Category Archives: Stem Cell Treatment


Dodge Elementary rallies around beloved therapy dog – Amherst Bee

Students at Dodge Elementary School hold up colored portraits of Yeti, the schools therapy dog, in the classroom.

Dodge Elementary students have been missing one of their favorite faculty members; Yeti the therapy dog has been absent as he heals from hip dysplasia complications.

Dan Steck, head custodian at Dodge Elementary, rescued Yeti from a puppy mill near Lancaster, Pennsylvania, on March 19, 2016. Little did he know then that soon, Yeti would become a certified therapy dog, complete with his own office at Dodge.

Steck originally rescued Yeti in the hope that a sibling would calm down his other rambunctious malamute, Luna. While the adoption didnt quite have the desired effect, Steck soon realized that Yeti was special he was kind, gentle and always happy, a perfect candidate to become a therapy dog.

Since his certification through the SPCAs Paws for Love program, Yeti has worked at Dodge, a friendly face for struggling children or a non-judgmental listener for children practicing their reading. Steck said that teachers and students make requests to have Yeti in their classrooms left and right.

They adore Yeti, said Dodge principal Charlie Smilinich. Its cool to see how a dog can impact students. Its very unique. Hes been here for two years and has built a relationship with everyone. Hes a Dodger. The dog has his own office.

Yeti is what his owners call a tripaw, meaning that one of his legs was amputated due to a neglected infection he sustained under the care of his previous owners. As a result of walking on only three legs, the 4-year-old Alaskan malamute struggles with hip dysplasia.

Originally, Yeti was prescribed hydrotherapy, though he struggled to keep up with the treatment and would come home exhausted. Now, veterinarians are considering acupuncture, stem cell treatment or even a total hip replacement.

Hopefully, hell live a long life, but hes got some real challenges already, said Steck. At age 4, hes nowhere near as playful as he was, and he sleeps a lot. Eventually, he may even need a wheelchair.

Stecks family has dutifully supported Yeti through all of his medical trials, but the bills are racking up quickly. A wheelchair alone would cost them between $1,200 and $1,500.

To help with the costs, the Stecks have a GoFundMe page where they provide medical updates and receive encouraging messages from the elementary students.

To support their beloved therapy dog, Dodge students and the surrounding community have contributed $3,845 thus far, with a goal of $10,000. All of the money raised goes directly into an account at Amherst Small Animal Hospital.

To support the GoFundMe campaign, visit http://www.gofundme.com and search for Throw Kindness Around Like Confetti For Yeti.

To learn more about Yeti and his work at Dodge, search for Yeti Steck on Facebook.

Read the rest here:
Dodge Elementary rallies around beloved therapy dog - Amherst Bee

Bellicum offloads cell therapy plant in switch to outsourced production – OutSourcing-Pharma.com

When Bellicum Pharmaceuticals built the cell therapy plant in Houston, Texas, it planned to use the US site to support its early-phase chimeric antigen receptor (CAR)-T trials and late-phase development and commercialization of Rivo-cel (rivogenlecleucel), a drug designed to improve hematopoietic stem cell transplantation outcomes.

A registrational trial of Rivo-cel met its primary endpoint in July 2019, leading Bellicum to start looking for a partner for the asset. However, the search for a partner did not go as well as Bellicum hoped.

By November, Bellicum CEO Rick Fair was warning investors that it's unclear if an agreement [for Rivo-cel] will be reached. Bellicum responded to the uncertainty by pausing work in the area.

That decision about Rivo-cel had a knock-on effect on the viability of Bellicums manufacturing facility.

Fair said, Given our decisions on Rivo-cel, our facility is substantially underutilized with a significant fixed cost base. We are actively pursuing a partner for the facility with the goals of reducing operating costs while maintaining critical viral vector and cell therapy development capabilities and dedicated manufacturing capacity.

Bellicums pursuit of a partner led it to The University of Texas MD Anderson Cancer Center. In return for $15m (13.5m), MD Anderson is set to buy the 60,000-square-foot facility, giving it production capacity to support its own cell therapies and those of its strategic partners.

The deal features a master services agreement intended to ensure Bellicum can access cell therapy manufacturing capacity despite no longer having an in-house facility. MD Anderson will make CAR-Ts and other cell therapies for use in Bellicums clinical trials, plus potentially early commercial supply, from the Houston facility on a service basis.

To smooth the transition, around 35 Bellicum employees based at the facility are set to start working for MD Anderson once the deal goes through. Bellicum expects to close the deal in the first quarter.

