Category Archives: Stem Cell Treatment


Culture of human nasal olfactory stem cells and their extracellular vesicles as advanced therapy medicinal products – Newswise

Abstract: The olfactory ecto-mesenchymal stem cell (OE-MSC) are mesenchymal stem cells originating from the lamina propria of the nasal mucosa. They have neurogenic and immune-modulatory properties and showed therapeutic potential in animal models of spinal cord trauma, hearing loss, Parkinsons disease, amnesia, and peripheral nerve injury. In this paper we designed a protocol that meet the requirements set by human health agencies to manufacture these stem cells for clinical applications. Once purified, OE-MSCs can be used per se or expanded in order to get the extracellular vesicles (EV) they secrete. A protocol for the extraction of these vesicles was validated and the EV from the OE-MSC were functionally tested on an in vitro model. Nasal mucosa biopsies from three donors were used to validate the manufacturing process of clinical grade OE-MSC. All stages were performed by expert staff of the cell therapy laboratory according to aseptic handling manipulations, requiring grade A laminar airflow. Enzymatic digestion provides more rapidly a high number of cells and is less likely to be contaminated. Foetal calf serum was replaced with human platelet lysate and allowed stronger cell proliferation, with the optimal percentage of platelet lysate being 10%. Cultivated OE-MSCs are sterile, highly proliferative (percentage of CFU-F progenitors was 15,5%) and their maintenance does not induce chromosomal rearrangement (karyotyping and chromosomal microarray analysis were normal). These cells express the usual phenotypic markers of OE-MSC. Purification of the EVs was performed with ultracentrifugation and size exclusion chromatography. Purified vesicles expressed the recognized markers of EVs (Minimal Information for Studies of Extracellular Vesicles (MISEV) guidelines) and promoted cell differentiation and neurite elongation in a model of neuroblastoma Neuro2a cell line. We developed a safer and more efficient manufacturing process for clinical-grade olfactory stem cells, these cells can now be used in humans. A phase I clinical trial will begin soon. An efficient protocol for the purification of the OE-MSC EVs have been validated. These EVs exert neurogenic properties in vitro. More studies are needed to understand the exact mechanisms of action of these EVs and prove their efficacy and safety in animal models.

Follow this link:
Culture of human nasal olfactory stem cells and their extracellular vesicles as advanced therapy medicinal products - Newswise

Fate Therapeutics Announces Preclinical Publication Highlighting Derivation of CD8 T Cells from TCR-CAR+ Induced Pluripotent Stem Cells -…

TCR-CAR+ iPSC-derived CD8 T Cells Induced Complete and Durable Responses In Vivo in Systemic Leukemia Model

Cell-surface Markers, Gene Transcription Profile, and In Vivo Anti-tumor Activity of TCR-CAR+ iPSC-derived CD8 T Cells Compared Favorably with Healthy-donor Peripheral Blood CAR T Cells

Phase 1 Study Ongoing of First-ever iPSC-derived T-cell Product Candidate FT819 for Off-the-shelf Treatment of Patients with Relapsed / Refractory B-cell Malignancies

SAN DIEGO, Aug. 09, 2022 (GLOBE NEWSWIRE) -- Fate Therapeutics, Inc. ( FATE), a clinical-stage biopharmaceutical company dedicated to the development of programmed cellular immunotherapies for patients with cancer, today announced the publication of preclinical study results demonstrating the successful generation, durable anti-tumor response, and functional persistence of TCR-CAR+ iPSC-derived CD8 T cells from induced pluripotent stem cells (iPSCs). The CD8 T cells were derived from a single engineered iPSC integrating a novel chimeric antigen receptor (CAR) transgene into the T-cell receptor alpha constant (TRAC) locus, ensuring complete bi-allelic disruption of T-cell receptor (TCR) expression and promoting uniform CAR expression. The discoveries were made under a multi-year research collaboration between the Company and Memorial Sloan Kettering Cancer Center (MSK) led by Michel Sadelain, M.D., Ph.D., Director, Center for Cell Engineering and Head, Gene Expression and Gene Transfer Laboratory, and were published this week in Nature Biomedical Engineering.

Scientists have previously differentiated induced pluripotent stem cells to form CAR T cells, however, it was observed that premature TCR or constitutive CAR expression resulted in the derivation of innate-like T cells that do not acquire the phenotype nor exhibit the function of conventional CD8 T cells, said Dr. Sadelain. Our published findings are the first to show the generation of iPSC-derived CD8 CAR T cells lacking a TCR, where timed and calibrated expression of the CAR in place of the TCR successfully drove T-cell maturation and promoted the acquisition of a transcriptional and functional profile more closely resembling that of natural CD8 T cells.

The mass production of TCR-CAR+ CD8 T cells from master engineered iPSC lines is a promising approach for development of off-the-shelf, cell-based cancer immunotherapies. Through a systematic assessment of factors that affect T-cell lineage commitment and induce adaptive T-cell formation, the researchers discovered that integrating the CAR construct into the TRAC locus delayed its expression and drove T-cell lineage commitment, and that regulation of CAR signaling strength promoted the generation of CD4+CD8+ double-positive cells mimicking thymic development in the absence of a TCR. Subsequent stimulation of the CAR matured the double-positive population into single-positive CD8 T cells with a phenotype highly correlated with peripheral blood CD8 effector T cells and distinct from T cells and natural killer cells. Preclinical studies showed that iPSC-derived TCR-CAR+ CD8 T cells were able to repeatedly lyse tumor cells in vitro and durably control leukemia in vivo, with persistence in the bone marrow, spleen, and blood, in a systemic NALM6 leukemia model.

These published findings continue to support our unique ability to generate TCR-CAR+ CD8 T cells from master engineered iPSC lines that exhibit a phenotypic profile and anti-tumor activity comparable to healthy donor-derived peripheral blood CAR T cells in preclinical model systems, said Scott Wolchko, President and Chief Executive Officer of Fate Therapeutics. We believe our off-the-shelf, iPSC-derived CAR T cell programs overcome the numerous challenges associated with the manufacture, consistency, and reach of autologous and allogeneic CAR T cells, and we look forward to sharing initial clinical data from our landmark Phase 1 study of FT819 later this year.

The Company is conducting a multicenter Phase 1 study of FT819, the first T-cell therapy manufactured from a clonal master iPSC line to undergo clinical investigation. The product candidates clonal engineered master iPSC line is created from a single iPSC that has a novel CD19-targeted 1XX CAR construct integrated into the TRAC locus, ensuring complete bi-allelic disruption of TCR expression to prevent graft-versus-host disease and promoting uniform CAR expression for enhanced anti-tumor activity. Dose escalation is currently ongoing in single-dose and multi-dose escalation cohorts for relapsed / refractory B-cell malignancies.

