Category Archives: Stem Cell Treatment


SENECA BIOPHARMA : MANAGEMENT’S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-Q) – marketscreener.com

Statements in this Quarterly Report that are not strictly historical areforward-looking statements and include statements about products in development,results and analyses of pre-clinical studies, clinical trials and studies,research and development expenses, cash expenditures, and alliances andpartnerships, among other matters. You can identify these forward-lookingstatements because they involve our expectations, intentions, beliefs, plans,projections, anticipations, or other characterizations of future events orcircumstances. These forward-looking statements are not guarantees of futureperformance and are subject to risks and uncertainties that may cause actualresults to differ materially from those in the forward-looking statements as aresult of any number of factors. These factors include, but are not limited to,risks relating to our: ability to conduct and obtain successful results fromongoing pre-clinical and clinical trials, commercialize our technology, obtainregulatory approval for our product candidates, contract with third parties toadequately test and manufacture our proposed therapeutic products, protect ourintellectual property rights and obtain additional financing to continue ouroperations. Some of these factors are more fully discussed, as are otherfactors, in our Annual Report on Form 10-K for the fiscal year ended December31, 2019, as filed with the SEC, in our subsequent filings with the SEC as wellas in the section of this Quarterly Report entitled "Risk Factors" and elsewhereherein. We do not undertake to update any of these forward-looking statements orto announce the results of any revisions to these forward-looking statementsexcept as required by law.We urge you to read this entire Quarterly Report on Form 10-Q, including the"Risk Factors" section, the condensed consolidated financial statements, andrelated notes. As used in this Quarterly Report, unless the context otherwiserequires, the words "we," "us," "our," "the Company" and "Seneca" refers toSeneca Biopharma, Inc. and its subsidiary. Also, any reference to "commonshares" or "common stock," refers to our $.01 par value common stock. Anyreference to "Series A Preferred Stock" or "Preferred Stock" refers to ourSeries A 4.5% Convertible Preferred Stock. The information contained herein iscurrent as of the date of this Quarterly Report (March 31, 2020), unless anotherdate is specified. On July 17, 2019, we completed a 1-for-20 reverse stock splitof our common stock. All share and per shares information in this report havebeen adjusted to reflect the reverse stock split. We prepare our interimfinancial statements in accordance with U.S. GAAP. Our financials and results ofoperations for the three-month period ended March 31, 2020 are not necessarilyindicative of our prospective financial condition and results of operations forthe pending full fiscal year ending December 31, 2020. The interim financialstatements presented in this Quarterly Report as well as other informationrelating to our Company contained in this Quarterly Report should be read inconjunction and together with the reports, statements and information filed byus with the SEC.Our Management's Discussion and Analysis of Financial Condition and Results ofOperations or MD&A is provided, in addition to the accompanying condensedconsolidated financial statements and notes, to assist you in understanding ourresults of operations, financial condition and cash flows. Our MD&A is organizedas follows:

Executive Overview - Discussion of our business and overall analysis of

financial and other items affecting the Company in order to provide context for

Trends & Outlook - Discussion of what we view as the overall trends affecting

Critical Accounting Policies - Accounting policies that we believe are

important to understanding the assumptions and judgments incorporated in our

Results of Operations - Analysis of our financial results comparing the

three-month periods ended March 31, 2020 to the comparable period of 2019.

Liquidity and Capital Resources - An analysis of cash flows and discussion of

Our patented technology platform has three core components:

1. Over 300 lines of human, regionally specific neural stem cells, some of which

have the potential to be used to treat serious or life-threatening diseases

through direct transplantation into the central nervous system;

2. Proprietary screening capability - our ability to generate human neural stem

cell lines provides a platform for chemical screening and discovery of novel

compounds against nervous system disorders; and

3. Small molecules that resulted from Seneca's neurogenesis screening platform

To date, our technology platform has produced two lead assets in clinicaldevelopment: our NSI-566 stem cell therapy program and our NSI-189 smallmolecule program. A component of our current strategy is out-licensing and wehave recently initiated a formal out-licensing initiative aimed at securingpartners to advance the clinical development of these two programs.

In-licensing and Acquisition Strategy

Below is a description of our clinical programs, their intended indication andcurrent stage of development:

Motor Deficits Due to Ischemic Stroke

Amyotrophic Lateral Sclerosis

Chronic Spinal Cord Injury

Clinical Experience with NSI-566

Amyotrophic Lateral Sclerosis

Pre-Clinical Experience with NSI-566 and other candidates in our stem cellpipeline

NSI-189 (Small Molecule Pharmaceutical Compound)

Major Depressive Disorder (MDD)

Clinical Experience with NSI-189

Preclinical Experience with NSI-189

NSI-189 has shown promise in preclinical studies evaluating its impact in animalmodels for a number of different disease indications, including:

1. Ischemic stroke-in 2017 Tajiri and colleagues published a manuscript

reporting that NSI-189 ameliorated motor and neurological deficits in a

rodent model of ischemic stroke (Tajiri et al., J Cell Physiol 2017,

232(10):2731-2740)

2. Radiation-induced cognitive dysfunction-in 2018 Allen and colleagues

published a manuscript reporting that NSI-189 treatment could reverse

cognitive deficits in rats caused by cranial irradiation, a model of cranial

radiotherapy in the treatment of brain tumors (Allen et al., Radiat Res 2018,

189(4):345-353).

3. Angelman syndrome-in 2019 Liu and colleagues published a manuscript reporting

that NSI-189 reversed impairments in cognitive and motor deficits in a rodent

model of Angelman syndrome and increased synaptic strength in sections of

brains taken from these animals (Liu et al., Neuropharmacology 2019,

144:337-344). Angelman syndrome (AS) is a rare congenital genetic disorder

caused by a lack of function in the UBE3A gene on the maternal 15th

chromosome. It affects approximately one in 15,000 people - about 500,000

individuals globally. Symptoms of AS include developmental delay, lack of

speech, seizures, and walking and balance disorders.

4. Diabetes-associated peripheral neuropathy-in 2019 Jolivalt and colleagues

published a manuscript reporting that NSI-189 mitigated or reversed

disease-associated central and peripheral neuropathy in two rodent models of

diabetes (Jolivalt et al., Diabetes 2019, (11):2143-2154). Improvements

resulting from NSI-189 treatment were seen on multiple sensory and cognitive

Our Proprietary and Novel Screening Platform

Small Molecule Pharmaceutical Compounds.

In addition to patenting our technologies, we also rely on confidential andproprietary information and take active measures to control access to thatinformation, including the use of confidentiality agreements with our employees,consultants and certain of our contractors.

As of April 30, 2020, we had seven (7) full-time employees. We also use theservices of several outside consultants in business and scientific matters.

We generated no revenues from the sale of our proposed therapies for any of theperiods presented.

We have historically generated minimal revenue from the licensing of ourintellectual property to third parties as well as payments under a settlementagreement.

Research and Development Expenses

We have a wholly-owned subsidiary in the People's Republic of China thatprimarily oversees our current clinical trial to treat motor deficits due toischemic stroke.

General and Administrative Expenses

Comparison of Three Months Ended March 31, 2020 and 2019

Revenue

Operating expenses for the three months ended March 30 were as follows:

Research and Development Expenses

General and Administrative Expenses

Other income (expense)

Other expense, net totaled approximately ($5,585,000) and ($657,000) for thethree months ended March 31, 2020 and 2019, respectively.

Cash Flows - 2020 compared to 2019

Net cash used in operating activities $ (1,677,629 )$ (1,665,905 )$ (11,724 )

Net cash provided by financing activities $ 6,593,428$ (117,019 )$ 6,710,447

Net Cash Used in Operating Activities

Net Cash (Used in) Provided by Investing Activities

There were no investing activities in either of the three months ended March 31,2020 or 2019.