MD Anderson will use the capacity not taken up by Bellicums assets to support its own programs and those of its partners. The US cancer center has been at the forefront of efforts to develop and deploy cell therapies, creating a need for manufacturing capacity to support the work of its discovery division.

Read more from the original source:
Bellicum offloads cell therapy plant in switch to outsourced production - OutSourcing-Pharma.com

Study shows huge fluctuations in the cost of orthobiologics – The Mix

UAB orthopaedic surgeons report that the cost of orthobiologics, promising but not fully proven therapies, can vary widely across the nation.

UAB orthopaedic surgeons report that the cost of orthobiologics, promising but not fully proven therapies, can vary widely across the nation.The use of orthobiologics is a hot trend in orthopaedics, but new research from the University of Alabama at Birmingham shows wide variability in cost for these therapies. The UAB study, published in Sports Health, Oct. 2019, looked at two orthobiologic therapies; platelet-rich plasma injections and stem cell injections, and found dramatic cost variability ranging from a few hundred dollars to as much as $12,000. That is troublesome, say UAB researchers, especially for therapies that are yet to be conclusively proven effective.

Research into the efficacy of these therapies is mixed at best, said Amit Momaya, M.D., assistant professor in the Department of Orthopaedic Surgery at the UAB School of Medicine and the studys first author. Some studies show benefit, others dont. More research is needed to definitively determine their effectiveness, but in the meantime consumers can find themselves paying a lot of money for something that may or may not work.

Orthobiologics such as platelet-rich plasma injections and stem cell injections have been suggested to improve healing and manage pain following orthopaedic injury. They are autologous therapies, meaning they are derived from the patients own blood or cells. Because they are autologous, their use is not highly regulated by the government and there is minimal oversight from the public health community.

Platelet-rich plasma injections are FDA approved for bone grafts, but not for other uses for which they are now marketed, said Brent Ponce, M.D., professor of orthopaedics and senior author of the paper. As physicians, we think there is cause for concern when an experimental therapy can cost hundreds of dollars at one health care provider and thousands at another. There is a tremendous need for consumer education and for more regulatory oversight.

Momaya and Ponces team surveyed 1,345 orthopaedic sports medicine practices around the United States, asking if orthobiologics were offered and at what cost. Roughly two thirds of the responding practices offered one or both of the therapies. In general, costs were higher in affluent areas of larger cities. Geographically, costs were higher in the western regions of the country and lower in the south. Large orthopaedic practices were more likely to have higher prices than smaller practices.

The mean cost of the platelet-rich plasma injection was $707, with a range of $175 to $4,973. Stem cell injections had a mean cost of $2,728, ranging from $300 to $12,000. In most cases, insurance does not cover the cost of the injections.

The differences in cost are significant and you could certainly ask if these differences are unethical, Momaya said. We understand that there are patients willing to pay for a therapy they hope will stave off major surgery such as joint replacement, but we are concerned whether patients are getting the facts about what these therapies can and cannot do. Do they have accurate expectations? Just because a desperate patient has the means to pay thousands of dollars, is it right for medical professionals to charge that much?

Full disclosure: UABs Department of Orthopaedics offers platelet-rich plasma injections and stem cell injections for some conditions. UABs charges are at the low end of the cost range; platelet-rich plasma injections are $350, for example. UAB physicians who offer orthobiologics are following their patients over time to learn more about their effectiveness.

Drs. Momaya (pictured) and Ponce say orthobiologic therapies are promising, but that the cost for the treatments varies widely across the nation. There is reason to think that orthobiologics might be beneficial and it is incumbent on the medical profession to study their effectiveness and determine how best to utilize these therapies, Ponce said. As that process continues, consumers need to be better educated. We fear there is misleading information circulating about orthobiologics, which helps create an environment with widely fluctuating costs.

Ponce and Momaya suggest that patients interested in orthobiologics should shop around. They recommend using a directory of sports medicine surgeons from the American Orthopaedic Society for Sports Medicine to find appropriate medical professionals. They further suggest consider enrolling in a clinical trial or at least work with the medical team to follow and track outcomes.

We are not against the use of orthobiologics, Momaya said. We use them ourselves as we work to understand which conditions and which patients are most likely to benefit from these therapies. But until we can say with confidence that these are effective, we have to urge patients to use caution and get as much information as possible about effectiveness and cost before pursuing orthobiologic therapy.