Pursuant to a license agreement with MSK, Fate Therapeutics has an exclusive license for all human therapeutic use to U.S. Patent No. 10,370,452, which covers compositions and uses of effector T cells expressing a CAR, where such T cells are derived from a pluripotent stem cell including an iPSC. In addition to the patent rights licensed from MSK, the Company owns an extensive intellectual property portfolio that broadly covers compositions and methods for the genome editing of iPSCs using CRISPR and other nucleases, including the use of CRISPR to insert a CAR in the TRAC locus for endogenous transcriptional control.

Fate Therapeutics has licensed intellectual property from MSK on which Dr. Sadelain is an inventor. As a result of the licensing arrangement, MSK has financial interests related to Fate Therapeutics.

About Fate Therapeutics iPSC Product Platform The Companys proprietary induced pluripotent stem cell (iPSC) product platform enables mass production of off-the-shelf, engineered, homogeneous cell products that are designed to be administered with multiple doses to deliver more effective pharmacologic activity, including in combination with other cancer treatments. Human iPSCs possess the unique dual properties of unlimited self-renewal and differentiation potential into all cell types of the body. The Companys first-of-kind approach involves engineering human iPSCs in a one-time genetic modification event and selecting a single engineered iPSC for maintenance as a clonal master iPSC line. Analogous to master cell lines used to manufacture biopharmaceutical drug products such as monoclonal antibodies, clonal master iPSC lines are a renewable source for manufacturing cell therapy products which are well-defined and uniform in composition, can be mass produced at significant scale in a cost-effective manner, and can be delivered off-the-shelf for patient treatment. As a result, the Companys platform is uniquely designed to overcome numerous limitations associated with the production of cell therapies using patient- or donor-sourced cells, which is logistically complex and expensive and is subject to batch-to-batch and cell-to-cell variability that can affect clinical safety and efficacy. Fate Therapeutics iPSC product platform is supported by an intellectual property portfolio of over 350 issued patents and 150 pending patent applications.

About FT819 FT819 is an investigational, universal, off-the-shelf, T-cell receptor (TCR)-less CD19 chimeric antigen receptor (CAR) T-cell cancer immunotherapy derived from a clonal master induced pluripotent stem cell (iPSC) line, which is engineered with the following features designed to improve the safety and efficacy of CAR19 T-cell therapy: a novel 1XX CAR signaling domain, which has been shown to extend T-cell effector function without eliciting exhaustion; integration of the CAR19 transgene directly into the T-cell receptor alpha constant (TRAC) locus, which has been shown to promote uniform CAR19 expression and enhanced T-cell potency; and complete bi-allelic disruption of TCR expression for the prevention of graft-versus-host disease. FT819 demonstrated antigen-specific cytolytic activity in vitro against CD19-expressing leukemia and lymphoma cell lines comparable to that of primary CAR T cells, and persisted and maintained tumor clearance in the bone marrow in an in vivo disseminated xenograft model of lymphoblastic leukemia. FT819 is being investigated in a multicenter Phase 1 clinical trial for the treatment of relapsed / refractory B-cell malignancies, including B-cell lymphoma, chronic lymphocytic leukemia, and acute lymphoblastic leukemia (NCT04629729).

About Fate Therapeutics, Inc. Fate Therapeutics is a clinical-stage biopharmaceutical company dedicated to the development of first-in-class cellular immunotherapies for patients with cancer. The Company has established a leadership position in the clinical development and manufacture of universal, off-the-shelf cell products using its proprietary induced pluripotent stem cell (iPSC) product platform. The Companys immuno-oncology pipeline includes off-the-shelf, iPSC-derived natural killer (NK) cell and T-cell product candidates, which are designed to synergize with well-established cancer therapies, including immune checkpoint inhibitors and monoclonal antibodies, and to target tumor-associated antigens using chimeric antigen receptors (CARs). Fate Therapeutics is headquartered in San Diego, CA. For more information, please visit http://www.fatetherapeutics.com.

Forward-Looking Statements This release contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995 including statements regarding the advancement of and plans related to the Company's product candidates, clinical studies and preclinical research and development programs, the Companys progress, plans and timelines for the manufacture and clinical investigation of its product candidates, the Companys initiation and continuation of enrollment in its clinical trials including additional dose cohorts in ongoing clinical trials of its product candidates, the therapeutic and market potential of the Companys product candidates, and the Companys clinical development strategy, including for its product candidate FT819. These and any other forward-looking statements in this release are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk that the Companys product candidates may not demonstrate the requisite safety or efficacy to warrant further development or to achieve regulatory approval, the risk that results observed in prior studies of the Companys product candidates, including preclinical studies and clinical trials, will not be observed in ongoing or future studies involving these product candidates, the risk of a delay or difficulties in the manufacturing of the Companys product candidates or in the initiation and conduct of, or enrollment of patients in, any clinical trials, the risk that the Company may cease or delay preclinical or clinical development of any of its product candidates for a variety of reasons (including requirements that may be imposed by regulatory authorities on the initiation or conduct of clinical trials, changes in the therapeutic, regulatory, or competitive landscape for which the Companys product candidates are being developed, the amount and type of data to be generated or otherwise to support regulatory approval, difficulties or delays in patient enrollment and continuation in the Companys ongoing and planned clinical trials, difficulties in manufacturing or supplying the Companys product candidates for clinical testing, and any adverse events or other negative results that may be observed during preclinical or clinical development), the risk that results observed in preclinical studies of FT819 may not be replicated in ongoing or future clinical trials, and the risk that FT819 may not produce therapeutic benefits or may cause other unanticipated adverse effects. For a discussion of other risks and uncertainties, and other important factors, any of which could cause the Companys actual results to differ from those contained in the forward-looking statements, see the risks and uncertainties detailed in the Companys periodic filings with the Securities and Exchange Commission, including but not limited to the Companys most recently filed periodic report, and from time to time in the Companys press releases and other investor communications. Fate Therapeutics is providing the information in this release as of this date and does not undertake any obligation to update any forward-looking statements contained in this release as a result of new information, future events or otherwise.

Contact: Christina Tartaglia Stern Investor Relations, Inc. 212.362.1200 [emailprotected]

Link:
Fate Therapeutics Announces Preclinical Publication Highlighting Derivation of CD8 T Cells from TCR-CAR+ Induced Pluripotent Stem Cells -...

Desperate long Covid sufferers are trying every therapy, from ozone treatment to stem cell infusion – Scroll.in

People with long Covid are going online to look for support. But these valuable discussion forums, chat groups and other online peer-support networks can also spread harmful misinformation.