Net Cash Used in by Financing Activities

Edgar Online, source Glimpses

See more here:
SENECA BIOPHARMA : MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-Q) - marketscreener.com

Platelet Rich Plasma and Stem Cell Alopecia Treatment Market Growth by Top Companies, Trends by Types and Application, Forecast to 2026 – Cole of Duty

Glofinn Oy.

Moreover, the Platelet Rich Plasma and Stem Cell Alopecia Treatment report offers a detailed analysis of the competitive landscape in terms of regions and the major service providers are also highlighted along with attributes of the market overview, business strategies, financials, developments pertaining as well as the product portfolio of the Platelet Rich Plasma and Stem Cell Alopecia Treatment market. Likewise, this report comprises significant data about market segmentation on the basis of type, application, and regional landscape. The Platelet Rich Plasma and Stem Cell Alopecia Treatment market report also provides a brief analysis of the market opportunities and challenges faced by the leading service provides. This report is specially designed to know accurate market insights and market status.

By Regions:

* North America (The US, Canada, and Mexico)

* Europe (Germany, France, the UK, and Rest of the World)

* Asia Pacific (China, Japan, India, and Rest of Asia Pacific)

* Latin America (Brazil and Rest of Latin America.)

* Middle East & Africa (Saudi Arabia, the UAE, , South Africa, and Rest of Middle East & Africa)

To get Incredible Discounts on this Premium Report, Click Here @ https://www.marketresearchintellect.com/ask-for-discount/?rid=247661&utm_source=NYH&utm_medium=888

Table of Content

1 Introduction of Platelet Rich Plasma and Stem Cell Alopecia Treatment Market

1.1 Overview of the Market1.2 Scope of Report1.3 Assumptions

2 Executive Summary

3 Research Methodology

3.1 Data Mining3.2 Validation3.3 Primary Interviews3.4 List of Data Sources

4 Platelet Rich Plasma and Stem Cell Alopecia Treatment Market Outlook

4.1 Overview4.2 Market Dynamics4.2.1 Drivers4.2.2 Restraints4.2.3 Opportunities4.3 Porters Five Force Model4.4 Value Chain Analysis

5 Platelet Rich Plasma and Stem Cell Alopecia Treatment Market, By Deployment Model

5.1 Overview

6 Platelet Rich Plasma and Stem Cell Alopecia Treatment Market, By Solution

6.1 Overview

7 Platelet Rich Plasma and Stem Cell Alopecia Treatment Market, By Vertical

7.1 Overview

8 Platelet Rich Plasma and Stem Cell Alopecia Treatment Market, By Geography

8.1 Overview8.2 North America8.2.1 U.S.8.2.2 Canada8.2.3 Mexico8.3 Europe8.3.1 Germany8.3.2 U.K.8.3.3 France8.3.4 Rest of Europe8.4 Asia Pacific8.4.1 China8.4.2 Japan8.4.3 India8.4.4 Rest of Asia Pacific8.5 Rest of the World8.5.1 Latin America8.5.2 Middle East

9 Platelet Rich Plasma and Stem Cell Alopecia Treatment Market Competitive Landscape

9.1 Overview9.2 Company Market Ranking9.3 Key Development Strategies

10 Company Profiles

10.1.1 Overview10.1.2 Financial Performance10.1.3 Product Outlook10.1.4 Key Developments

11 Appendix

11.1 Related Research

Get Complete Report

@ https://www.marketresearchintellect.com/need-customization/?rid=247661&utm_source=NYH&utm_medium=888

About Us:

Market Research Intellect provides syndicated and customized research reports to clients from various industries and organizations with the aim of delivering functional expertise. We provide reports for all industries including Energy, Technology, Manufacturing and Construction, Chemicals and Materials, Food and Beverage and more. These reports deliver an in-depth study of the market with industry analysis, market value for regions and countries and trends that are pertinent to the industry.

Contact Us:

Mr. Steven Fernandes

Market Research Intellect

New Jersey ( USA )

Tel: +1-650-781-4080

Tags: Platelet Rich Plasma and Stem Cell Alopecia Treatment Market Size, Platelet Rich Plasma and Stem Cell Alopecia Treatment Market Trends, Platelet Rich Plasma and Stem Cell Alopecia Treatment Market Growth, Platelet Rich Plasma and Stem Cell Alopecia Treatment Market Forecast, Platelet Rich Plasma and Stem Cell Alopecia Treatment Market Analysis Sarkari result, Government Jobs, Sarkari naukri, NMK, Majhi Naukri,

Our Trending Reports

Cosmetics OEM/ODM Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Europe Orthopedic Braces And Support Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Follow this link:
Platelet Rich Plasma and Stem Cell Alopecia Treatment Market Growth by Top Companies, Trends by Types and Application, Forecast to 2026 - Cole of Duty

Cardio Stem Cell Therapy Used to Treat Critically Ill Covid-19 Patients – Physician’s Weekly

Four of six patients in case series were weaned off respiratory support

An investigational allogeneic cell therapy using cardiosphere-derived cells (CDC) showed an acceptable safety profile with early evidence of efficacy in the treatment of very severe Covid-19 in a case series involving six patients treated at Cedars-Sinai Medical Center in Los Angeles.

All six patients treated with the intravenous allogeneic CDC formulation CAP-1002 (Capricor Therapeutics) as a compassionate therapy required respiratory support prior to treatment, with five on mechanical ventilation.

No adverse events related to the treatment were reported, and four of the six patients were successfully weaned from respiratory support and were discharged from the hospital as of late April.

The other two patients are still alive, but remain intubated, Cedars-Sinai cardiologist Raj Makkar, MD, confirmed to BreakingMED Wednesday, May 13.

While we are encouraged by these findings, it is important to point out that the only way that we can assess the efficacy of this treatment in a definitive way is with a randomized clinical trial, and that is what we intend to do, Makkar said.

He added that the clinical trial, which is in the planning stages, is likely to include Covid-19 patients who are not as critically ill as the six in the case series.

All of these patients required respiratory support and they were all on a downward trajectory when treated, he said. They were getting worse and we had nothing else to offer them.

Cardiosphere-derived cells are stromal/progenitor cells from heart tissue with a distinctive antigenic profile (CD105+, CD45-, CD90low).

In their case series, published in the journal Basic Research in Cardiology, Makkar and colleagues noted that the cells are entirely distinct from the controversial c-kit+ putative cardiac progenitors, which have been the subject of various retracted studies.

Since CDCs were first isolated in 2007, the cells have been tested in more than 200 patients in clinical trials for a variety of conditions with a good safety profile, including in young boys with Duchenne muscular dystrophy.

Makkar said the anti-inflammatory and antifibrotic properties of CDCs in animal models make them a possible target therapy for Covid-19.

The prior testing gave us reasonable confidence that this treatment was safe, he said, adding that there is also evidence of a favorable effect on the same type of proinflammatory cytokines that are up-regulated in Covid-19.

Comparisons to mesenchymal stem cells (MSCs) in pre-clinical models suggest that CDCs may also be more effective for paracrine factor secretion and myocardial remodeling.

Given the safety record of CDCs in humans, and the substantial body of evidence confirming relevant disease-modifying bioactivity, applicability to Covid-19 seemed compelling, particularly in the hyperinflammatory stage of the illness, the researchers wrote.

All six patients treated with the intravenous CDC formulation had severe, confirmed Covid-19 with respiratory failure and they were not receiving any other experimental agent, with the exception of hydroxychloroquine and tocilizumab.

Lack of clinical improvement or deterioration despite standard care was the primary reason for considering patients for treatment with CAP-1002. Exclusion criteria included known hypersensitivity to DMSO, which is a component of CAP-1002; prior stem cell therapy; pre-existing terminal illness; and need for mechanical circulatory support and dialysis.

In general, patients with multi-organ failure who were deemed to be too sick for any intervention were excluded from the study, Makkar and colleagues wrote.