Co-authors of the study along with Momaya and Ponce are Eugene Brabston, M.D., Andrew McGee, Alexander Dornbrowsky, Raymond Waldrop and Jun Kit He from UAB; Alan Wild, Alabama College of Osteopathic Medicine and Naqeeb Faroqui, Mercer University School of Medicine.

Read more from the original source:
Study shows huge fluctuations in the cost of orthobiologics - The Mix

Europe’s guardian of stem cells and hopes, real and unrealistic – INQUIRER.net

Submerged in liquid nitrogen vapor at a temperature of minus 175 degrees Celsius, hundreds of thousands of stem cells from all over Europe bide their time in large steel barrels on the outskirts of Warsaw.

Present in blood drawn from the umbilical cord of a newborn baby, stem cells can help cure serious blood-related illnesses like leukemias and lymphomas, as well as genetic conditions and immune system deficits.

Polish umbilical cord blood bank PBKM/FamiCord became the industrys leader in Europe after Swiss firm Cryo-Save went bankrupt early last year.

It is also the fifth largest in the world, according to its management, after two companies in the United States, a Chinese firm and one based in Singapore.

Since the first cord blood transplant was performed in France in 1988, the sector has significantly progressed, fuelling hopes.

Health insurance

Mum-of-two Teresa Przeborowska has firsthand experience.

At five years old, her son Michal was diagnosed with lymphoblastic leukemia and needed a bone marrow transplant, the entrepreneur from northern Poland said.

The most compatible donor was his younger sister, Magdalena.

When she was born, her parents had a bag of her cord blood stored at PBKM.

More than three years later, doctors injected his sisters stem cells into Michals bloodstream.

It was not quite enough for Michals needs but nicely supplemented harvested bone marrow.

As a result, Michal, who is nine, is now flourishing, both intellectually and physically, his mum told AFP.

A cord blood transplant has become an alternative to a bone marrow transplant when there is no donor available, with a lower risk of complications.

Stem cells taken from umbilical cord blood are like those taken from bone marrow, capable of producing all blood cells: red cells, platelets and immune system cells.

When used, stem cells are first concentrated, then injected into the patient. Once transfused, they produce new cells of every kind.

At the PBKM laboratory, each container holds up to 10,000 blood bags Safe and secure, they wait to be used in the future, its head, Krzysztof Machaj, said.

The bank holds around 440,000 samples, not including those from Cryo-Save, he said.

If the need arises, the blood will be ready to use without the whole process of looking for a compatible donor and running blood tests, the biologist told AFP.

For families who have paid an initial nearly 600 euros (around P34,000) and then an annual 120 euros (around P7,000) to have the blood taken from their newborns umbilical cords preserved for around 20 years, it is a kind of health insurance promising faster and more effective treatment if illness strikes.

But researchers also warn against unrealistic expectations.

Beauty products

Hematologist Wieslaw Jedrzejczak, a bone marrow pioneer in Poland, describes promoters of the treatment as sellers of hope, who make promises that are either impossible to realize in the near future or downright impossible to realize at all for biological reasons.

He compares them to makers of beauty products who swear their cream will rejuvenate the client by 20 years.

Various research is being done on the possibility of using the stem cells to treat other diseases, notably nervous disorders. But the EuroStemCell scientist network warns that the research is not yet conclusive.

There is a list of almost 80 diseases for which stem cells could prove beneficial, U.S. hematologist Roger Mrowiec, who heads the clinical laboratory of the cord blood program Vitalant in New Jersey, told AFP.

But given the present state of medicine, they are effective only for around a dozen of them, like leukemia or cerebral palsy, he said.

Its not true, as its written sometimes, that we can already use them to fight Parkinsons disease or Alzheimers disease or diabetes.

EuroStemCell also cautions against private blood banks that advertise services to parents suggesting they should pay to freeze their childs cord blood in case its needed later in life.

Studies show it is highly unlikely that the cord blood will ever be used for their child, the network said.

It also pointed out that there could be a risk of the childs cells not being useable anyway without reintroducing the same illness.

Some countries, such as Belgium and France, are cautious and ban the storage of cord blood for private purposes. Most E.U. countries however permit it while imposing strict controls.

Rapid growth

In the early 2000s, Swiss company Cryo-Save enjoyed rapid growth.

Greeks, Hungarians, Italians, Spaniards and Swiss stored blood from their newborns with the company for 20 years on payment of 2,500 euros (around P140,000) upfront.