Online groups allow unproven therapies to be promoted, sometimes by members who believe they are sharing helpful information. Sometimes entrepreneurs are promoting their unproven therapies directly.

Health researchers admit there are few evidence-based treatments for long Covid. In the face of such uncertainty, people with debilitating symptoms can be tempted by unproven options such as blood washing, stem cell infusions and ozone treatments.

Some despairing people with long Covid say they are willing to try any therapy if theres hope it improves their health.

People with long Covid can suffer debilitating health problems that make it difficult to return to work or activities they once enjoyed. Symptoms include fatigue, brain fog, chronic pain, depression and anxiety.

They have had to fight to receive medical attention or recognition of their symptoms. Indeed, it was patient-led activism that first made the public and health professionals aware how symptoms can extend for months, even after an initially mild Covid infection.

Online discussion forums such as Reddit, as well as networks on Facebook and Twitter, have made a major difference to the long Covid community.

In the face of a lack of medical knowledge about long Covid and sometimes denial it exists, these peer networks offer emotional support and share important information about symptoms and treatments.

Reddit has a forum with tens of thousands of members discussing supplements and treatments for long Covid. This approach has been called crowdsourced medicine.

However, there are pitfalls and potential dangers of this kind of online networking and crowdsourced medicine the potential for spreading misinformation.

This issue has been a problem for a long time, particularly with other contested illnesses the medical profession has often dismissed. These include the chronic pain condition fibromyalgia and myalgic encephalomyelitis (chronic fatigue syndrome).

Weve also seen the spread of health misinformation in online patient forums and social media content about earlier infectious diseases, such as Zika virus, as well as throughout the current pandemic on topics including masks and vaccines.

Medical science is attempting to research long Covid and find treatments, but this kind of research takes time.

Meanwhile, people wanting answers and help for their symptoms are forced to turn to online sources, where the testing and review of treatments are under far less expert scrutiny.

On Reddit and other sites, the volume of content members must somehow make sense of is overwhelming.

Individuals, doctors and pharmaceutical company representatives are among those who have promoted experimental therapies that have not been thoroughly tested with clinical trials.

Some individuals or groups are exploiting peoples desperation, using long Covid support networks to attempt to profit from offering treatment plans or alternative therapies such as vitamin supplements and ozone treatment.

Some long Covid groups are are still recommended drugs such as the now scientifically discredited Covid treatment ivermectin.

Some patients have spent large sums of money on dubious therapies. Serious ethical concerns are raised by these actions, including the potential for these therapies to cause harm and worsen peoples health.

People with long Covid

People with long Covid should carefully weigh any anecdotal recommendations about treatment they come across online and think twice before sharing it.

Some have suggested a code of conduct for long Covid support groups that prohibits members from recommending treatments while allowing them to discuss their own experiences. This could help limit the spread of false information. A code of conduct could also ban the promotion of for-profit treatment programs to remove the risk of members being scammed.

However, this would require close moderation and not all sites or social media groups have such resources.

Hunting down the source of information about long Covid treatments and seeing if theres any links to published scientific evidence is another way to exercise caution.

Health workers

There are important lessons for health-care providers in understanding the needs of people with long Covid.

This includes the importance of providing a timely diagnosis and access to up-to-date valid medical information as well as acknowledging the uncertainties and distress many people feel.

Partnering with patients by acknowledging their lived expertise and together working for a solution would go a long way to help people who feel unheard and want to play an active role in improving their health.

The medical profession is beginning to recognise these issues and has also begun to identify how a better understanding of long Covid could cast light on better recognition and treatment for other contested illnesses.

Deborah Lupton is SHARP Professor, leader of the Vitalities Lab, Centre for Social Research in Health and Social Policy Centre at UNSW Sydney, and leader of the UNSW Node of the ARC Centre of Excellence for Automated Decision-Making and Society at UNSW Sydney.

This article first appeared on The Conversation.

More:
Desperate long Covid sufferers are trying every therapy, from ozone treatment to stem cell infusion - Scroll.in

Blood Stem Cell Donation Know 8 Myths And Facts That You Need To Know – ABP Live

By Patrick Paul

A blood stem cell transplant is a lifesaving treatment for patients with blood cancer and other blood disorders like Thalassemia and Aplastic Anemia. In India, the burden of blood-related disorders is continuously rising with almost a lakh new cases of blood cancer every year. If patients suffering from life-threatening diseases receive timely treatment with matching potential blood stem cell donors, they can get a second chance at life.

In India, only 0.04% of the total population is registered as a potential blood stem cell donor which is significantly lower than many other countries including the US where 2.7% and Germany where 10% of the population is registered as a potential donor. Hence, the chances of finding a matching donor for Indian patients is as little as 10-15% in comparison to western countries where the chances are as high as 60-70%.

There are certain myths and misconceptions regarding the process of blood stem cell donation that often dont allow individuals to come forward and become a donor. Here are some of the most common myths:

Myth: Once you donate blood stem cells, you will lose them forever.

Fact: Only a fraction of total stem cells is extracted during the process. Also, all the cells are naturally replenished within a few weeks

Myth: Donating stem cells is a really invasive and painful process

Fact: Blood stem cells are collected through peripheral blood stem cell collection (PBSC) which is completely safe and a non-surgical procedure. The process is similar to blood platelet donation which takes approximately three to four hours to complete and the donor can leave the collection centre the same day.

Myth: Blood Donation and blood stem cell donation are the same

Fact: Unlike blood collection for transfusion, blood stem cells are collected only when there is a match between the donor and patients Human leukocyte antigen (HLA) combination (tissue type). So, you could be potentially the only match and Life Saver for a person with blood cancer in need of a transplant

Blood stem cell donors donate only blood stem cells and the process is similar to a platelet donation.

Myth: Pregnant women cant register

Fact: This is untrue, a woman can register even during her pregnancy.

Myth: Stem cell donation leaves prolonged side-effects

Fact: No, there are no major side effects post blood stem cell donation. A person may only experience minor flu-like symptoms because of the GCSF injections given to him/her before the donation, to mobilize blood stem cells in the bloodstream.

Myth: Piercing and/or tattoo is a restricting factor

Fact: Piercing or a tattoo doesnt stop you from registering yourself to be a potential donor.

Myth: My blood stem cells can be stored

Fact: Your blood stem cells will not be stored. They last for around 72 hours and are delivered to the recipient straight to the hospital by a special courier. If the recipients body accepts them, the stem cells will start making healthy blood cells.

Myth: Joining a blood stem cell registry is no use. Most patients can find a stem cell donor within their own families.

Fact: Per statistics, only 30% of blood disorder patients in need of a stem cell transplant are able to find a sibling match. About 70% of patients need an unrelated donor.