All patients had acute respiratory distress syndrome (ARDS) prior to infusion, with decreased PaO2/FiO2 ratios (range 69-198; median 142), diffuse bilateral pulmonary infiltrates on chest imaging and evidence of preserved cardiac function on transthoracic echocardiography (LVEF range, 50-75%). SOFA scores ranged from 2 to 8 prior to stem cell treatment.

The six patients (age range, 19-75 years) had IV infusions of CAP-1002 containing 150 million allogeneic CDCs, and two of the six had a second dose of the treatment.

Following treatment, four patients (67%) were weaned from respiratory support and discharged from the hospital.

A contemporaneous control group of critically ill Covid-19 patients (n = 34) at our institution showed 18% overall mortality at a similar stage of hospitalization, the researchers wrote.

Ferritin was elevated in all patients at baseline (range of all patients 605.43-2991.52 ng/ml) and decreased in five of the six patients (range of all patients 252.891029.90 ng/ml).

Absolute lymphocyte counts were low in five of the six patients at baseline (range 0.260.82 103/l) but had increased in 3 of these five at last follow-up (range 0.231.02 103/l).

Administration of CAP-1002 as a compassionate therapy for patients with severe Covid-19 and significant comorbidities was safe, well tolerated without serious adverse events, and associated with clinical improvement, as evidenced by extubation (or prevention of intubation, the researchers wrote.

Stem cell therapy utilizing cardiosphere-derived cells (CDC) showed an acceptable safety profile with early evidence of efficacy in the treatment of very severe Covid-19 in an early case series involving 6 patients treated at Cedars-Sinai Medical Center, Los Angeles.

No adverse events related to the treatment were reported, and four of the six patients were successfully weaned from respiratory support and were discharged from the hospital.

Salynn Boyles, Contributing Writer, BreakingMED

Funding for this story was provided by the Smidt Family Foundation. The cell product, CAP-1002, was provided by manufacturer Capricor Therapeutics.

ResearcherEduardo Marban reported owning founders equity in Cariricor Therapeutics, and researcher Linda Marban reported being an employee and owning equity in the company.

Cat ID: 125

Topic ID: 79,125,254,930,287,728,932,570,574,730,933,125,190,926,192,927,151,928,925,934

Excerpt from:
Cardio Stem Cell Therapy Used to Treat Critically Ill Covid-19 Patients - Physician's Weekly

Magenta Therapeutics Presents Data at Annual Meeting of American Society of Gene and Cell Therapy Demonstrating Cells Mobilized with MGTA-145 in a…

MGTA-145 was shown to be a rapid, reliable, efficient and G-CSF-free method to obtain high numbers of functional HSCs in a Phase 1 trial; the cells could be gene modified and engraft in animals. MGTA-145 could be used to improve collection and gene therapy outcomes

Additional preclinical data show MGTA-145 serves as efficient, same-day mobilization regimen for in vivo HSC gene therapy in animals, which could be applicable in treating sickle cell disease and other genetic disorders

CAMBRIDGE, Mass.--(BUSINESS WIRE)--Magenta Therapeutics(Nasdaq: MGTA), a clinical-stage biotechnology company developing novel medicines to bring the curative power of blood and immune reset to more patients, presented preclinical data on its stem cell mobilization therapy clinical candidate, MGTA-145, this week at the annual meeting of the American Society of Gene and Cell Therapy (ASGCT).

Magenta is developing MGTA-145 as a first-line standard of care for hematopoietic stem cell (HSC) mobilization in a broad range of diseases, including autoimmune diseases, blood cancers and genetic diseases, such as sickle cell disease. MGTA-145, a CXCR2 agonist, acts in combination with plerixafor, a CXCR4 antagonist, and met all endpoints in a Phase I trial showing reliable same-day mobilization and collection of HSCs for genetic modification and transplant. MGTA-145 has been dosed in more than 100 healthy volunteers.

Magenta intends to initiate multiple Phase 2 trials of MGTA-145 and generate initial Phase 2 data in 2020. These trials, which will include both allogeneic and autologous transplant settings, will evaluate mobilization and collection of functional HSCs and their engraftment in patients after transplant to rebuild the blood and immune systems.

MGTA-145 has the potential to fundamentally transform the standard of care for stem cell mobilization, collection and engraftment for patients and donors, said John Davis Jr., M.D., M.P.H., M.S., Head of Research & Development and Chief Medical Officer, Magenta Therapeutics. These data provide further confirmation that cells obtained with MGTA-145 can be used in gene therapy and gene editing settings across various genetic diseases. These are encouraging findings for the breadth of applications for MGTA-145, showing safe and robust mobilization of functional cells that can be used for stem cell transplant, as well as for gene therapy applications, expanding the programs potential for even more patients beyond the 150,000 patients presently eligible in the U.S. and Europe.

MGTA-145 Preclinical Data

These data demonstrate that MGTA-145, in combination with plerixafor, enables the same-day mobilization of sufficient functional HSCs that can be gene modified and engrafted.

Title: MGTA-145, in Combination with Plerixafor, Rapidly Mobilizes Large Numbers of HSCs in Humans That Can Be Gene Edited with CRISPR/Cas9 and Mediate Superior Engraftment to Standard-of-Care (Abstract #123)Presenter: Kevin Goncalves, Ph.D., Magenta Therapeutics, Cambridge, Mass.Date and Time: Tuesday, May 12, 2020 3:45-5:30pm

In a limit dilution study using CD34+ cells from a Phase 1 healthy volunteer study, same-day, single-dose mobilization with MGTA-145, in combination with plerixafor, led to 10x higher numbers of engrafting human HSCs in NSG mice, as compared to current standard-of-care approaches. Higher engraftment was confirmed by congenic mouse transplant models in primary and secondary recipients, indicating durable engraftment with MGTA-145 plus plerixafor mobilized blood.

To determine whether MGTA-145 plus plerixafor mobilized blood CD34+ cells could be efficiently gene-modified for use in a variety of therapeutic applications, CD34+ cells from two healthy donors were edited with CRISPR/Cas9 targeting beta-2-microglobulin. Ninety percent editing was achieved, and these cells were successfully engrafted in an NSG mouse model.

This same-day mobilization and collection regimen could potentially offer a significant improvement of cell collection protocols and autologous gene therapy outcomes for a variety of genetic diseases.

Title: MGTA-145/Plerixafor-Mediated HSC Mobilization and Intravenous Gene Therapy in Mice Allows for Efficient in vivo HSC Transduction and Stable Gene Marking in Peripheral Blood Cells (Abstract #810)Presenter: Chang Li, Ph.D., Division of Medical Genetics, Department of Medicine, University of WashingtonDate and Time: Wednesday, May 13, 2020 5:30-6:30pm

These results show, for the first time, that MGTA-145 plus plerixafor can enable robust, same-day mobilization of large numbers of stem cells in animal models that can be efficiently modified in vivo by gene therapy without transplant, which could be applicable in patients with sickle cell disease or other genetic disorders.

The data show that the one-hour MGTA-145 + plerixafor mobilization regimen was superior compared to the five-day G-CSF + plerixafor approach, yielding less leukocytosis, lower cytokine release after virus delivery, better cost effectiveness and, potentially, improved performance in models of hemoglobinopathies.

About Magenta Therapeutics

Headquartered in Cambridge, Mass., Magenta Therapeutics is a clinical-stage biotechnology company developing novel medicines for patients with autoimmune diseases, blood cancers and genetic diseases. By creating a platform focused on critical areas of unmet need, Magenta Therapeutics is pioneering an integrated approach to allow more patients to receive one-time, curative therapies by making the process more effective, safer and easier.

