Category Archives: Stem Cell Treatment


Stem Cell Alopecia Treatment Market Outlook, Growth by Top Company, Region, Application, Driver, Trends and Forecasts By 2026| Verified Market…

New Jersey, United States: The report titled Stem Cell Alopecia Treatment Market is one of the most comprehensive and important additions to Verified Market Researchs archive of market research studies. It offers detailed research and analysis of key aspects of the Stem Cell Alopecia Treatment market. The market analysts authoring this report have provided in-depth information on leading growth drivers, restraints, challenges, trends, and opportunities to offer a complete analysis of the Stem Cell Alopecia Treatment market. Market participants can use the analysis on market dynamics to plan effective growth strategies and prepare for future challenges beforehand. Each trend of the Stem Cell Alopecia Treatment market is carefully analyzed and researched about by the market analysts.

The report includes detailed analysis of the vendor landscape and thorough company profiling of leading players of the Stem Cell Alopecia Treatment market. The researchers have considered almost all important parameters for company profiling, including market share, recent development, gross margin, future development plans, product portfolio, production, and revenue.

Get | Download Sample Copy @https://www.verifiedmarketresearch.com/download-sample/?rid=15102&utm_source=MON&utm_medium=009

Leading players covered in the Stem Cell Alopecia Treatment Market report:

Insight into Competitive Landscape:

Market players need to have a complete picture of the competitive landscape of the Stem Cell Alopecia Treatment market as it forms an essential tool for them to plan their future strategies accordingly. The report puts forth the key sustainability strategies taken up by the companies and the impact they are likely to have on the Stem Cell Alopecia Treatment market competition. The report helps the competitors to capitalize on opportunities in the Stem Cell Alopecia Treatment market and cope up with the existing competition. This will eventually help them to make sound business decisions and generate maximum revenue.

Market Segment Analysis:

The report offers a comprehensive study of product type and application segments of the Stem Cell Alopecia Treatment market. The segmental analysis provided in the report is based on significant factors such as market share, market size, consumption, production, and growth rate of the market segments studied.Readers of the report are also provided with exhaustive geographical analysis to provide clear understanding of the regional growth of the Stem Cell Alopecia Treatment market. Developed as well as developing regional markets for Stem Cell Alopecia Treatment have been deeply studied to help market players identify profit-making opportunities in different regions and countries.

Ask For Discount @ https://www.verifiedmarketresearch.com/ask-for-discount/?rid=15102&utm_source=MON&utm_medium=009

What does the report offer?

Market Forecasts:Buyers of the report will have access to accurate and validated estimates of the total market size in terms of value and volume. The report also provides consumption, production, sales, and other forecasts for the Stem Cell Alopecia Treatment market.

Study on Key Market Trends:This section of the report offers deeper analysis of latest and future trends of the Stem Cell Alopecia Treatment market.

Analysis on Strategies of Leading Players:Market players can use this analysis to gain competitive advantage over their competitors in the Stem Cell Alopecia Treatment market.

Regional Growth Analysis:All major regions and countries have been covered in the report. The regional analysis will help market players to tap into unexplored regional markets, prepare specific strategies for target regions, and compare the growth of all regional markets.

Segmental Analysis:The report provides accurate and reliable forecasts of the market share of important segments of the Stem Cell Alopecia Treatment market. Market participants can use this analysis to make strategic investments in key growth pockets of the Stem Cell Alopecia Treatment market.

Buy the Stem Cell Alopecia Treatment Market Report within 24 hours for USD 3,950 @https://www.verifiedmarketresearch.com/product/stem-cell-alopecia-treatment-market/?utm_source=MON&utm_medium=VMR

Why VMR?

Advanced analytical research solutions within one platform; Verified Market Research. Offering information enriched research studies that include primary and secondary research studies. Verified Market Research assists in understanding holistic industrial factors and trends.

Analysts with high expertise in data gathering and governance utilize industry techniques to collate and examine data at all stages. Our analysts are trained to combine modern data collection techniques, superior research methodology, subject expertise and years of collective experience to produce informative and accurate research reports.

Verified market research partners with clients to provide insight into strategic and growth analytics; data that help achieve business goals and targets. Our core values include trust, integrity, and authenticity for our clients.

Our research studies help our clients to make superior data-driven decisions, capitalize on future opportunities, optimize efficiency and keeping them competitive by working as their partner to deliver the right information without compromise.

Contact Us:

Mr. Edwyne FernandesCall: +1 (650) 781 4080Email:[emailprotected]

Excerpt from:
Stem Cell Alopecia Treatment Market Outlook, Growth by Top Company, Region, Application, Driver, Trends and Forecasts By 2026| Verified Market...

