthology of stories written at the Clarion Science Fiction Workshop that I realized there were places where you could be taught how to write fiction. Growing up, her family moved often, from Jamaica to Guyana to Trinidad and back, but in 1977, they moved to Toronto to get treatment for her fathers chronic kidney disease, and Hopkinson suddenly became a minority, thousands of miles from home.

Development can be described as an orderly alienation. In mammals, zygotes divide and subsets of cells become functionally specialized into, say, neurons or liver cells. Following the discovery of DNA as the genetic material in the 1950s, a question arose: did dividing cells retain all genes from the zygote, or were genes lost as it specialized? British embryologist John Gurdon addressed this question in a series of experiments in the 60s using frogs. Gurdon transplanted nuclei from varyingly differentiated cells into oocytes stripped of their genetic material to see if a new frog was made. He found the more differentiated a cell was, the lower the chance of success, but the successes confirmed that no genetic material was lost. Meanwhile, Canadian biologists Ernest McCulloch and James Till were transplanting bone marrow to treat irradiated mice when they noticed it caused lumps in the mices spleens, and the number of lumps correlated with the cellular dosage. Their lab subsequently demonstrated that each lump was a clonal colony from a single donor cell, and a subset of those cells was self-renewing and could form further colonies of any blood cell type. They had discovered hematopoietic stem cells. In 1981 the first embryonic stem cells (ESCs) from mice were successfully propagated in culture by British biologist Martin Evans, winning him the Nobel Prize in 2007. This breakthrough allowed biologists to alter genes in ESCs, then use Gurdons technique to create transgenic mice with that alteration in every cellcreating the first animal models of disease.

In 1982, one year after Evans discovery, Hopkinson graduated with honors from York University. She worked in the arts, as a library clerk, government culture research officer, and grants officer for the Toronto Arts Council, but wouldnt begin publishing her own fiction until she was 34. [I had been] politicized by feminist and Caribbean literature into valuing writing that spoke of particular cultural experiences of living under colonialism/patriarchy, and also of writing in ones own vernacular speech, Hopkinson said. In other words, I had models for strong fiction, and I knew intimately the body of work to which I would be responding. Then I discovered that Delany was a black man, which opened up a space for me in SF/F that I hadnt known I needed. She sought out more science fiction by black authors and found Butler, Charles Saunders, and Steven Barnes. Then the famous feminist science fiction author and editor Judy Merril offered an evening course in writing science fiction through a Toronto college, Hopkinson said. The course never ran, but it prompted me to write my first adult attempt at a science fiction story. Judy met once with the handful of us she would have accepted into the course and showed us how to run our own writing workshop without her. Hopkinsons dream of attending Clarion came true in 1995, with Delany as an instructor. Her early short stories channeled her love of myth and folklore, and her first book, written in Caribbean dialect, married Caribbean myth to the science fictional trappings of black market organ harvesting. Brown Girl in the Ring (1998) follows a young single mother as shes torn between her ancestral culture and modern life in a post-economic collapse Toronto. It won the Aspect and Locus Awards for Best First Novel, and Hopkinson was awarded the John W. Campbell Award for Best New Writer.

In 1996, Dolly the Sheep was created using Gurdons technique to determine if mammalian cells also could revert to more a more primitive, pluripotent state. Widespread animal cloning attempts soon followed, (something Hopkinson used as a science fictional element in Brown Girl) but it was inefficient, and often produced abnormal animals. Ideas of human cloning captured the public imagination as stem cell research exploded onto the scene. One ready source for human ESC (hESC) materials was from embryos which would otherwise be destroyed following in vitro fertilization (IVF) but the U.S. passed the Dickey-Wicker Amendment prohibited federal funding of research that destroyed such embryos. Nevertheless, in 1998 Wisconsin researcher James Thomson, using private funding, successfully isolated and cultured hESCs. Soon after, researchers around the world figured out how to nudge cells down different lineages, with ideas that transplant rejection and genetic disease would soon become things of the past, sliding neatly into the hole that the failure of genetic engineering techniques had left behind. But another blow to the stem cell research community came in 2001, when President Bushs stem cell ban limited research in the U.S. to nineteen existing cell lines.

In the late 1990s, another piece of technology capturing the public imagination was the internet, which promised to bring the world together in unprecedented ways. One such way was through private listservs, the kind used by writer and academic Alondra Nelson to create a space for students and artists to explore Afrofuturist ideas about technology, space, freedom, culture and art with science fiction at the center. It was wonderful, Hopkinson said. It gave me a place to talk and debate with like-minded people about the conjunction of blackness and science fiction without being shouted down by white men or having to teach Racism 101. Connections create communities, which in turn create movements, and in 1999, Delanys essay, Racism and Science Fiction, prompted a call for more meaningful discussions around race in the SF community. In response, Hopkinson became a co-founder of the Carl Brandon society, which works to increase awareness and representation of people of color in the community.