When the firm was forced to close in early 2019, clients were left wondering where their stem cells would end up.

Under a kind of back-up agreement, the samples of some 250,000 European families were transferred for storage at PBKM.

The Polish firm, founded in 2002 with 2 million zlotys (around P26 million), has also grown quickly.

Present under the FamiCord brand in several countries, PBKM has some 35% of the European market, excluding Cryo-Save assets.

Over the last 15 months, outside investors have contributed 63 million euros to the firm, PBKMs chief executive Jakub Baran told AFP.

But the company has not escaped controversy: the Polityka weekly recently published a critical investigative report on several private clinics that offer what was described as expensive treatment involving stem cells held by PBKM.IB/JB

RELATED STORIES:

2019: The year gene therapy came of age

Landmark trial finds stem cell treatment reduces disability for those with multiple sclerosis

Read the rest here:
Europe's guardian of stem cells and hopes, real and unrealistic - INQUIRER.net

Diane Francis: Treating aging like a disease is the next big thing for science – Financial Post

LOS ANGELES Extending everyones life in a healthy fashion is one of many goals held by Peter Diamandis, a space, technology, aeronautics and medicine pioneer. But the new field known as longevity is of interest to everyone.

One hundred will be the new 60, he told his Abundance360 conference recently. The average human health span will increase by 10+ years this decade.

He, like others in Silicon Valley, believe that aging is a disease and the result of planned obsolescence, or the wearing down of, or damage to, certain critical mechanisms, sensors and functions within our bodies. Longevity research is about identifying the core problems to mitigate or reverse them.

The average human health span will increase by 10+ years this decade

Peter Diamandis

The exponential technologies of artificial intelligence, machine learning and computational heft have been harnessed, and have resulted in breakthroughs and clinical trials that are just a handful of years away from deployment on human patients. The main areas of research include: Stem cell supply restoration, regenerative medicine to regrow damaged cartilage, ligaments, tendons, bone, spinal cords and neural nerves; vaccine research against chronic diseases such as Alzheimers; and United Therapeutics that is developing technology to tackle the organ shortage for humans by genetically engineering organs grown in pigs.

New tools are accelerating the development of new, tailor-made medicines at a fraction of todays costs. Alex Zhavoronkov of Insilico Medicine told the conference that drugs take 10 years and cost $3 billion to research and 90 per cent fail. But his company can test in 46 days using human tissue, then model, design and produce in weeks with the help of advanced computing.

In regenerative medicine, advances appear to be arriving relatively soon. For instance, Diamandis asked the audience if anyone was awaiting a knee replacement operation and suggested that they might be better off postponing these until 2021 when regenerative medicine innovator, Samumed LLC in San Diego, is expected to complete phase three clinical trials of cartilage regeneration.

Samumeds founder, Osman Kibar, said his company has successfully injected a protein that activates nearby stem cells into producing new cartilage in a knee or a new disc in a spine. Preliminary success has also occurred to regenerate muscle and neural cells, retinal cells, skin and hair. Not surprisingly, the private company just raised US$15.5 billion to continue research and product development.

Another hot area of early stage research is called epigenetic reprogramming or identifying how to reverse deficiencies in proteins, stem cells, chromosomes, genes that repair DNA and damaged cells. A leader in this field is David Sinclair, professor of genetics at the Harvard Medical School, whose new book Lifespan: Why We Age and Why We Dont Have To explains the science and offers advice.

Aging is a disease, and that disease is treatable, he said. As research progresses toward actual corrections or cures, there are also lifestyle habits that can slow down the aging process, or avert damage. For instance, he said humans should replicate some behaviour that their bodies were designed for. Obviously, exercising and sleep are necessary but so is eating less often. You should feel hungry regularly, he said.

Another condition that is useful to emulate is hormesis, a scientific term for what Neitzsche posited which was that that which does not kill us makes us stronger. Sinclair recommends stressing our bodies with temperature changes such as going from a hot sauna to rolling in the snow. This invigorates the bodys processes and cells.

Theres also xenohormesis or gaining benefits from eating plants that have been environmentally stressed, therefore contain more beneficial nutrients. For instance, drought-stressed or wild strawberries have better flavour but they also are enhanced with additional antioxidant capacity and phenol content.

The age of 100 is easily in sight now, said Diamandis. And kids born today can expect to live to 105.