Forward-Looking Statement

This press release may contain forward-looking statements and information within the meaning of The Private Securities Litigation Reform Act of 1995 and other federal securities laws, including express or implied statements regarding Magentas future expectations, plans and prospects, including, without limitation, statements regarding expectations and plans for presenting pre-clinical and clinical data, the anticipated timing of our clinical trials, and the development of our product candidates. The use of words such as may, will, could, should, expects, intends, plans, anticipates, believes, estimates, predicts, projects, seeks, endeavor, potential, continue or the negative of such words or other similar expressions can be used to identify forward-looking statements. The express or implied forward-looking statements included in this press release are only predictions and are subject to a number of risks, uncertainties and assumptions, including, without limitation: uncertainties inherent in clinical studies and in the availability and timing of data from ongoing clinical studies; whether interim results from a clinical trial will be predictive of the final results of the trial; whether results from preclinical studies or earlier clinical studies will be predictive of the results of future trials; the expected timing of submissions for regulatory approval or review by governmental authorities; regulatory approvals to conduct trials or to market products; risks, uncertainties and assumptions regarding the impact of the COVID-19 pandemic on Magentas business, operations, strategy, goals and anticipated timelines; and other risks concerning Magenta are described in additional detail in its risks set forth under the caption Risk Factors in Magentas most recent Annual Report on Form 10-K filed on March 3, 2020, as updated by Magentas most recent Quarterly Report on Form 10-Q and its other filings with the Securities and Exchange Commission. In light of these risks, uncertainties and assumptions, the forward-looking events and circumstances discussed in this press release may not occur and actual results could differ materially and adversely from those anticipated or implied in the forward-looking statements. You should not rely upon forward-looking statements as predictions of future events. Although Magenta believes that the expectations reflected in the forward-looking statements are reasonable, it cannot guarantee that the future results, levels of activity, performance or events and circumstances reflected in the forward-looking statements will be achieved or occur. Moreover, except as required by law, neither Magenta nor any other person assumes responsibility for the accuracy and completeness of the forward-looking statements included in this press release. Any forward-looking statement included in this press release speaks only as of the date on which it was made. We undertake no obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200514005469/en/

Read the original:
Magenta Therapeutics Presents Data at Annual Meeting of American Society of Gene and Cell Therapy Demonstrating Cells Mobilized with MGTA-145 in a...

Cellectar Granted Composition of Matter and Use Patent in Europe for CLR 131 – GlobeNewswire

FLORHAM PARK, N.J., May 14, 2020 (GLOBE NEWSWIRE) -- Cellectar Biosciences, Inc.(NASDAQ: CLRB), a clinical-stage biopharmaceutical company focused on the discovery, development and commercialization of drugs for the treatment of cancer, today announced that the European Patent Office has granted patent number EP 2440253 titled Ether and Alkyl Phospholipid Compounds for Treating Cancer and Imaging and Detection of Cancer Stem Cells." The patent provides composition of matter and use protection for the treatment and/or diagnosis of cancer and cancer stem cells for the companys Phase 2 lead asset CLR 131 and the proprietary PLE analogs combined with I-125 (CLR 125).

Few drugs have shown the capacity to target and effectively treat highly resistant cancer stem cells. We believe CLR 131s demonstrated ability to kill both conventional cancer cells as well as difficult-to-treat cancer stem cells is a unique treatment benefit of this drug, stated Jim Caruso CEO & president of Cellectar Biosciences. Importantly, this patent provides additional long-term protection for our lead compound CLR 131 in the second largest global market and represents an important expansion of our intellectual property protections for our portfolio of targeted oncology product candidates.

About Phospholipid Drug ConjugatesCellectar's product candidates are built upon a patented delivery platform that utilizes optimized phospholipid ether-drug conjugates (PDCs) to target cancer cells. The PDC platform selectively delivers diverse oncologic payloads to cancerous cells and cancer stem cells, including hematologic cancers and solid tumors. This selective delivery allows the payloads concentration within tumor cells to be increased while reducing the concentration in normal tissue, which may enhance drug potency while reducing adverse events. This platform takes advantage of a metabolic pathway utilized by all tumor cell types. Compared with other targeted delivery platforms, the PDC platforms mechanism of entry does not rely upon specific cell surface epitopes or antigens which can be modified or removed by tumor cells resulting in resistance to the treatment. In addition, PDCs can be conjugated to molecules in numerous ways, thereby increasing the types or classes of molecules that can be selectively delivered. Cellectar believes the PDC platform holds potential for the discovery and development of the next generation of cancer-targeting agents.

About CLR 131CLR 131 is a small-molecule Phospholipid Drug Conjugate designed to provide targeted delivery of iodine-131 (radioisotope) directly to cancer cells, while limiting exposure to healthy cells unlike many traditional on-market treatment options. CLR 131 is the companys lead product candidate and is currently being evaluated in a Phase 2 study in B-cell lymphomas, and a Phase 1 dose-escalating clinical study in pediatric solid tumors and lymphomas. The company recently completed a Phase 1 dose-escalation clinical study in r/r multiple myeloma. The FDA granted CLR 131 Fast Track Designation for both r/r multiple myeloma and r/r diffuse large b-cell lymphoma and Orphan Drug Designation (ODD) for the treatment of multiple myeloma, lymphoplasmacytic lymphoma/Waldenstroms macroglobulinemia, neuroblastoma, rhabdomyosarcoma, Ewings sarcoma and osteosarcoma. CLR 131 was also granted Rare Pediatric Disease Designations for the treatment of neuroblastoma, rhabdomyosarcoma, Ewings sarcoma and osteosarcoma. Most recently, the European Commission granted an ODD for r/r multiple myeloma.

About Cellectar Biosciences, Inc.Cellectar Biosciences is focused on the discovery, development and commercialization of drugs for the treatment of cancer. The company is developing proprietary drugs independently and through research and development collaborations. The companys core objective is to leverage its proprietary Phospholipid Drug Conjugate (PDC) delivery platform to develop PDCs that specifically target cancer cells, delivering improved efficacy and better safety as a result of fewer off-target effects. The companys PDC platform possesses the potential for the discovery and development of the next-generation of cancer-targeting treatments, and it plans to develop PDCs independently and through research and development collaborations.

The companys lead PDC therapeutic, CLR 131, is currently in two clinical studies. The CLOVER-1 Phase 2 study completed the Part A dose-exploration portion conducted in relapsed/refractory (r/r) B-cell malignancies and is now enrolling in the Part B expansion cohorts evaluating an approximate 100mCi total body dose of CLR 131 in relapsed/refractory (r/r) multiple myeloma (MM) and lymphoplasmacytic lymphoma/Waldenstroms macroglobulinemia (LPL/WM). The data from the Part A portion was announced on February 20, 2020. The company is also conducting a Phase 1 dose-escalation study in pediatric solid tumors and lymphomas.

The companys product pipeline includes one preclinical PDC chemotherapeutic program (CLR 1900) and several partnered PDC assets.

For more information, please visit http://www.cellectar.com or join the conversation by liking and following us on the companys social media channels: Twitter, LinkedIn, and Facebook.

Forward-Looking Statement DisclaimerThis news release contains forward-looking statements. You can identify these statements by our use of words such as "may," "expect," "believe," "anticipate," "intend," "could," "estimate," "continue," "plans," or their negatives or cognates. These statements are only estimates and predictions and are subject to known and unknown risks and uncertainties that may cause actual future experience and results to differ materially from the statements made. These statements are based on our current beliefs and expectations as to such future outcomes including our expectations of the impact of the recent COVID-19 pandemic. Drug discovery and development involve a high degree of risk. Factors that might cause such a material difference include, among others, uncertainties related to the ability to raise additional capital, uncertainties related to the disruptions at our sole source supplier of CLR 131, the ability to attract and retain partners for our technologies, the identification of lead compounds, the successful preclinical development thereof, patient enrollment and the completion of clinical studies, the FDA review process and other government regulation, our ability to maintain orphan drug designation in the United States for CLR 131, the volatile market for priority review vouchers, our pharmaceutical collaborators' ability to successfully develop and commercialize drug candidates, competition from other pharmaceutical companies, product pricing and third-party reimbursement. A complete description of risks and uncertainties related to our business is contained in our periodic reports filed with the Securities and Exchange Commission including our Form 10-K for the year ended December 31, 2019 and our Form 10-Q for the quarter ended March 31, 2020. These forward-looking statements are made only as of the date hereof, and we disclaim any obligation to update any such forward-looking statements. These forward looking statements are made only as of the date hereof, and we disclaim any obligation to update any such forward-looking statements.