India is a data bank of potential blood stem cell donors that houses details on thousands of committed blood stem cell donors. Any patient can benefit from this registry provided an HLA match.

The author is the CEO of DKMS BMST Foundation India

Check out below Health Tools- Calculate Your Body Mass Index ( BMI )

Calculate The Age Through Age Calculator

Continued here:
Blood Stem Cell Donation Know 8 Myths And Facts That You Need To Know - ABP Live

Cell Therapy Technologies Market worth $8.0 billion by 2027 – Exclusive Report by MarketsandMarkets – PR Newswire

CHICAGO, Aug. 3, 2022 /PRNewswire/ --Cell Therapy Technologies Marketis projected to grow from USD 4.0 billion in 2022 to USD 8.0 billion by 2027, at a CAGR of 14.6% from 2022 to 2027, according to a new report by MarketsandMarkets.Growth in the market can be attributed to number of cell therapy clinical trials related to cancer. Furthermore, increasing incidence of communicable diseases and the growing risk of pandemics are also expected to fuel the market growth.

Download PDF Brochure: https://www.marketsandmarkets.com/pdfdownloadNew.asp?id=213334978

Browse in-depth TOC on "Cell Therapy Technologies Market"202 Tables48 Figures218 Pages

The cell therapy equipment segment accounted for the second largest share of the product segment in the cell therapy technologies market in 2021.

The second largest share of cell therapy equipment segment can be attributed to the growing demand for these equipments. Cell therapy equipment is used in cell processing (such as cell isolation, expansion, and harvesting), cell preservation and handling, and process monitoring and quality control. The segment market is further sub-segmented into cell processing equipment, single-use equipment, and other equipment (flow cytometers, cell counters, microscopes, etc).

The stem cells segment accounted for the second largest share of the cell type segment in the cell therapy technologies market in 2021.

Rising awareness regarding the use of stem cells in the treatment of various diseases and the growing focus of players on stem cell research are driving the growth of this market segment. Rising collaboration between universities and biotechnology & biopharmaceutical companies for stem cell research and government support (availability of funding) are other important drivers.

Request Sample Pages: https://www.marketsandmarkets.com/requestsampleNew.asp?id=213334978

The Asia Pacific region is the fastest-growing region of the cell therapy technologies market in 2021.

The Asia Pacific is estimated to be the fastest-growing segment of the market. The growth of the market of the region is mostly driven by their low labor and manufacturing costs, which has drawn huge investments by biopharma giants to these countries. The increasing disposable income, growing prevalence of lifestyle and age-related chronic diseases also contribute to the high growth of the regional market.

Key players in the cell therapy technologies market include Thermo Fisher Scientific, Inc. (US), Merck KGaA (Germany), Danaher Corporation (US), Lonza Group (Switzerland), Sartorius AG (Germany), Terumo BCT (US), Becton, Dickinson and Company (US), Fresenius SE & Co. KGaA (Germany), Avantor, Inc. (US), Bio-Techne Corporation (US), Corning Incorporated (US), FUJIFILM Irvine Scientific (US), MaxCyte Inc. (US), Werum IT Solutions GmbH (Germany), RoosterBio Inc. (US), SIRION Biotech GmbH (Germany), TrakCel (UK), L7 Informatics, Inc. (US), Miltenyi Biotec GmbH (Germany), STEMCELL Technologies (Canada), GPI Iberia (Spain), MAK-SYSTEM (US), OrganaBio, LLC (US), IxCells Biotechnology (China), and Wilson Wolf Manufacturing Corporation (US).

Get 10% Free Customization on this Report: https://www.marketsandmarkets.com/requestCustomizationNew.asp?id=213334978

Browse Adjacent Market: Biotechnology MarketResearch Reports & Consulting

Related Reports:

Cell Culture Marketby Product (Consumables (Media, Serum, Reagent, Vessels), Equipment (Bioreactor, Centrifuge, Incubator)), Application (Vaccines, mAbs, Diagnostics, Tissue Engineering), End User (Pharma, Biotech, Hospital) - Global Forecast to 2026

About MarketsandMarkets

MarketsandMarkets provides quantified B2B research on 30,000 high growth niche opportunities/threats which will impact 70% to 80% of worldwide companies' revenues. Currently servicing 7500 customers worldwide including 80% of global Fortune 1000 companies as clients. Almost 75,000 top officers across eight industries worldwide approach MarketsandMarkets for their painpoints around revenues decisions.

Our 850 fulltime analyst and SMEs at MarketsandMarkets are tracking global high growth markets following the "Growth Engagement Model GEM". The GEM aims at proactive collaboration with the clients to identify new opportunities, identify most important customers, write "Attack, avoid and defend" strategies, identify sources of incremental revenues for both the company and its competitors. MarketsandMarkets now coming up with 1,500 MicroQuadrants (Positioning top players across leaders, emerging companies, innovators, strategic players) annually in high growth emerging segments. MarketsandMarkets is determined to benefit more than 10,000 companies this year for their revenue planning and help them take their innovations/disruptions early to the market by providing them research ahead of the curve.

MarketsandMarkets's flagship competitive intelligence and market research platform, "Knowledge Store" connects over 200,000 markets and entire value chains for deeper understanding of the unmet insights along with market sizing and forecasts of niche markets.

Contact: Mr. Aashish MehraMarketsandMarkets INC. 630 Dundee Road Suite 430 Northbrook, IL 60062 USA: +1-888-600-6441 Email: [emailprotected] Research Insight: https://www.marketsandmarkets.com/ResearchInsight/cell-therapy-technologies-market.asp Visit Our Website: https://www.marketsandmarkets.com/ Content Source: https://www.marketsandmarkets.com/PressReleases/cell-therapy-technologies.asp

Logo: https://mma.prnewswire.com/media/660509/MarketsandMarkets_Logo.jpg

SOURCE MarketsandMarkets

The rest is here:
Cell Therapy Technologies Market worth $8.0 billion by 2027 - Exclusive Report by MarketsandMarkets - PR Newswire

Way Research collaborates with UPM on cure for breast cancer – The Edge Markets MY

Biotech company Way Research Academy Sdn Bhd and public university Universiti Putra Malaysia (UPM) have inked a memorandum of understanding (MoU) to undertake several projects, including jointly researching on a cure for breast cancer.

During the MoU exchange ceremony held on Wednesday (Aug 3) at Universiti Putra Malaysia Teaching Hospital (HPUPM), UPM Deputy Vice-Chancellor (Research and Innovation) Prof. Dr Nazamid Saari said that the research collaboration is to cover the fields of clinical cell therapy, immunotherapy, and food technology.