Financial Post

See the original post:
Diane Francis: Treating aging like a disease is the next big thing for science - Financial Post

OncoImmune Announces Presentation of CD24Fc Phase IIa Data and Phase III Clinical Trial Design at the 2020 Transplantation & Cellular Therapy…

OncoImmune, Inc. announced today that clinical data from its Phase IIa clinical trial of CD24Fc are being presented at the 2020 Transplantation & Cellular Therapy Meetings of ASTCT and CIBMTR Meeting, taking place in Orlando, Florida in February. The Phase IIa data will be presented by the studys Principle Investigator, Dr. John Magenau of the University of Michigans Department of Medicine, at 11:15 am on February 21. Dr. Pan Zheng, the Chief Medical Officer of OncoImmune, Inc., will present Phase III clinical trial design in a poster session on February 19-20th.

CD24Fc is OncoImmunes first-in class fusion protein that selectively represses inflammation induced by tissue injury while preserving innate immune response to pathogens. The Phase IIa study is a randomized, double blind, placebo controlled, multi-center study to investigate adding CD24Fc to standard of care tacrolimus and methotrexate in acute graft-versus host disease (GVHD) prophylaxis for allogeneic hematopoietic stem cell transplantation (HCT) with matched unrelated donors in treatment of leukemia and myelodysplastic syndrome. The trial included three CD24Fc dose cohorts: 240 mg at day -1, 480 mg at day -1, and the multi-dose cohort of 480-240-240 mg at day -1, day 14 and day 28. CD24Fc has received orphan drug designation from both the US FDA and European Medical Agency (EMA) for GVHD prophylaxis.

The presentation, entitled, "Mitigating Damage Response with CD24 Fusion Protein for Prevention of Acute Graft-Versus Host Disease," compares safety and efficacy data of CD24Fc when used in combination with standard of care GVHD prophylaxis compared to placebo and historical controls. The results demonstrate that CD24Fc was safe and well tolerated in the patient population. More importantly, patients receiving CD24Fc performed significantly better than placebo and historical controls in 180 day grade III-IV GVHD-free survival, the planned primary endpoint for the Phase III trial. These data thus provided strong support for the primary endpoint and dosing regimen of the upcoming phase III clinical trial. Moreover, significantly better relapse free survival (RFS) was observed over placebo control and historical controls. Overall survival (OS) was also significantly improved when compared with a matched historical control. Furthermore, a significant, dose-dependent reduction of mucositis was observed.

"We are very excited by the data observed in the Phase IIa clinical trial. In addition, we have completed enrollment of an open label Phase II expansion study where the drug continues to perform very well with clear signs of clinical efficacy," said Dr. Pan Zheng. "HCT is a curative therapy for refractory leukemia patients but hampered by GVHD, leukemia relapse and conditioning toxicity. As suggested by our preliminary data, CD24Fc shows significant promise in all three of these outcomes and would likely be transformative for the HCT field," she continued.

About OncoImmune, Inc.

OncoImmune (www.oncoimmune.com) is a privately-held, clinical-stage biopharmaceutical company that is actively engaged in the discovery and development of novel immunotherapies for cancer, inflammation and autoimmune diseases.

In addition to the pivotal trial of CD24Fc for HCT indications, OncoImmune is also launching multiple clinical trials testing its efficacy in immunotherapy-related adverse events, mucositis, and sequalae of chronic inflammation of patients infected with human immunodeficiency virus.

More recently, OncoImmune received FDA approval for the first-in-human clinical trial, testing the safety and efficacy of ONC-392, the only CTLA-4 targeting agent that preserves CTLA-4 recycling and thus the potential to simultaneously improve safety and efficacy of cancer immunotherapy.

OncoImmune is based in Rockville, Maryland.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200127005538/en/

Contacts

Martin Devenport OncoImmune, Inc. mdevenport@oncoimmune.com

The rest is here:
OncoImmune Announces Presentation of CD24Fc Phase IIa Data and Phase III Clinical Trial Design at the 2020 Transplantation & Cellular Therapy...

Rochester nonprofit offers a helping hand to patients affected by blood cancers – Med City Beat

When Woodbury resident Tracy McGarry was diagnosed with multiple myeloma, she and her husband Mike turned to a city 90 miles south for answers. Rochester soon became a second home of sorts not by choice, but by necessity.

We were referred to Mayo Clinic by a myeloma specialist in the [Twin] Cities, recalled Mike. Every time wed be down there, we were there for seven days at a time. Tracy was gearing up for a stem cell transplant in the fall of 2017, so we were down there quite a bit.