Aspen Neuroscience gets funding to pursue personalized cell therapy for Parkinsons disease – The San Diego Union-Tribune

Aspen Neuroscience, a new San Diego biotech company working on stem cell treatment for Parkinsons disease, has come out of stealth mode and raised $6.5 million to pursue clinical testing for its therapy.

Co-founded by well-known stem cell scientist Jeanne Loring, Aspen Neuroscience proposes creating stem cells from modified skin cells of Parkinsons patents via genetic engineering.

The stem cells, which can become any type of cell in the body, then would undergo a process that makes them specialize into dopamine-releasing neurons.

People with Parkinsons lose a large number up to 50 percent at diagnosis of specific brain cells that make the chemical dopamine.

Without dopamine, nerve cells cannot communicate with muscles and people are left with debilitating motor problems.

Once these modified skin cells have been engineered to specialize in producing dopamine, they can be transplanted into the Parkinsons patient to restore the types of neurons lost to the disease.

The reason we called it Aspen is because l was raised in the Rocky Mountain states, said Loring. When there is a forest fire in the Rockies, the evergreens are wiped out but the aspens are the fist that regenerate after the burn. So it is a metaphor for regeneration.

Aspen still has a long way to go before its proposed therapy would be available to Parkinsons patients. It has been meeting with the U.S. Food and Drug Administration to provide animal trial data and other information in hopes of getting permission to start human clinical trials.

But the company expects the earliest it would get the go-ahead from FDA to start human trials would be 2021.

Loring has been working on the therapy for eight years. She is professor emeritus and founding director of the Center for Regenerative Medicine at the Scripps Research Institute.

Loring co-founded the 20-employee company with Andres Bratt-Leal, a former post-doctoral researcher in Lorings lab at Scripps.

Joining them as Aspens Chief Executive is Dr. Howard Federoff, former vice chancellor for health affairs and chief executive of the University of California Irvine Health System.

Federoff said the company is the only one pursuing the use of Parkinsons patients own cells as part of neuron replacement therapy.

Aspens proprietary approach does not require the use of immuno-suppression drugs, which can be given when transplanted cells come from another person and perhaps limit the effectiveness of the treatment.

Aspens approach is a therapy that is likely to benefit from the fact that your own cells know how to make the best connections with their own target cells in the brain, even in the setting of Parkinsons disease, said Federoff. So when transplanted it is able to set back the clock on Parkinsons.

In addition to Aspens main therapy, it is researching a gene-editing treatment for forms of Parkinsons common in certain families.

Aspens research work up to now has been supported by Summit for Stem Cell, a non-profit on which provides a variety of services for people with Parkinsons disease.

The new seed funding round was led by Domain Associates and Axon Ventures, with additional participation from Alexandria Venture Investments, Arch Venture Partners, OrbiMed and Section 32.

Aspens financial backing, combined with its experienced and proven leadership team, positions it well for future success, said Kim Kamdar, a partner at Domain Associates. Domain prides itself on investing in companies that can translate scientific research into innovative medicines and therapies that make a difference in peoples lives. We clearly see Aspen as fitting into that category, as it is the only company using a patients own cells for replacement therapy in Parkinsons disease.

Read the rest here:
Aspen Neuroscience gets funding to pursue personalized cell therapy for Parkinsons disease - The San Diego Union-Tribune

Acute Leukemia: 5 Things to Know – Medscape

In the past 2 years, a host of new targeted treatments for acute leukemia have become availablemost notably the FLT and IDH inhibitorsand yet the best way to treatthese patients remains a challenge.Hereare five things to know about the therapeutic landscape ofthis diseaseand emerging evidence surroundingitsrisk factors.

Experts do not agree on the best approach for treating older patients with AML. Patients aged 65 years and older tend to have more aggressive disease and a worse prognosis compared with their younger peers. The 5-year survival estimates for this older cohort is 5%, whereas the rate for patients younger than 20 years is 67%.

Chemotherapy, which is the first-line therapy for the majority of patients with AML, often fails in older patients because the agents are too toxic or simply not effective. In fact, more than half of older patients with AML receive no care.

A central question for clinicians treating older patients with AML is whether to provide more-intensive or less-intensive therapy. Oncologists can make a case for both. For example, data from the Swedish Acute Leukemia Registry show that intensive treatment is well tolerated and extends survival in most patients aged 60-75 years. However, support for a low-intensity strategy also exists. A 2019 phase 1b/2 clinical trial found that a combination of the chemotherapy agents venetoclax and low-dose cytarabine led 54% of patients aged 82 years and older to achieve complete remission or complete remission with incomplete blood count recovery.