He noted that UPM's collaboration with Way Research is in line with HPUPM's UPM's medical education hospital objective of intensifying and producing high-quality research.

"Among other proposed activities is a collaboration to provide medical services to patients, which will provide mutual benefits to UPM and Way Research, as well as the patients.

"In addition, this MoU also opens up opportunities for collaboration in research and learning to improve the skills and knowledge of students and staff [of UPM], especially in the field of medicine which supports HPUPM's role as a teaching hospital," he added.

In turn, Nazamid noted that the collaboration with Way Research will elevate UPM and enable it to provide the best services to its customers, as well as cooperate and network with external organisations.

Via the MoU, the biotech company and public university have also joined hands to work on Project Raya, which entails research on a cure for breast cancer.

Way Research managing director Dr Cheng Qing Shan explained that Project Raya sets out to conduct further research into the breast cancer cure the company developed, which has been shown to effectively kill cancer cells.

"Project Raya is the research we are doing together with UPM on the cure for breast cancer. It is not a treatment, but a cure. This is done by engineering immune cells found in your body to target and destroy cancer cells, which in this case applies to breast cancer.

"Currently, Project Raya is at the stage where, in the lab, the engineered immune cells have successfully cleared the cancerous cells from the breast. Now, we are moving on to the next stage, which is an animal study," he added.

Beyond Project Raya, Cheng said the company's other projects with UPM include the construction of a good manufacturing practice (GMP) lab and cellular therapy ward to provide a safe and proper environment for patients to do immunotherapy and stem cell therapy.

"Thanks to UPM, these are just teasers of the many incredible projects we are able to explore from here.

"Ultimately, we also hope that exciting projects like these can be the start of a catalyst to attract some of our brilliant minds overseas back home to Malaysia," he added.

In lieu of corporate funding, Project Raya's continued research on its cure for breast cancer is to be publicly funded.

Thus, Way Research and UPM have enabled members of the public to voluntarily enrol in the project to support their research to further develop their chimeric antigen receptor T-cell (CAR-T) immunotherapy technology, with the goal of making it accessible to all.

"Our team of researchers have been quietly working on this project for years and recently published and made some of our findings in medical journals.

"We have completed our first phase in the lab to prove that the CAR-T immunotherapy we developed effectively attacked and cleared breast cancer cells.

"We are now ready to move towards animal study and after that into human trials. Our aim is to develop this technology and make it available and accessible to all," Way Research said.

At RM1,500, eligible individuals can opt into Project Raya to enjoy benefits of protection against the full cost of future cancer cellular therapy cost of CAR-T, immunotherapy or stem cell therapy at RM20,000 as well as complimentary blood and body check-ups with cancer marker tests.

Proceeds the project sources from the public will go towards the CAR-T immunotherapy research.

Joining Way Research and UPM on Project Raya are Klinik Central SS15 and MediCap as affiliated partners.

Klinik Central SS15 and MediCap are to also support the funding of the project via the proceeds it garners from sales of their respective medical projects and services.

For more information, members of the public or interested investors may contact Way Research by calling 018-388 6180, or visiting http://www.wayresearchacademy.com.my or the company's headquarters at No.11, Jalan SS15/8A, 47500 Subang Jaya, Selangor.

Go here to read the rest:
Way Research collaborates with UPM on cure for breast cancer - The Edge Markets MY

University of So Paulo: In the future, cancer treatment should combine two types of immunotherapy, study suggests | India Education – India Education…

Cancer immunotherapy is currently one of the most effective approaches to treating patients. In it, cancer cells are fought by the bodys own immune system. Despite clinical success, not all people respond satisfactorily to this type of intervention or, if they do, they only have short-term responses, in addition to many side effects.

But a systematic review of the literature, carried out by Rafaela Rossetti, a doctoral student at the Clinical Oncology, Stem Cells and Cell Therapy Program at the Faculty of Medicine of Ribeiro Preto (FMRP) at USP, observed that the combination of two treatments (known as immunological checkpoint and adoptive transfer of genetically modified T cells) may bring promising results.

The article Combination of genetically engineered T cells and immune checkpoint blockade for the treatment of cancer was published in January 2022 in the journal Immunotherapy Advances .

These studies provide lessons on possible approaches to enhance the performance of immune system cells against cancer, making them more resistant to the immunosuppressive mechanisms [ which reduce the activity of this system ] imposed by the tumor microenvironment , explains Rafaela Rossetti to Jornal da USP .

T-CARs are T cells genetically modified in the laboratory to produce a type of protein known as CAR (which stands for Chimeric Antigen Receptor) before being cultured and returned to the sick person. There are six products approved by the Food and Drug Administration (FDA) the American drug regulatory agency for clinical use and available on the market.

The use of these cells has provided impressive results for the treatment of blood cancer. On the other hand, there are still limitations in its effectiveness against solid tumors, says Lucas Eduardo Botelho, coordinator of the Gene Transfer Laboratory at the Ribeiro Preto Blood Center and an associate researcher at the Cell Therapy Center (CTC), one of the Research, Innovation Centers and Diffusion (Cepids) funded by the So Paulo Research Foundation (Fapesp).

The inefficiency is due, in part, to the immunosuppression mechanisms employed by tumors to escape the attack mediated by immune system cells, says Botelho.

Blocking the immune checkpoint is based on a group of proteins present on the surface of T lymphocytes that need to be activated or inactivated to trigger an immune response. Previous studies, led by Americans and Japanese, have shown that cancer cells stimulate the expression of these proteins (called checkpoints ) and their ligands (triggers) in tumor tissue. As a result, tumors turn off the immune system, which favors cancer growth. The same scientists also demonstrated that the use of antibodies capable of inhibiting the interaction between checkpoints and their ligands restores the antitumor defense response, allowing the reactivation of T lymphocytes.

This review aimed to assess whether blocking immunological checkpoints would be a promising way to increase the therapeutic efficacy of genetically modified T cells against solid neoplasms, summarizes Botelho.

Preclinical and clinical trials Systematic review is a research method that seeks to bring together similar studies by critically evaluating them in their methodology and bringing them together in a statistical analysis. By synthesizing similar and good quality studies, it is considered the best level of evidence for decision-making on treatments, according to Cochrane , a global network of researchers specializing in systematic review works.

To carry out this review, Rafaela and Botelho defined the main points to be addressed and each of them contributed to the bibliographic search, contextualization and writing on the chosen topics. In this review, we sought to bring a compilation of studies that provided important insights, as well as pre-clinical and clinical studies published recently, explains Rafaela Rossetti .

The aim was to provide a more complete picture of the current scenario of using immune checkpoint inhibitors in combination with the infusion of genetically modified T cells for cancer treatment. In the end, 112 articles were selected for the researchers work.