Blood cancers like multiple myeloma and leukemia bring many families like the McGarrys to Rochester every year. They seek treatment that may not be available at their hometown hospital, all while trying to navigate a city thats entirely new to them. The whole experience can be disorienting, and Rochester can start to feel cold to outsiders.

Enter Kristina Wright-Peterson and Red Drop Resources. You may know this organization by their previous name, Med City Foundation, but for their five-year anniversary, Wright-Peterson decided it was time for a change.

She said the new name better reflects what the organization provides.

The term resources really speaks to everything we provide patients, said Wright-Peterson. We dont just provide financial assistance. We dont just provide assistance with finding a place to stay. We start every conversation with patients in terms of, what do you need help with? We dont tell them what we help with; we ask them what they need.

A majority of the time, families dealing with blood cancers have not had much time to prepare for a sudden move to Rochester. That means they need income support and a place to stay fast.

The blood cancer treatment regimen requires people to stay for 6-8 weeks, said Wright-Peterson. That means the patient, plus a caregiver normally their spouse are stuck in Rochester, trying to pay for things here with no money coming in.

Wright-Peterson founded Red Drop Resources in 2014 in honor of her late father, who died in 1995 after a battle with leukemia. She says the nonprofit fills a need that her family had nearly 20 years ago, and working with her mother, Virginia, has been a benefit for both of them.

Continued here:
Rochester nonprofit offers a helping hand to patients affected by blood cancers - Med City Beat

Cardiff researchers on brink of ‘one size fits all’ cancer therapy – Active Quote

Monday, January 27, 2020

Cancer patients could be treated with a one-size-fits-all therapy, following the discovery of an immune cell which kills all forms of the disease.

Researchers at Cardiff University have found a new type of killer T-cell, capable of recognising and destroying most human cancers while preserving healthy cells. The scientists discovered a method of killing prostate, breast, lung and other cancers in lab tests and say there is enormous potential for immunotherapies not previously thought to be possible.

Cardiff Universitys cancer findings came from scientists looking for unconventional ways in which the immune system naturally attacks tumours. They found, inside human blood, a T-cell that can scan the body for a threat, such as cancerous cells, and eliminate the danger while leaving healthy cells alone. The team described the work as at an early stage, but exciting.

T-cell cancer therapies are where immune cells are removed, modified and returned to the patients blood to seek and destroy cancer cells. The most widely-used, known as CAR-T, is personalised to the patient but combats only a handful of cancers and has not been successful in eliminating solid tumours - which account for the vast majority of cancers.

The Cardiff teams discovery involves a new type of T-cell receptor (TCR), which recognises a molecule present on the surface of a wide range of cancer cells as well as in many of the bodys normal cells and is, remarkably, able to distinguish between the two. In tests, T-cells equipped with the new TCR killed lung, skin, blood, colon, breast, bone, prostate, ovarian, kidney and cervical cancer cells.

Professor Andrew Sewell, the lead author on the study and an expert in T-cells from Cardiff Universitys School of Medicine, said it was highly unusual to find a TCR with such broad cancer specificity, raising the prospect of universal cancer therapy.

Prof Sewell said: We hope this new TCR may provide us with a different route to target and destroy a wide range of cancers in all individuals. Current TCR-based therapies can only be used in a minority of patients with a minority of cancers.

Cancer-targeting via MR1-restricted T-cells is an exciting new frontier - it raises the prospect of a one-size-fits-all cancer treatment; a single type of T-cell that could be capable of destroying many different types of cancers across the population. Previously nobody believed this could be possible.

Further experiments and safety testing are now underway, with the hope of trialling this new approach in patients towards the end of 2020. Prof Sewell added: There are plenty of hurdles to overcome; however, if this testing is successful, then I would hope this new treatment could be in use in patients in a few years time.

Cancer is the leading cause of all avoidable deaths in the UK. Breast cancer is the most common, followed jointly by prostate and lung cancer and then by bowel cancer. Obesity is now a bigger cause than smoking of some cancers, namely bowel, kidney, liver and ovarian cancer.

According to financial information business Defaqto*, 38 out of 51 health insurance products include cancer cover, with benefits ranging from breakthrough treatment not otherwise available on the NHS to hormone therapy, reconstructive surgery and stem cell therapy. To find the right cancer cover for your family, use our online comparison tool or speak with our team on 0800 862 0373.

Photo:Cardiff Universitys Professor Andrew Sewell, left, with Research Fellow Garry Dolton.

Credit: Cardiff University

* Data sourced on January 2, 2020.