Oncologists can turn to a patient's degree of frailty and tumor biology to provide clues about which therapeutic strategy to pursue. Frail patients, for instance, are less likely to tolerate aggressive chemotherapy. Understanding the tumor biology of AML, which is often more complex in older patients, can also indicate how responsive a patient will be to different approaches. Overall, experts are working toward a more standardized way of assessing these metrics and how each should inform treatment decisions.

In the past 2 years, a host of new targeted treatments for AML have become available. Most of these drugs inhibit key genetic mutations associated with AML. Midostaurin, which targets FLT3 mutations, was the first such inhibitor to receive approval from the US Food and Drug Administration in April 2017, but more potent agents soon followedgilteritinib for FLT3 mutations, ivosidenib for IDH1 mutations, and enasidenib for IDH2 mutations.

The new crop of targeted drugs show promise for improving outcomes.

A phase 3 randomized controlled trial evaluating oral gilteritinib versus salvage chemotherapy reported a median overall survival of 9.3 months in patients who received gilteritinib compared with 5.6 months for those receiving chemotherapy. About one third of patients receiving gilteritinib achieved complete remission with partial hematologic recovery compared with 15% of those receiving chemotherapy alone.

An alternative targeted approach is to disrupt key players along metabolic or cell maintenance pathways instead of genetic mutations. A phase 2 randomized controlled trial found that glasdegib, which targets the Hedgehog pathway, almost doubled overall survival when combined with low-dose cytarabine compared with cytarabine alone (8.8 months vs 4.9 months).

Immunotherapy represents another potential treatment option for patients with AML. The antibody-drug conjugate gemtuzumab ozogamicin is designed to deliver the antitumor antibiotic calicheamicin directly to leukemia cells expressing the CD33 transmembrane receptor. The CD33 receptor is only expressed by cells of myeloid origin, not normal stem cells, which allows the drug to pursue cancerous cells with greater specificity.

Gemtuzumab ozogamicin has an interesting history. It was withdrawn from the market in 2010 after concerns over its safety and efficacy surfaced, but it was then reapproved in 2017 after further research showed its value. Recent analyses have found that, when added to conventional induction therapy, gemtuzumab ozogamicin improves relapse rates and overall survival in patients with CD33-positive AML.

Read the rest here:
Acute Leukemia: 5 Things to Know - Medscape

CAMPUS: EGG DONATION – Artificial sperm cells to remove the genetic worries of sperm donation – ESHRE

A Campus meeting in November reviewed the arguments for and against donor conception, and the sometimes difficult ethical arguments raised by the prospect of a donor-conceived child. 'Artificial' sperm cells derived from testicular tissue or stem cells may resolve some of those arguments.

The problem is especially acute in cancers diagnosed in prepubertal boys in whom there are no sperm cells available for storage. Their only option for future fatherhood in the face of cancer treatment is adoption or donor sperm. And this, added Goossens, is not an exceptional problem. Incidence rates are around 17 cases per 100,000 population, with leukemia and CNS tumours the most commonly diagnosed. So the usual pathway to fertility preservation in these young cases is for the oncologist to warn of the risk to future fertility from the cancer treatments and refer to the fertility clinic. Biopsy of testicular tissue, of course, must be performed before any radio- or chemotherapy.

Goossens described two experimental techniques, spermatogonial stem cell retrieval and transplantation, and homotopic tissue grafting. The danger in the former procedure is a risk of introducing malignancy, so banked tissue must be free of malignant contamination. Experiments in mouse-to-mouse models have demonstrated spermatogenesis from tissue grafting, and most recently fully functional conception and delivery in a non-human primate (Grady). Similarly, experiments in mouse models with spermatogonial stem cell transplantation have so far proved efficient, with spontaneous pregnancy already possible.

Of course, the objective of this impressive experimental work is not merely a resolution to the question of genetic continuity in couples faced with third-party donation, but the future fertility and long-term quality of life of so many unfortunate young boys. Advances in cancer treatment have led to the increased survival of all children with cancer, and with it a new imperative for the restoration of their fertility. Not all cancer treatments cause complete testicular damage, but around one-third of children having treatment for pediatric cancers will end up infertile. Following the proof-of-concept study which saw the birth of Grady - in which testicular samples removed from prepubertal monkeys was frozen, thawed and regrafted under scrotal skin - the research group declared that their next logical step, with safety and feasibility apparent, is human trials.

1. Fayomi AP, Peters K, Sukhwani M, et al. Autologous grafting of cryopreserved prepubertal rhesus testis produces sperm and offspring. Science 2019; 363: 1314-1319.