Contacts

Investors:Monique KosseManaging DirectorLifeSci Advisors646-915-3820monique@lifesciadvisors.com

The rest is here:
Cellectar Granted Composition of Matter and Use Patent in Europe for CLR 131 - GlobeNewswire

Scientists generate millions of nave human pluripotent stem cells, far more than have ever been produced – UB News Center

BUFFALO, N.Y. For decades, the enormous disease-curing potential of human stem cells has been thwarted by the inability to produce sufficient quantities of mature human cells in vivo in a living organism.

Now, a team led by University at Buffalo scientists has developed a method that dramatically ramps up production of mature human cells in mouse embryos. Producing human cells in vivo is critical because cells made in a petri dish often do not behave the same way that cells do in the body.

The research was published on May 13 in Science Advances.

This is fundamental research that allows us to use the mouse embryo to help us better understand human development, said Jian Feng, PhD, corresponding author and professor of physiology and biophysics in the Jacobs School of Medicine and Biomedical Sciences at UB.

Further development of our technology could enable the generation of even larger quantities of specific types of mature human cells to allow us to create more effective mouse models to study diseases that gravely affect humans, such as malaria or COVID-19, said Feng.

And because this method produces so many mature human cells, it could potentially generate materials to treat chronic diseases, such as diabetes or kidney failure, by replacing a patients damaged cells with healthy human cells or tissues.

Infectious disease applications

Feng explained that it might be possible to create a much better mouse model of the human immune system or components of the human respiratory system in order to study COVID-19, a disease that wreaks havoc in humans, but barely affects mice.

It could also be possible to use the new method to produce mice with even more mature human red blood cells. Such mice would be very effective in the study of malaria, a disease which affects only humans by destroying our red blood cells.

We have a lot of questions to answer before the technology can be useful, but this is the first time that anyone has generated so many mature human cells in a mouse embryo, said Feng.

Millions of mature human cells in 17 days

Previous efforts to produce human cells in mouse embryos have generated small amounts of immature cells that are hard to quantify. In contrast, the UB method resulted in millions of mature human cells in a mouse embryo in 17 days.

In this study, the researchers injected 10-12 nave human stem cells into a mouse blastocyst when it was 3.5 days old. The mouse embryo then generated millions of mature human cells, including red blood cells, eye cells and liver cells, as it developed.

We know that up to four percent of the total number of cells in the mouse embryo were human cells, Feng. This is a low estimate because we cannot quantify the large amount of human red blood cells generated in the mouse embryo.

He said that because these mature human red blood cells do not have a nucleus, they are not counted by the method that the scientists use to quantify the total number of cells.

The teams technique involved overcoming an important challenge: Converting human pluripotent stem cells, which can differentiate into all types of cells in the body, into a form that is compatible with the inner cell mass inside a mouse blastocyst a three-day old mouse embryo. The human stem cells are in a primed state, whereas the inner cell mass inside the mouse blastocyst is in a nave state.

When the primed human cells are put into the mouse blastocyst, they fail to develop, said Feng, noting that the mismatch between the cells different developmental stages seems to be responsible.

We wanted to see if it was possible for the human primed cells to go back to the nave state, just like the pluripotent stem cells inside a mouse blastocyst, said Feng. This is what we have done.

Our method is to transiently inhibit the mTOR kinase for three hours to shock the human primed cells to the nave state, said Feng. Blocking the mTOR kinase triggers a series of events that rewire gene expression and cellular metabolism so that the primed cells become nave.

Converting the later stage human primed stem cells back to an earlier, less developed nave state allowed the human stem cells to co-develop with the inner cell mass in a mouse blastocyst.

The injected human stem cells now develop at the much more rapid pace of the mouse embryo, supporting the generation of millions of mature human cells in 17 days, said Feng.

In addition to Feng, UB co-authors are Zhixing Hu, Hanqin Li, Houbo Jiang, Yong Ren, and Boyang Zhang of the Department of Physiology and Biophysics, and Xinyang Yu and Michael J. Buck of the Department of Biochemistry, all of the Jacobs School. Other co-authors are Jingxin Qiu and Aimee B. Stablewski of the Roswell Park Comprehensive Cancer Center.

Funding for this research was provided by NYSTEM and the Buffalo Blue Sky Initiative.

Continue reading here:
Scientists generate millions of nave human pluripotent stem cells, far more than have ever been produced - UB News Center

Regenerative Medicine Industry Outlook to 2025 Featuring Novartis, Vericel, Integra Lifesciences, Mimedx Group, Stryker, Wright Medical, Roche and…

DUBLIN, May 14, 2020 /PRNewswire/ -- The "Global Regenerative Medicine Market By Therapy (Cell-Based Immunotherapy & Cell Therapy, Gene Therapy, Others), By Application, By Material, By Cell, By Product, By Technique, By Distribution Channel, By Region, Forecast & Opportunities, 2025" report has been added to ResearchAndMarkets.com's offering.

The Global Regenerative Medicine Market is expected to register a double digit CAGR through 2025 owing to their increasing use in repair, replacement or regeneration of cells, tissues and organs. Additionally, high prevalence of chronic & genetic dieses, emergence of stem cell technology and growing aging populations are some of the key factors driving the regenerative medicine market.

Regenerative medicines deal with process of replacing, engineering or regenerating human or animal cells, tissues or organs to restore or establish normal function. They are also being used to create solutions for organs that become permanently damaged. These medicines are also used in treatment of some uncurable dieses like arthritis and diabetes.

Increasing number of cancer patients, neurodegenerative, orthopedic, and other aging-associated disorders is creating a significant demand for the regenerative medicine market globally. Various countries like United States, China and Japan are investing in stem cell research, which indicates a bright future for regenerative medicine manufacturers.

The Global Regenerative Medicine Market also faces some restraints like high treatment costs, stringent government regulations and operative inefficiency. High investment required for developing the medicine might also limit the market growth.

The market is segmented based on therapy, application, material, cell, product, technique, distribution channel and region. The application segment comprises of musculoskeletal disorders, wound care, oncology, neurology, ocular disorders, diabetes, cardiology and others. Out of them, the musculoskeletal segment is expected to dominate the market during the forecast years owing to growing use of regenerative medicines for treating musculoskeletal disorders and increasing number of orthopedic diseases.

Based on material, the regenerative medicine market is segmented into synthetic material, biologically derived material, genetically engineered material and pharmaceutical. The biologically derived material dominated the regenerative medicine market in 2019 and is expected to further hold its position in the coming years due to its unique properties. This type of material promotes cellular interactions, increases proliferation and controls the manipulation of cellular behavior.

Major players operating in the Global Regenerative Medicine Market include Novartis AG, Vericel, Integra Lifesciences, Mimedx Group, Stryker, Wright Medical, Roche, Bristol-Myers Squibb, Allergan, Corline Biomedical, Cook Biotech, Pfizer, Baxter, Boehringer Ingelheim, Caladrius Biosciences, Takara Bio, Medtronic, Osiris Therapeutics, Kite Pharma, Organogenesis and others. Due to growing demand from Asia-Pacific region, the manufacturers are focusing on countries like India and China where geriatric population is increasing rapidly.