In her opinion, this work contributed to enriching the knowledge in the area and allowed to reflect on possible implementations in research that currently address mainly genetically modified T cells for the treatment of cancer, aiming at an improvement in the efficiency of these cells.

Butantan, USP and Hemocentro de Ribeiro develop innovative cancer therapy The Cell Therapy Center was the pioneer in Brazil to establish an infrastructure for the study and clinical application of stem cells and, a few years ago, there was the incorporation of the use of genetically modified T cells to recognize and destroy tumor cells in the areas of research and development.

As a result, a platform was established for the production and clinical use of T cells expressing chimeric antigen receptors against the CD-19 protein (expressed in B-cell leukemias and lymphomas). This study resulted in the first successful application of anti-CD-19 T-CAR cells for the compassionate treatment of lymphoma patients in Latin America, says Botelho.

The Gene Transfer Laboratory of the Blood Center in Ribeiro Preto is making efforts to contribute to the expansion of the platform for the production and clinical use of CAR-T cells through the creation of molecular tools for quality control and pre-clinical tests, in addition to to develop new genetic constructs and strategies to improve the effectiveness and access of patients to this type of therapy.

Botelho says that, currently, there are projects underway to evaluate genetic constructs against three new targets expressed by tumor cells, including solid tumors. In addition, a gene editing platform for the generation of allogeneic T cells is under implementation.

This strategy can drastically reduce the costs of this technology, and allows cellular modifications capable of increasing its effectiveness through the deletion of genes that limit its antitumor activity, for example.

The survey we carried out reinforces the idea that using gene editing tools to delete the molecular circuits involved in this interaction can result in a more effective product, as it no longer suffers the suppressive action of the tumor microenvironment, emphasizes the last author of the study. Certainly this information will be incorporated into our effort to develop the next generation of anticancer cellular immunotherapies, he concludes.

Read the original here:
University of So Paulo: In the future, cancer treatment should combine two types of immunotherapy, study suggests | India Education - India Education...

Stem Cell and Gene Therapy Biological Testing Market is thriving worldwide by 2029 | Top Key Players like Boehringer Ingelheim International GmbH.,…

California (United States) Stem Cell and Gene Therapy Biological Testing Marketreport focused on the comprehensive analysis of current and future prospects of the Stem Cell and Gene Therapy Biological Testing industry. It includes the primary investigations to cover historical progress, ongoing market scenarios, and future prospects defined with accurate data of the products, strategies and market shares of leading companies to help manufacturers locate the market position. The report presents a 360-degree overview of the competitive scenario of the overall market to project the size and valuation of the global Stem Cell and Gene Therapy Biological Testing Market during the forecast period.

Get the PDF Sample Copy (Including FULL TOC, Graphs, and Tables) of this report @:

Some of the Top companies Influencing this Market include:

Boehringer Ingelheim International GmbH., Elanco, Zoetis, Merck & Co. Inc, Virbac, Phibro Animal Health Corporation, Vetoquinol, Ceva, HIPRA, Dechra, CHINA ANIMAL HUSBANDRY GROUP, Kyoritsuseiyaku Corporation, Endovac Animal Health, Indian Immunologicals Pvt. Ltd., Zydus Group, UCBVET Sade e Bem Estar Animal, Neogen Corporation, American Reagent Inc, Huvepharma, Ashish Life Science, Ayurvet, Inovet Group, ECO Animal Health Ltd , Lutim Pharma Private Limited, .

Various factors are responsible for the markets growth trajectory, which are studied at length in the report. In addition, the report lists down the restraints that are posing threat to the global

Global Stem Cell and Gene Therapy Biological Testing Market Segmentation:

Market Segmentation: By Type

Cell Therapy and Gene Therapy

Market Segmentation: By Application

Hospitals, Wound Care Centres, Cancer Care Centres, Ambulatory Surgical Centres and Others)

Global Stem Cell and Gene Therapy Biological Testing market Research Study Offers:

Market Overview: It includes six chapters, research scope, major manufacturers covered, market segments by type, Stem Cell and Gene Therapy Biological Testing market segments by application, study objectives, and years considered.

Market Landscape: Here, the competition in the global Stem Cell and Gene Therapy Biological Testing Market is analyzed, by price, revenue, sales, and market share by company, market rate, competitive situations Landscape, and latest trends, merger, expansion, acquisition, and market shares of top companies.

Profiles of Manufacturers: Here, leading players of the global Stem Cell and Gene Therapy Biological Testing market are studied based on sales area, key products, gross margin, revenue, price, and production.

Market Status and Outlook by Region: In this section, the report discusses about gross margin, sales, revenue, production, market share, CAGR, and market size by region. Here, the global Stem Cell and Gene Therapy Biological Testing Market is deeply analyzed on the basis of regions and countries such as North America, Europe, China, India, Japan, and the MEA.

Application or End User: This section of the research study shows how different end-user/application segments contribute to the global Stem Cell and Gene Therapy Biological Testing Market.

Market Forecast: Production Side: In this part of the report, the authors have focused on production and production value forecast, key producers forecast, and production and production value forecast by type.

Research Findings and Conclusion: This is one of the last sections of the report where the findings of the analysts and the conclusion of the research study are provided.

Get Up to 30% Discount on the first purchase of this report @:

Global Stem Cell and Gene Therapy Biological Testing market Report Scope:

The cost analysis of the Global Stem Cell and Gene Therapy Biological Testing Market has been performed while keeping in view manufacturing expenses, labor cost, and raw materials and their market concentration rate, suppliers, and price trend. Other factors such as Supply chain, downstream buyers, and sourcing strategy have been assessed to provide a complete and in-depth view of the market. Buyers of the report will also be exposed to a study on market positioning with factors such as target client, brand strategy, and price strategy taken into consideration.

Reasons for buying this report:

Table of Contents

Global Stem Cell and Gene Therapy Biological Testing Market Research Report 2022 2029

Chapter 1 Stem Cell and Gene Therapy Biological Testing Market Overview

Chapter 2 Global Economic Impact on Industry

Chapter 3 Global Market Competition by Manufacturers

Chapter 4 Global Production, Revenue (Value) by Region

Chapter 5 Global Supply (Production), Consumption, Export, Import by Regions

Chapter 6 Global Production, Revenue (Value), Price Trend by Type

Chapter 7 Global Market Analysis by Application

Chapter 8 Manufacturing Cost Analysis

Chapter 9 Industrial Chain, Sourcing Strategy and Downstream Buyers

Chapter 10 Marketing Strategy Analysis, Distributors/Traders

Chapter 11 Market Effect Factors Analysis

Chapter 12 Global Stem Cell and Gene Therapy Biological Testing Market Forecast

Buy Exclusive Report:

If you have any special requirements, please let us know and we will offer you the report as you want.