More:
Cardiff researchers on brink of 'one size fits all' cancer therapy - Active Quote

Scientists Think They Know How Stress Causes Gray Hair – Healthline

Sorry Mom and Dad: It turns out you might not have been exaggerating when you told us your children made your hair turn gray.

Stress may play a key role in just how quickly hair goes from colored to ashen, a study published this past week in the journal Nature suggests.

Scientists have long understood some link is possible between stress and gray hair, but this new research from Harvard University in Massachusetts more deeply probes the exact mechanisms at play.

The researchers initial tests looked closely at cortisol, the stress hormone that surges in the body when a person experiences a fight or flight response.

Its an important bodily function, but the long-term presence of heightened cortisol is linked to a host of negative health outcomes.

But the culprit ended up being a different part of the bodys fight or flight response the sympathetic nervous system.

These nerves are all over the body, including making inroads to each hair follicle, the researchers reported.

Chemicals released during the stress response specifically norepinephrine causes pigment producing stem cells to activate prematurely, depleting the hairs reserves of color.

The detrimental impact of stress that we discovered was beyond what I imagined, Ya-Chieh Hsu, PhD, a lead study author and an associate professor of stem cell and regenerative biology at Harvard, said in a press release. After just a few days, all of the pigment-regenerating stem cells were lost. Once theyre gone, you cant regenerate pigments anymore. The damage is permanent.

But stress isnt the only or even the primary reason that most people get gray hair.

In most cases, its simple genetics.

Gray hair is caused by loss of melanocytes (pigment cells) in the hair follicle. This happens as we age and, unfortunately, there is no treatment that can restore these cells and the pigment they produce, melanin, Dr. Lindsey A. Bordone, a dermatologist at ColumbiaDoctors and an assistant professor of dermatology at Columbia University Medical Center in New York, told Healthline. Genetic factors determine when you go gray. There is nothing that can be done medically to prevent this from happening when it is genetically predetermined to happen.

That doesnt mean environmental factors such as stress dont play a role.

Smoking, for instance, is a known risk factor for premature graying, according to a 2013 study. So kick the habit if you want to keep that color a little longer.

Other contributing factors to premature graying include deficiencies in protein, vitamin B-12, copper, and iron as well as aging due in part to an accumulation of oxidative stress.

That stress is prompted by an imbalance between free radicals and antioxidants in your body that can damage tissue, proteins, and DNA, Kasey Nichols, NMD, an Arizona physician and a health expert at Rave Reviews, told Healthline.

And some degree of oxidative stress is a natural part of life.

We would expect increasing gray hair as we advance in age, and we see about a 10 percent increase in the chance of developing gray hair for every decade after age 30, Nichols said.

Changes you can pursue to delay premature grays include eating a diet high in omega-3 fatty acids such as walnuts and fatty fish, not spending too much time in the skin-damaging and hair-damaging ultraviolet light of the sun, and taking vitamin B-12 and vitamin B-6 supplements.

That said, if you are going gray prematurely, it wouldnt hurt to go have a checkup just in case natural genetic factors arent the sole culprit.

The new Harvard research is only a mouse study, so replicating the same results in a human study would be necessary to strengthen the findings.

But the Harvard research has implications far beyond graying hair, with the hair color change merely one obvious sign of other internal changes as a result of prolonged stress.

By understanding precisely how stress affects stem cells that regenerate pigment, weve laid the groundwork for understanding how stress affects other tissues and organs in the body, said Hsu. Understanding how our tissues change under stress is the first critical step towards eventual treatment that can halt or revert the detrimental impact of stress.

Might that also mean someday halting and reverting the march of premature gray hair? Its too soon to tell.

We still have a lot to learn in this area, Hsu said.

Read this article:
Scientists Think They Know How Stress Causes Gray Hair - Healthline

Revving the Engine – Harvard Medical School

The hearts ability to beat normally over a lifetime is predicated on the synchronized work of proteins embedded in the cells of the heart muscle.

Like a fleet of molecular motors that get turned on and off, these proteins cause the heart cells to contract, then force them to relax, beat after life-sustaining beat.

Now a study led by researchers at Harvard Medical School, Brigham and Womens Hospital and the University of Oxford shows that when too many of the hearts molecular motor units get switched on and too few remain off, the heart muscle begins to contract excessively and fails to relax normally, leading to its gradual overexertion, thickening and failure.