Years considered for this report:

Objective of the Study

Key Topics Covered

1. Product Overview

2. Research Methodology

3. Impact of COVID-19 on Global Regenerative Medicine Market

4. Executive Summary

5. Voice of Customer

6. Global Regenerative Medicine Market Outlook6.1. Market Size & Forecast6.1.1. By Value & Volume6.2. Market Share & Forecast6.2.1. By Therapy (Cell-Based Immunotherapy & Cell Therapy, Gene Therapy, Tissue-Engineering, Immunomodulation therapy, Blood transfusion, Bone marrow transplantation, Plasma rich plasma therapy, Prolotherapy, Others)6.2.2. By Application (Musculoskeletal Disorders, Wound Care, Oncology, Neurology, Ocular Disorders, Diabetes, Cardiology, Others)6.2.3. By Material (Synthetic Material, Biologically Derived Material, Genetically Engineered Material, Pharmaceutical)6.2.3.1. By Synthetic Material (Biodegradable Synthetic Polymers, Scaffold, Artificial Vascular Graft Materials, Hydrogel Materials)6.2.3.2. By Biologically Derived Material (Collagen, Xenogeneic Material)6.2.3.3. By Genetically Engineered Material (Genetically Manipulated Cells, 3D Polymer Technology, Transgenic, Fibroblast, Neural Stem Cells, Gene-activated Matrices)6.2.3.4. By Pharmaceutical (Small Molecules, Biologics)6.2.4. By Cell (Autologous, Allogenic)6.2.5. By Product (Biologic, Cell -based Medical Devices, Biopharmaceutical, Biomaterial)6.2.6. By Technique (Microfracture, Mosaicplasty)6.2.7. By Distribution Channel (Hospitals, Clinics, Online, Others)6.2.8. By Region6.2.9. By Company

7. North America Regenerative Medicine Market Outlook

8. Europe Regenerative Medicine Market Outlook

9. Asia-Pacific Regenerative Medicine Market Outlook

10. Middle East & Africa Printing Ink Market Outlook

11. South America Regenerative Medicine Market Outlook

12. Market Dynamics12.1. Drivers12.2. Challenges

13. Market Trends & Developments

14. Competitive Landscape14.1. Competition Outlook14.2. Company Profiles14.2.1. Novartis AG14.2.2. Vericel14.2.3. Integra Lifesciences14.2.4. Mimedx Group14.2.5. Stryker14.2.6. Wright Medical14.2.7. Roche14.2.8. Bristol-Myers Squibb14.2.9. Allergan14.2.10. Corline Biomedical14.2.11. Cook Biotech14.2.12. Pfizer14.2.13. Baxter14.2.14. Boehringer Ingelheim14.2.15. Caladrius Biosciences14.2.16. Takara Bio14.2.17. Medtronic14.2.18. Osiris Therapeutics14.2.19. Kite Pharma14.2.20. Organogenesis

15. Strategic Recommendations

For more information about this report visit https://www.researchandmarkets.com/r/2zlobm

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

Media Contact:

Research and Markets Laura Wood, Senior Manager press@researchandmarkets.com

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

View original content:http://www.prnewswire.com/news-releases/regenerative-medicine-industry-outlook-to-2025-featuring-novartis-vericel-integra-lifesciences-mimedx-group-stryker-wright-medical-roche-and-more-301059297.html

SOURCE Research and Markets

See the original post here:
Regenerative Medicine Industry Outlook to 2025 Featuring Novartis, Vericel, Integra Lifesciences, Mimedx Group, Stryker, Wright Medical, Roche and...

bluebird bio to Present Data from Its Gene and Cell Therapy Programs During the Virtual Edition of the 25th European Hematology Association Annual…

Presentation of new and updated results from ongoing Phase 1/2 HGB-206 study of LentiGlobin for sickle cell disease will include additional patients treated in the study

New and updated data, including analysis of healthy red blood cell production in patients with transfusion-dependent -thalassemia following treatment with betibeglogene autotemcel (LentiGlobin for -thalassemia) to be shared

CAMBRIDGE, Mass. bluebird bio, Inc. (Nasdaq: BLUE) announced today that data from its gene therapy programs for sickle cell disease (SCD), transfusion-dependent -thalassemia (TDT) and its cell therapy program for relapsed and refractory multiple myeloma (RRMM) will be presented during the Virtual Edition of the 25th European Hematology Association (EHA25) Annual Congress.

New data from the companys Phase 1/2 HGB-206 study of LentiGlobin gene therapy for SCD will be presented, including updated data from patients in Group C.

bluebird bio will also present data from its ongoing clinical studies of betibeglogene autotemcel (formerly LentiGlobin gene therapy for -thalassemia), including the Phase 3 Northstar-2 (HGB-207) study in patients who do not have a 0/0 genotype and the Phase 3 Northstar-3 (HGB-212) study in patients who have 0/0, 0/+IVS-I-110, or +IVS-I-110/+IVS-I-110 genotypes.

Data from studies of idecabtagene vicleucel (ide-cel; bb2121), the companys anti-B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) T cell therapy in development with Bristol Myers Squibb, will be presented, including an encore presentation of results from the pivotal Phase 2 KarMMa study.

Sickle Cell Disease Data at EHA25

Oral Presentation: Outcomes in patients treated with LentiGlobin for sickle cell disease (SCD) gene therapy: Updated results from the Phase 1/2 HGB-206 group C study Presenting Author: Julie Kanter, M.D., University of Alabama at Birmingham, Birmingham, Ala.

Transfusion-Dependent -Thalassemia Data at EHA25

Oral Presentation: Improvement in erythropoiesis in patients with transfusion-dependent -thalassemia following treatment with betibeglogene autotemcel (LentiGlobin for -thalassemia) in the Phase 3 HGB-207 study Presenting Author: John B. Porter, MA, M.D., FRCP, FRCPath, University College London Hospital, London, UK

Poster: Betibeglogene autotemcel (LentiGlobin) in patients with transfusion-dependent -thalassemia and 0/0, +IVS-I-110/+IVS-I-110, or 0/+IVS-I-110 genotypes: Updated results from the HGB-212 study Presenting Author: Evangelia Yannaki, M.D., George Papanicolaou Hospital, Thessaloniki, Greece

Multiple Myeloma Data at EHA25

Oral Presentation:Phase II KarMMa study: Idecabtagene vicleucel (ide-cel; bb2121), a BCMA-targeted CAR T cell therapy, in patients with relapsed and refractory multiple myeloma Presenting Author: Jesus San-Miguel, M.D., Ph.D., Clinica Universidad de Navarra, Navarra, Spain

Poster: Quality of life in patients with relapsed and refractory multiple myeloma treated with the BCMA-targeted CAR T cell therapy Idecabtagene vicleucel (ide-cel; bb2121): results from the KarMMa Trial Presenting Author: Michel Delforge, M.D., Ph.D., Leuven University College, Brussels, Belgium

Poster: Matching-adjusted indirect comparisons of efficacy outcomes for idecabtagene vicleucel from the KarMMa study vs selinexor PLUS dexamethasone (STORM part 2) and belantamab mafodotin (DREAMM-2) Presenting Author: Paula Rodriguez-Otero, M.D., Clinica Universidad de Navarra, Navarra, Spain

Poster: Baseline and postinfusion pharmcodynamic biomarkers of safety and efficacy in patients treated with idecabtagene vicleucel (ide-cel; bb2121) in the KarMMa study Presenting Author: Justine DellAringa, Bristol Myers Squibb, Seattle, Wash.

Poster: Correlation of tumor BCMA expression with response and acquired resistance to idecabtagene vicleucel in the KarMMa study in relapsed and refractory multiple myeloma Presenting Author: Nathan Martin, Bristol Myers Squibb, Seattle, Wash.

Abstracts outlining bluebird bios accepted data at the EHA25 Virtual Congress have been made available on the EHA25 conference website. On Friday, June 12 at 8:30 AM CEST, the embargo will lift for poster and oral presentations accepted for EHA25.

About betibeglogene autotemcel The European Commission granted conditional marketing authorization (CMA) for betibeglogene autotemcel, marketed as ZYNTEGLO gene therapy, for patients 12 years and older with TDT who do not have a 0/0 genotype, for whom hematopoietic stem cell (HSC) transplantation is appropriate, but a human leukocyte antigen (HLA)-matched related HSC donor is not available. On April 28, 2020, the European Medicines Agency (EMA) renewed the CMA for ZYNTEGLO, supported by data from 32 patients treated with ZYNTEGLO including three patients with up to five years of follow-up.