About A2Z Market Research:

The A2Z Market Research library provides syndication reports from market researchers around the world. Ready-to-buy syndication Market research studies will help you find the most relevant business intelligence.

Our Research Analyst Provides business insights and market research reports for large and small businesses.

The company helps clients build business policies and grow in that market area. A2Z Market Research is not only interested in industry reports dealing with telecommunications, healthcare, pharmaceuticals, financial services, energy, technology, real estate, logistics, F & B, media, etc. but also your company data, country profiles, trends, information and analysis on the sector of your interest.

Contact Us:

Roger Smith

1887 WHITNEY MESA DR HENDERSON, NV 89014

+1 775 237 4157

View post:
Stem Cell and Gene Therapy Biological Testing Market is thriving worldwide by 2029 | Top Key Players like Boehringer Ingelheim International GmbH.,...

Triplet Therapy Plus Transplantation Prolongs PFS in Multiple Myeloma – Targeted Oncology

Induction treatment with the triplet of lenalidomide (Revlimid), bortezomib (Velcade), and dexamethasone (RVD) plus autologous stem cell transplantation (ASCT) was associated with longer progression-free survival (PFS) compared with RVD alone in patients with newly diagnosed multiple myeloma.

Findings showed that the median PFS was 46.2 months in the RVD-alone group and 67.5 months in the transplantation and RVD group. With a median follow-up of 76.0 months, 328 events of disease progression or death occurred with the risk 53% higher in the RVD-alone group than in the transplantation group (HR, 1.53; 95% CI, 1.23-1.91; P < .001).

Additionally, data published in the New England Journal of Medicine showed that the percentage of patients with a partial response (PR) or better was 95.0% in the RVD-alone group vs 97.5% in the transplantation group (P = .55). A total of 42.0% of patients in the RVD-alone group and 46.8% in the transplantation group had a complete response (CR) or better (P = .99).

The phase 3 DETERMINATION trial [NCT01208662] showed the superiority of ASCT-based first-line therapy with respect to progression-free survival among eligible patients with newly diagnosed myeloma, findings that confirm those of the IFM 2009 trial.We found a significant 21.3-month benefit in median progression-free survival and a 35% lower risk of disease progression or death with RVD plus ASCT than with RVD alone, wrote the study authors.

In this randomized, open-label phase 3 trial, adults aged 18 to 65 years of age with symptomatic myeloma received 1 cycle of RVD to examine it as the initial management strategy in this patient population.

Initially all patients received 1 cycle of RVD. Then, patients were randomly assigned in a 1:1 ratio to receive 2 additional RVD cycles plus stem cell mobilization. Randomization was stratified according to the International Staging System (ISS) disease stage and cytogenetic risk profile.

In both groups, patients received 2 additional cycles of RVD before stem cell collection. For those in the RVD-alone group, they received 5 additional RVD cycles vs those in the transplantation group who received high-dose melphalan at a dose of 200 mg/m2plus ASCT. At approximately day 60, patients in the transplantation group received 2 additional RVD cycles.

The 21-day cycle of RVD therapy included oral lenalidomide at 25 mg on days 1 through 14; intravenous or subcutaneous bortezomib at 1.3 mg/m2 on days 1, 4, 8, and 11; and oral dexamethasone at 20 mg in cycles 1 to 3 and 10 mg starting in cycle 4 on days 1, 2, 4, 5, 8, 9, 11, and 12. For both groups, maintenance therapy was made up of daily lenalidomide at 0 mg, with a possible increase to 15 mg thereafter until disease progression, unacceptable toxic effects, or withdrawal from treatment or the trial.

For patients in the RVD-alone group at relapse, off-trial salvage transplantation was recommended but not required after completion of the protocol-specified treatment. Patients in the transplantation group could undergo a second transplantation with the selection of subsequent therapies made by patient and physician decision.

Enrollment was open to patients with symptomatic, measurable, newly diagnosed myeloma, and an ECOG performance status of 0 to 2, myeloma measurable by serum or urine evaluation of the monoclonal component or by assay of serum-free light chains, and a negative HIV blood test. Patients who had previously used systemic therapy for myeloma, central nervous system involvement, primary amyloidosis, and inadequate hematologic, hepatic, renal, or cardiac function were ineligible to be enrolled.

The primary end point was PFS. Secondary end points included response rates, the duration of response (DOR), the time to disease progression, overall survival (OS), quality of life, and adverse events (AEs).

Out of the 873 recruited patients, 357 were randomly assigned to the RVD-alone group and 365 to the transplantation group. Baseline patient and disease characteristics were balanced between the 2 groups with the median age as 57 years (interquartile range, 25-66) in the RVD-alone group and 55 years (interquartile range, 30-65) in the transplantation group. There were 122 patients (34.2%) and 102 patients (27.9%) aged 60 years or older, the ISS disease stage was II or III in 179 patients in the RVD-alone group (50.1%) and in 181 patients in the transplantation group (49.6%), a high-risk cytogenetic profile was identified in 66 of 334 patients (19.8%) and 66 of 340 patients (19.4%), respectively, with data that could be evaluated by means of fluorescence in situ hybridization.

Findings showed that in the RVD-alone group, the median duration of treatment was 28.2 months (95% CI, 21.1-36.3) vs 36.1 months (95% CI, 28.5-41.5) in the transplantation group. Of the 365 patients in the transplantation group, 310 (84.9%) underwent ASCT. There were 289 patients (81.5%) in the RVD-alone group and 289 patients (79.2%) in the transplantation group who received lenalidomide maintenance therapy with the median duration being 36.4 months (95% CI, 25.7-40.8) and 41.5 months (95% CI, 34.0-47.1). At the time of data cutoff, 78 (26.8%) and 89 patients (30.8%) were still receiving maintenance therapy, respectively.

Additionally, the median percentage of maintenance cycles was 87.0% in the RVD-alone group and 60.0% in the transplantation group when the average lenalidomide dose was at least 10 mg. Then, 259 patients (89.0%) in the RVD-alone group and 264 patients (91.3%) in the transplantation group who received lenalidomide maintenance therapy had at least 1 dose modification, with 9854 dose modifications reported during maintenance therapy after RVD alone and 13,695 dose modifications after RVD plus ASCT. Dose modifications were due to AEs or illness in 50.5% of the RVD-alone group and 51.6% in the transplantation group.

Of the 328 patients with events of disease progression or death, there were 189 in the RVD-alone group (52.9%) and 139 in the transplantation group (38.1%). The duration of PFS among patients with a high-risk cytogenetic profile was 17.1 months in the RVD-alone group vs 55.5 months in the transplantation group. For disease progression, a secondary end point of the trial, the percentage of patients who were alive without progression at 5 years was 41.6% and 58.4%, respectively (HR, 1.66; 95% CI, 1.21-2.27).