Get more HM news

Results of the work, published Jan. 27 inCirculation,reveal that this balancing act is an evolutionary mechanism conserved across species to regulate heart muscle contraction by controlling the activity of a protein called myosin, the main contractile protein of the heart muscle.

The findingsbased on experiments with human, mouse and squirrel heart cellsalso demonstrate that when this mechanism goes awry it sets off a molecular cascade that leads to cardiac muscle over-exertion and culminates in the development of hypertrophic cardiomyopathy (HCM), the mostcommon genetic diseaseof the heartand aleading causeof sudden cardiac death in young people and athletes.

Our findings offer a unifying explanation for the heart muscle pathology seen in hypertrophic cardiomyopathy that leads to heart muscle dysfunction and, eventually, causes the most common clinical manifestations of the condition, said senior authorChristine Seidman, professor of genetics in the Blavatnik Institute at Harvard Medical School, a cardiologist at Brigham and Womens Hospital and a Howard Hughes Medical InstituteInvestigator.

Importantly, the experiments showed that treatment with an experimental small-molecule drug restored the balance of myosin arrangements and normalized the contraction and relaxation of both human and mouse cardiac cells that carried the two most common gene mutations responsible for nearly half of all HCM cases worldwide.

If confirmed in further experiments, the results can inform the design of therapies that halt disease progression and prevent complications.

Correcting the underlying molecular defect and normalizing the function of heart muscle cells could transform treatment options, which are currently limited to alleviating symptoms and preventing worst-case scenarios such as life-threatening rhythm disturbances and heart failure, said study first authorChristopher Toepfer,who performed the work as a postdoctoral researcher in Seidmans lab and is now a joint fellow in the Radcliffe Department of Medicine at the University of Oxford.

Some of the current therapies used for HCM include medications to relieve symptoms, surgery to shave the enlarged heart muscle or the implantation of cardioverter defibrillators that shock the heart back into rhythm if its electrical activity ceases or goes haywire. None of these therapies address the underlying cause of the disease.

Imbalance in the motor fleet

Myosin initiates contraction by cross-linking with other proteins to propel the cell into motion. In the current study, the researchers traced the epicenter of mischief down to an imbalance in the ratio of myosin molecule arrangements inside heart cells. Cells containing HCM mutations had too many molecules ready to spring into action and too few myosin molecules idling standby, resulting in stronger contractions and poor relaxation of the cells.

An earlier study by the same team found that under normal conditions, the ratio between on and off myosin molecules in mouse heart cells is around 2-to-3. However, the new study shows that this ratio is off balance in heart cells that harbor HCM mutations, with disproportionately more molecules in active versus inactive states.

In an initial set of experiments, the investigators analyzed heart cells obtained from a breed of hibernating squirrel as a model to reflect extremes in physiologic demands during normal activity and hibernation. Cells obtained from squirrels in hibernationwhen their heart rate slows down to about six beats per minutecontained 10 percent more off myosin molecules than the heart cells of active squirrels, whose heart rate averages 340 beats per minute.

We believe this is one example of natures elegant way of conserving cardiac muscle energy in mammals during dormancy and periods of deficient resources, Toepfer said.

Next, researchers looked at cardiac muscle cells from mice harboring the two most common gene defects seen in HCM. As expected, these cells had altered ratios of on and off myosin reserves.The researchers also analyzed myosin ratios in two types of human heart cells: Stem cell-derived human heart cells engineered in the lab to carry HCM mutations and cells obtained from the excised cardiac muscle tissue of patients with HCM. Both had out-of-balance ratios in their active and inactive myosin molecules.

Further experiments showed that this imbalance perturbed the cells normal contraction and relaxation cycle. Cells harboring HCM mutations contained too many on myosin molecules and contracted more forcefully but relaxed poorly. In the process, the study showed, these cells gobbled up excessive amounts of ATP, the cellular fuel that sustains the work of each cell in our body. And because oxygen is necessary for ATP production, the mutated cells also devoured more oxygen than normal cells, the study showed. To sustain their energy demands, these cells turned to breaking down sugar molecules and fatty acids, which is a sign of altered metabolism, the researchers said.

Taken together, our findings map out the molecular mechanisms that give rise to the cardinal features of the disease, Seidman said. They can help explain how chronically overexerted heart cells with high energy consumption in a state of metabolic stress can, over time,lead to a thickened heart muscle that contracts and relaxes abnormally and eventually becomes prone to arrhythmias, dysfunction and failure.

See more here:
Revving the Engine - Harvard Medical School