TDT is a severe genetic disease caused by mutations in the -globin gene that result in reduced or significantly reduced hemoglobin (Hb). In order to survive, people with TDT maintain Hb levels through lifelong chronic blood transfusions. These transfusions carry the risk of progressive multi-organ damage due to unavoidable iron overload.

Betibeglogene autotemcel adds functional copies of a modified form of the -globin gene (A-T87Q-globin gene) into a patients own hematopoietic (blood) stem cells (HSCs). Once a patient has the A-T87Q-globin gene, they have the potential to produce HbAT87Q, which is gene therapy-derived hemoglobin, at levels that may eliminate or significantly reduce the need for transfusions.

Non-serious adverse events (AEs) observed during the clinical studies that were attributed to betibeglogene autotemcel were abdominal pain, thrombocytopenia, leukopenia, neutropenia, hot flush, dyspnoea, pain in extremity, and non-cardiac chest pain. One serious adverse event (SAE) of thrombocytopenia was considered possibly related to LentiGlobin for -thalassemia for TDT.

Additional AEs observed in clinical studies were consistent with the known side effects of HSC collection and bone marrow ablation with busulfan, including SAEs of veno-occlusive disease.

The CMA for ZYNTEGLO is only valid in the 28 member states of the EU as well as Iceland, Liechtenstein and Norway. For details, please see the Summary of Product Characteristics (SmPC).

The U.S. Food and Drug Administration granted betibeglogene autotemcel Orphan Drug status and Breakthrough Therapy designation for the treatment of TDT. Betibeglogene autotemcel is not approved in the United States.

Betibeglogene autotemcel continues to be evaluated in the ongoing Phase 3 Northstar-2 and Northstar-3 studies. For more information about the ongoing clinical studies, visit http://www.northstarclinicalstudies.com or clinicaltrials.gov and use identifier NCT02906202 for Northstar-2 (HGB-207), NCT03207009 for Northstar-3 (HGB-212).

About LentiGlobin for Sickle Cell Disease LentiGlobin for sickle cell disease is an investigational gene therapy being studied as a potential treatment for SCD. bluebird bios clinical development program for LentiGlobin for SCD includes the ongoing Phase 1/2 HGB-206 study and the ongoing Phase 3 HGB-210 study.

SCD is a serious, progressive and debilitating genetic disease caused by a mutation in the -globin gene that leads to the production of abnormal sickle hemoglobin (HbS), causing red blood cells (RBCs) to become sickled and fragile, resulting in chronic hemolytic anemia, vasculopathy and painful vaso-occlusive crises (VOCs). For adults and children living with SCD, this means unpredictable episodes of excruciating pain due to vaso-occlusion as well as other acute complicationssuch as acute chest syndrome (ACS), stroke, and infections, which can contribute to early mortality in these patients.

LentiGlobin for SCD received Orphan Medicinal Product designation from the European Commission for the treatment of SCD.

The U.S. Food and Drug Administration (FDA) granted Orphan Drug status and Regenerative Medicine Advanced Therapy designation for LentiGlobin for the treatment of SCD.

LentiGlobin for SCD is investigational and has not been approved by the European Medicines Agency (EMA) or FDA.

bluebird bio is conducting a long-term safety and efficacy follow-up study (LTF-303) for people who have participated in bluebird bio-sponsored clinical studies of betibeglogene autotemcel and LentiGlobin for SCD. For more information visit: https://www.bluebirdbio.com/our-science/clinical-trials or clinicaltrials.gov and use identifier NCT02633943 for LTF-303.

About idecabtagene vicleucel (ide-cel; bb2121) Ide-cel is a B-cell maturation antigen (BCMA)-directed genetically modified autologous chimeric antigen receptor (CAR) T cell immunotherapy. The ide-cel CAR is comprised of a murine extracellular single-chain variable fragment (scFv) specific for recognizing BCMA, attached to a human CD8 hinge and transmembrane domain fused to the T cell cytoplasmic signaling domains of CD137 4-1BB and CD3- chain, in tandem. Ide-cel recognizes and binds to BCMA on the surface of multiple myeloma cells leading to CAR T cell proliferation, cytokine secretion, and subsequent cytolytic killing of BCMA-expressing cells.

In addition to the pivotal KarMMa trial evaluating ide-cel in patients with relapsed and refractory multiple myeloma, bluebird bio and Bristol Myers Squibbs broad clinical development program for ide-cel includes clinical studies (KarMMa-2, KarMMa-3, KarMMa-4) in earlier lines of treatment for patients with multiple myeloma, including newly diagnosed multiple myeloma. For more information visit clinicaltrials.gov.

Ide-cel was granted Breakthrough Therapy Designation (BTD) by the U.S. Food and Drug Administration (FDA) and PRIority Medicines (PRIME) designation, as well as Accelerated Assessment status, by the European Medicines Agency for relapsed and refractory multiple myeloma.

Ide-cel is being developed as part of a Co-Development, Co-Promotion and Profit Share Agreement between Bristol Myers Squibb and bluebird bio.

Ide-cel is not approved for any indication in any geography.

About KarMMa KarMMa (NCT03361748) is a pivotal, open-label, single-arm, multicenter, multinational, Phase 2 study evaluating the efficacy and safety of ide-cel in adults with relapsed and refractory multiple myeloma in North America and Europe. The primary endpoint of the study is overall response rate as assessed by an independent review committee (IRC) according to the International Myeloma Working Group (IMWG) criteria. Complete response rate is a key secondary endpoint. Other efficacy endpoints include time to response, duration of response, progression-free survival, overall survival, minimal residual disease evaluated by Next-Generation Sequencing (NGS) assay and safety. The study enrolled 140 patients, of whom 128 received ide-cel across the target dose levels of 150-450 x 10P6P CAR+ T cells after receiving lymphodepleting chemotherapy. All enrolled patients had received at least three prior treatment regimens, including an immunomodulatory agent, a proteasome inhibitor and an anti-CD38 antibody, and were refractory to their last regimen, defined as progression during or within 60 days of their last therapy.

About bluebird bio, Inc. bluebird bio is pioneering gene therapy with purpose. From our Cambridge, Mass., headquarters, were developing gene therapies for severe genetic diseases and cancer, with the goal that people facing potentially fatal conditions with limited treatment options can live their lives fully. Beyond our labs, were working to positively disrupt the healthcare system to create access, transparency and education so that gene therapy can become available to all those who can benefit.

bluebird bio is a human company powered by human stories. Were putting our care and expertise to work across a spectrum of disorders including cerebral adrenoleukodystrophy, sickle cell disease, -thalassemia and multiple myeloma, using three gene therapy technologies: gene addition, cell therapy and (megaTAL-enabled) gene editing.

bluebird bio has additional nests in Seattle, Wash.; Durham, N.C.; and Zug, Switzerland. For more information, visit bluebirdbio.com.

Follow bluebird bio on social media: @bluebirdbio, LinkedIn, Instagram and YouTube.

ZYNTEGLO, LentiGlobin, and bluebird bio are trademarks of bluebird bio, Inc.

Forward-Looking Statements This release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any forward-looking statements are based on managements current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to: regarding the potential for betibeglogene autotemcel to treat transfusion-dependent -thalassemia and the potential for LentiGlobin for sickle cell disease (SCD) to treat SCD; and the risk that the efficacy and safety results from our prior and ongoing clinical trials will not continue or be repeated in our ongoing or planned clinical trials. For a discussion of other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled Risk Factors in our most recent Form 10-Q, as well as discussions of potential risks, uncertainties, and other important factors in our subsequent filings with the Securities and Exchange Commission. All information in this press release is as of the date of the release, and bluebird bio undertakes no duty to update this information unless required by law.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200514005234/en/

Contacts

Media: Catherine Falcetti, 339-499-9436 cfalcetti@bluebirdbio.com Victoria von Rinteln, 617-914-8774 vvonrinteln@bluebirdbio.com

Investors: Ingrid Goldberg, 410-960-5022 Ingrid.goldberg@bluebirdbio.com Elizabeth Pingpank, 617-914-8736 epingpank@bluebirdbio.com

#distro

Excerpt from:
bluebird bio to Present Data from Its Gene and Cell Therapy Programs During the Virtual Edition of the 25th European Hematology Association Annual...