Hopkinsons second novel, Robber, was a breakthrough success and was nominated for Hugo, Nebula, and Tiptree Awards. She would also release Skin Folk (2001), a collection of stories in which mythical figures of West African and Afro-Caribbean culture walk among us, which would win the World Fantasy Award and was selected as one ofThe New York Times Best Books of the Year. Hopkinson also obtained masters degree in fiction writing (which helped alleviate U.S. border hassles when traveling for speaking engagements) during which she wrote The Salt Roads (2003). I knew it would take a level of research, focus and concentration I was struggling to maintain, Hopkinson said. I figured it would help to have a mentor to coach me through it. That turned out to be James Morrow, and he did so admirably. Roads is a masterful work of slipstream literary fantasy that follows the lives of women scattered through time, bound together by the salt uniting all black life. It was nominated for a Nebula and won the Gaylactic Spectrum Award. Hopkinson also edited anthologies centering around different cultures and perspectives, including Whispers from the Cotton Tree Root: Caribbean Fabulist Fiction (2000), Mojo: Conjure Stories (2003), and So Long, Been Dreaming: Postcolonial Science Fiction & Fantasy (2004). She also came out with the award-winning novelThe New Moons Arms in 2007, in which a peri-menopausal woman in a fictional Caribbean town is confronted by her past and the changes she must make to keep her family in her life.

While the stem cell ban hamstrung hESC work, Gurdons research facilitated yet another scientific breakthrough. Researchers began untangling how gene expression changed as stem cells differentiated, and in 2006, Shinya Yamanaka of Kyoto University reported the successful creation of mouse stem cells from differentiated cells. Using a list of 24 pluripotency-associated genes, Yamanaka systematically tested different gene combinations on terminally differentiated cells. He found four genesthereafter known as Yamanaka factorsthat could turn them into induced-pluripotent stem cells (iPSCs), and he and Gurdon would share a 2012 Nobel prize. In 2009, President Obama lifted restrictions on hESC research, and the first clinical trial involving products made using stem cells happened that year. The first human trials using hESCs to treat spinal injuries happened in 2014, and the first iPSC clinical trials for blindness began this past December.

Hopkinson, too, encountered complications and delays at points in her career. For years, Hopkinson suffered escalating symptoms from fibromyalgia, a chronic disease that runs in her family, which interfered with her writing, causing Hopkinson and her partner to struggle with poverty and homelessness. But in 2011, Hopkinson applied to become a professor of Creative Writing at the University of California, Riverside. It seemed in many ways tailor-made for me, Hopkinson said. They specifically wanted a science fiction writer (unheard of in North American Creative Writing departments); they wanted someone with expertise working with a diverse range of people; they were willing to hire someone without a PhD, if their publications were sufficient; they were offering the security of tenure. She got the job, and thanks to a steady paycheck and the benefits of the mild California climate, she got back to writing. Her YA novel, The Chaos (2012), coming-of-age novelSister Mine (2013), and another short story collection, Falling in Love with Hominids (2015) soon followed. Her recent work includes House of Whispers (2018-present), a series in DC Comics Sandman Universe, the final collected volume of which is due out this June. Hopkinson also received an honorary doctorate in 2016 from Anglia Ruskin University in the U.K., and was Guest of Honor at 2017 Worldcon, a year in which women and people of color dominated the historically white, male ballot.

While the Yamanaka factors meant that iPSCs became a standard lab technique, iPSCs are not identical to hESCs. Fascinatingly, two of these factors act together to maintain the silencing of large swaths of DNA. Back in the 1980s, researchers discovered that some regions of DNA are modified by small methyl groups, which can be passed down through cell division. Different cell types have different DNA methylation patterns, and their distribution is far from random; they accumulate in the promoter regions just upstream of genes where their on/off switches are, and the greater the number of methyl groups, the lesser the genes expression. Furthermore, epigenetic modifications, like methylation, can be laid down by our environments (via diet, or stress) which can also be passed down through generations. Even some diseases, like fibromyalgia, have recently been implicated as such an epigenetic disease. Turns out that the long-standing biological paradigm that rejected Lamarck also missed the bigger picture: Nature is, in fact, intimately informed by nurture and environment.

In the past 150 years, we have seen ideas of community grow and expand as the world became more connected, so that they now encompass the globe. The histories of science fiction and biology are full of stories of pioneers opening new doorsbe they doors of greater representation or greater understanding, or bothand others following. If evolution has taught us anything, its that nature abhors a monoculture, and the universe tends towards diversification; healthy communities are ones which understand that we are not apart from the world, but of it, and that diversity of types, be they cells or perspectives, is a strength.

Kelly Lagor is a scientist by day and a science fiction writer by night. Her work has appeared at Tor.com and other places, and you can find her tweeting about all kinds of nonsense @klagor

More:
On the Origins of Modern Biology and the Fantastic: Part 18 Nalo Hopkinson and Stem Cell Research - tor.com