Additionally, the median DOR was 38.9 months in the RVD-alone group vs 56.4 months in the transplantation group (HR, 1.45; 95% CI, 1.09-1.93), and the percentage of patients with a CR or better at 5 years was 52.9% and 60.6%, respectively.

In regard to safety, hematologic treatment-related AEs (TRAEs) that occurred were neutropenia (42.6% with RVD alone vs 86.3% with transplantation), thrombocytopenia (19.9% vs 82.7%, respectively), leukopenia (19.6% vs 39.7%), anemia (18.2% vs 29.6%), lymphopenia (9.0% vs 10.1%), and febrile neutropenia (4.2% vs 9.0%). Other TRAEs included diarrhea (3.9% in the RVD-alone group vs 4.9% in the transplantation group), nausea (0.6% vs 6.6%, respectively), fatigue (2.8% vs 6.0%), fever (2.0% vs 5.2%), pneumonia (5.0% vs 9.0%), hypophosphatemia (9.5% vs 8.2%), hyperglycemia (2.5% vs 4.1%), hypokalemia (3.4% vs 1.9%), neuropathy (5.6% vs 7.1%) syncope (2.2% vs 1.9%), and maculopapular rash (2.8% vs 3.6%).

Overall, grade 3 of higher TRAE occurred in 279 patients (78.2%) in the RVD-alone group and 344 patients (94.2%) in the transplantation group. Serious RVD-related AEs were observed in 144 patients in the RVD-alone group (40.3%) and 172 patients in the transplantation group (47.1%). Further, treatment-related serious infections were reported during maintenance therapy in 33 patients (11.3%) and 48 (16.6%), respectively.

Our results also highlight the value of long-term lenalidomide maintenance therapy until disease progression in both groups. In our trial, the median progression-free survival among patients who received RVD alone was 11.2 months longer than that in the IFM 2009 trial [46.2 vs. 35.0 months]; in the latter trial, patients received the same treatment as in the current trial except with only 1 year of maintenance therapy, wrote the study authors. The median progression-free survival among patients who received RVD plus ASCT was 20.2 months longer in our trial than in the IFM 2009 trial [67.5 vs 47.3 months]. These findings confirm previous observations of increased progression-free survival with a greater duration of lenalidomide maintenance therapy.

Read the original:
Triplet Therapy Plus Transplantation Prolongs PFS in Multiple Myeloma - Targeted Oncology

Higher doses of CAR-T therapy bring survival advantage for young patients with hard-to-treat B-ALL – EurekAlert

First dosing study using real-world data offers valuable insights to inform treatment decisions

(WASHINGTON, August 8, 2022) Young people who received doses of tisagenlecleucel, a chimeric antigen receptor T cell (CAR-T) therapy, at the higher end of the FDA-approved dosing range had significantly better survival rates at one year compared with those who received lower doses within this range, according to research published today in Blood Advances.

Since its approval as the first gene therapy available in the United States in 2017, tisagenlecleucel has offered a welcome treatment option for pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL) whose cancer does not respond to chemotherapy or recurs after prior response. However, the wide dosing range approved for the therapy can pose a conundrum for doctors who sometimes must choose whether to use a higher or lower dose with little evidence to guide these decisions. This new study offers the first insights into optimal dosing based on real-world data.

In the past, we did not have data to guide clinical decisions around commercial CAR T-cell dosing and didnt know if higher doses would affect toxicity and compromise outcomes, or support enhanced anti-leukemia effect, said Liora Schultz, MD, pediatric oncologist at the Stanford Children's Health | Lucile Packard Children's Hospital, and the studys lead author. This data has direct clinical applicability, as it supports use of higher dosing, as available, within the approved tisagenlecleucel dose range.

ALL is the most common type of cancer in children, and B-ALL is its most common subtype. It is often treatable with chemotherapy, but about 20% of patients one out of five either do not respond to chemotherapy or subsequently relapse. CAR T-cell therapy is a type of immunotherapy in which a patients T cells, immune cells in the body that fight infection, are removed, genetically modified in a laboratory to help them identify cancer cells, and then infused back into the patients bloodstream where they find and destroy cancer cells. This therapy is becoming an integral part of standard care as an alternative or supplement to stem cell transplantation for pediatric patients with relapsed or refractory B-ALL.

Tisagenlecleucel is approved at a dosing range of 0.2 to 5 million CAR T cells/kg for patients weighing 50 kilograms or less, or 10 to 250 million CAR T cells for patients over 50 kilograms. In practice, the number of CAR T cells that are manufactured for each patient varies substantially based on the number of T cells that are obtained initially and the rate at which the modified cells grow in the laboratory.

Any amount of CAR T cells within the approved range is considered an acceptable dose, but if more than the minimum number of cells are available within the approved range, doctors can decide whether to use a higher amount or a lower amount. Clinical trials for tisagenlecleucel provided guidance on dosing leading to the therapys approval, but real-world data is useful to fine-tune dosing and inform decision making when there are multiple options available.

For the study, researchers analyzed rates of overall survival, event-free survival, and relapse-free survival at one year among 185 patients aged 26 or younger who received tisagenlecleucel for relapsed or refractory B-ALL. They found that patients who received a dose at the higher end of the approved range (between 2.4 and 5.1 million cells/kg) had significantly higher survival rates according to all three measures compared with patients who received a dose at the lower end (between zero and 1.3 million cells/kg). In the highest dose group, 86% of patients were alive at one year, compared to 59% in the lowest dose group. Researchers did not observe any signs of increased toxicity or safety concerns with higher doses.

The findings suggest that administering doses of tisagenlecleucel at the higher end of the approved range could help to achieve a more effective and long-term response without raising the toxicity risk. A lot of effort is focused on complex engineering and development of next-generation CAR-T therapies, said Dr. Schultz. This study aims to explore if clinical manipulations using our current approved construct, tisagenlecleucel, can achieve even incremental advances in the field.

The researchers plan to further examine the data to determine how additional clinical variables, might influence outcomes following CAR T cell therapy.

# # #

Blood Advances is a peer-reviewed, online only, open access journal of the American Society of Hematology (ASH), the worlds largest professional society concerned with the causes and treatment of blood disorders.

Blood Advances is a registered trademark of the American Society of Hematology.

Contact:

Kira Sampson, American Society of Hematology

ksampson@hematology.org; 202-499-1796

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

See original here:
Higher doses of CAR-T therapy bring survival advantage for young patients with hard-to-treat B-ALL - EurekAlert