Doctors just discovered another promising coronavirus therapy – BGR

The novel coronavirus cant be killed or stopped with the current drugs that we have, the WHO said earlier this week. Dr. Anthony Fauci said separately that its virtually impossible to eradicate the virus. But there are plenty of therapies that can be used to reduce the severity of COVID-19 and shorten the recovery period.

The WHO is studying four or five of the best drugs for the new illness, but there are plenty of new lines of therapy that are discovered on a regular basis. The latest one consists of a treatment thats usually given to Duchenne muscular dystrophy patients.

Cedars-Sinai doctors have given six patients an experimental treatment consisting of cells grown from human heart tissues, according to ABC7. This therapy improved the overall condition of all patients, each of whom were critically ill before the Hail Mary treatment was administered. Four of them have come off ventilators and were discharged, while the other two are still in the hospital, but theyre alive.

Dr. Eduardo Marban and his colleagues were using the treatment for muscular dystrophy patients with heart failure before considering it for COVID-19. The novel coronavirus can do severe damage to the heart, and that may have been the reason why the doctors attempted this novel therapy.

This can only be considered anecdotal evidence at best, but the doctors are hoping that the FDA can approve a more extensive study that can evaluate the benefits of the therapy. The doctors have additional doses available in the freezer for the research.

Cells grown from human heart tissues sound a lot like stem cells, although the report doesnt refer to them as such. This wouldnt be the first time that stem cell use would prove to be helpful in COVID-19 cases. A few weeks ago, doctors from Mount Sinai reported theyve treated 12 patients using stem cells derived from bone marrow, and the therapy allowed 10 of them to come off ventilators. Those physicians also noted that further study is required.

Marban and his colleagues detailed the benefits of injections of cardiac progenitor cells (cardiosphere-derived cells or CDCs) for patients with muscular dystrophy in February 2018. Cardiosphere-derived cells are stem cells derived from cardiac tissue.

We unexpectedly found that treating the heart made the whole body better, Marban said at the time. These basic findings, which have already been translated to clinical trials, rationalize why treating the heart may also benefit skeletal muscle function in boys and young men with Duchenne.

The study showed the stem cells acted not just on the heart tissue, but also on skeletal muscle, and that the benefits persisted. We found that within a few weeks, the injected cells were undetectable, Marban said, but the benefits persisted for at least three months, which led us to discover that exosomes secreted by CDCs are responsible.

The same type of therapy was likely used to treat COVID-19 patients.

Image Source: John Minchillo/AP/Shutterstock

Chris Smith started writing about gadgets as a hobby, and before he knew it he was sharing his views on tech stuff with readers around the world. Whenever he's not writing about gadgets he miserably fails to stay away from them, although he desperately tries. But that's not necessarily a bad thing.

Continue reading here:
Doctors just discovered another promising coronavirus therapy - BGR

Cell therapy firm boosts odds for blood cancer patients as key trial succeeds – The Times of Israel

Israels Gamida Cell, the manufacturer of a stem cell therapy that aims to increase the success of bone marrow transplants in blood cancer patients, said on Tuesday that a key late-stage clinical trial of its treatment has yielded positive results and met a major target.

Shares of the Jerusalem-based biotech firm were up 49 percent on the Nasdaq at the open of the exchange, on the news of the potentially life-saving treatment option for patients who need bone marrow transplants.

In the multinational Phase III clinical trial, conducted at more than 50 centers around the world, blood cancer patients who received bone marrow transplants were treated with the stem-cell based therapy Omidubicel, previously called NiCord.

Get The Start-Up Israel's Daily Start-Up by email and never miss our top storiesFree Sign Up

Those who were injected with the treatment containing expanded and enhanced stem cells had a median time of neutrophil engraftment that was significantly shorter than those that did not receive the drug: 12 days compared with 22 days for patients who received a standard umbilical cord blood transplant, the company said. Neutrophil engraftment is a measure of how quickly stem cells received in a transplant are established and begin to make healthy new cells. A rapid neutrophil engraftment has been associated with fewer infections and shorter hospitalizations.

said Julian Adams, the chief executive officer of Gamida Cell (Courtesy)

I am so thrilled and excited for Gamida and for patients, said the firms CEO Julian Adams, the chief executive officer of Gamida Cell in a phone interview. Omidubicel will transform the bone marrow transplant market we will grow the market and treat more patients and hopefully have more patients cured.

The treatment was given to cancer patients in remission who needed a transplant to stop the recurrence of the disease, he said.

Among patients who were transplanted per protocol, 96 percent of patients who received Omidubicel achieved successful neutrophil engraftment, compared to 88 percent of patients in the comparative group, the company said in a statement.

Omidubicel, which would be the first drug developed by Gamida to hit the market, is believed to increase the chances of a successful bone marrow transplantation process for patients who do not have a rapidly available, fully matched bone marrow donor.

Despite the curative potential of bone marrow transplant, it is estimated that more than 40 percent of eligible patients in the United States do not receive a transplant for various reasons, including the lack of a matched donor.

Today some high-risk blood cancers cannot be cured unless the patient undergoes a bone marrow graft. For that purpose, a perfect match needs to be found, a process that in the US takes an average of three to four months, if the patient is lucky. Sometimes, no match is found.

Umbilical cord blood collected from newborn babies contains stem cells, which can be used to treat diseases. Today cord-blood banks around the world store the cord blood. Its great advantage is that because it is so young, there is no need for a full tissue matching and a partial match is enough. Most patients generally find at least one unit of cord blood that partially matches them.

The problem is that the quantity of cells in each unit is not huge, and it is the number of stem cells in the cord blood that is critical to the success of transplantation.

Gamida overcomes this limitation by expanding the number of stem cells within one unit of umbilical cord blood and enhancing their performance.

Stem cells in bag in Gamida Cells Jerusalem lab, July 2017 (Shoshanna Solomon/TimesofIsrael)

These results have the potential to substantially move the field forward and represent an important step toward making stem cell transplantation more accessible and more successful for patients with lethal blood cancers, said Dr Mitchell Horwitz, principal investigator and professor of medicine at the Duke Cancer Institute. Shortening the time to engraftment is clinically meaningful, as it can reduce a patients time in the hospital and decrease likelihood of infection.

The trial included 125 patients aged 1265 years with acute lymphoblastic leukemia, acute myelogenous leukemia, chronic myelogenous leukemia, myelodysplastic syndrome or lymphoma. It was conducted at clinical centers in the United States, Latin America, Europe and Asia.

Omidubicel has the potential to be the first FDA-approved bone marrow transplant graft, said the CEO Adams.

There are still further steps ahead, he warned, with key secondary targets that need to be met, like evaluating if the treatment can reduce the number of infections as well as cut back on hospital days. Survival endpoints will also need to be met, he said. There is a lot of work to be done, Adams added. But the primary time-to- neutrophil-engrafment target, which the company has just met, is a milestone in a journey to bring Omidubicel to patients in the market.

The firm expects to apply for a US Food and Drug Administration license to market the product in the fourth quarter of 2020, he said. And if all goes well, then the firm will be in a position to launch Omidubicel in the US market in the second half of 2021.

Omidubicel is also being evaluated in an early clinical study in patients with severe aplastic anemia, the company said.

The rest is here:
Cell therapy firm boosts odds for blood cancer patients as key trial succeeds - The Times of Israel