Go here to see the original:
CAMPUS: EGG DONATION - Artificial sperm cells to remove the genetic worries of sperm donation - ESHRE

Global T-Cell Therapy (CAR T-Cell, Tumor Infiltrating Lymphocytes) Market Size, Share & Trends Analysis Report 2019-2026 – ResearchAndMarkets.com…

DUBLIN--(BUSINESS WIRE)--The "T-Cell Therapy Market Size, Share & Trends Analysis Report By Modality, By Therapy (CAR T-Cell, Tumor Infiltrating Lymphocytes), By Indication (Hematologic Malignancies, Solid Tumors), And Segment Forecasts, 2019 - 2026" report has been added to ResearchAndMarkets.com's offering.

The global T-cell therapy market size is expected to reach USD 7.51 billion, expanding at a CAGR of 15.4% by 2026

The landmark approvals of Yescarta and Kymriah have spurred unprecedented advancements in the market. The launch of these breakthrough therapies has bolstered cash inflow for innovation, thereby driving the growth.

Expansion of the market for T-cell therapy significantly relies on shifting preference from first-line stem cell transplants and chemotherapy to third-line CAR T-cell therapy. Moreover, the ever-expanding plethora of medical conditions for which the T cell therapies is projected to bode well for the market growth. Rise in oncological disorders is projected to drive interest as well as investments in the T-cell therapy market in near future.

In contrast with the small-molecule landscape, engineered T cells market landscape is distinguished by an extensive network that encompasses several entities marked by connections academically, financially, and via technology licensing. Research bodies, and manufacturers, and regulators engage in assessing the long-term efficacy and safety of therapies to ensure safe access to patients.

By far, the antigen challenge and linked toxicity concerns have impeded the development of CAR T therapies in non-hematological malignancies. Market players are applying a data-driven approach of exploring this space to mitigate the challenge and expand the usage of T-cell therapy in indication type such as brain cancer and melanoma.

Further key findings from the report suggest:

Competitive Landscape

For more information about this report visit https://www.researchandmarkets.com/r/jgs2h6

Read the original:
Global T-Cell Therapy (CAR T-Cell, Tumor Infiltrating Lymphocytes) Market Size, Share & Trends Analysis Report 2019-2026 - ResearchAndMarkets.com...

Stem Cell Therapy Market Forecasted To Surpass The Value Of US$ XX Mn/Bn By 2045 2017 – 2025 – Markets Gazette 24

TMRR, suggest in its latest market report, that the Stem Cell Therapy market report is about to exceed US$ xx Mn/Bn by 2029. The report finds that the Stem Cell Therapy market registered ~US$ xx Mn/Bn in 2018 and is projected to expand at a healthy CAGR over the foreseeable period.

The Stem Cell Therapy market research focuses on the market structure along with various factors (positive and negative) that influence the market growth. The study contains a precise evaluation of the Stem Cell Therapy market, including growth rate, current market scenario, and volume inflation prospects, on the basis of DROT and Porters Five Forces analyses.

Important players profiled in the Stem Cell Therapy market research include player 1, player 2, player 3 and player 4.

In this Stem Cell Therapy market study, the following years are considered to project the market footprint:

Exclusive offer!!! Purchase reports at a discounted price!!!

Request For Discount On This Report @ https://www.tmrresearch.com/sample/sample?flag=D&rep_id=1787&source=atm

Key Trends

The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.

On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.

Global Stem Cell Therapy Market: Market Potential

A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.

In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.

Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.

Global Stem Cell Therapy Market: Regional Outlook

The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.

Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.

Global Stem Cell Therapy Market: Competitive Analysis

Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.

Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.

Request Sample Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1787&source=atm

The content of the Stem Cell Therapy market report includes the following insights:

The Stem Cell Therapy market study answers critical questions including:

All the players running in the global Stem Cell Therapy market are elaborated thoroughly in the Stem Cell Therapy market report on the basis of R&D developments, distribution channels, industrial penetration, manufacturing processes, and revenue. In addition, the report examines, legal policies, and comparative analysis between the leading and emerging Stem Cell Therapy market players.

Customize This Report @ https://www.tmrresearch.com/sample/sample?flag=CR&rep_id=1787&source=atm

Why choose TMRR?

Read the original:
Stem Cell Therapy Market Forecasted To Surpass The Value Of US$ XX Mn/Bn By 2045 2017 - 2025 - Markets Gazette 24

Aspen Neuro Bags $6.5M to Test Parkinson’s Disease Stem Cell Therapy – Xconomy

XconomySan Diego

Nearly nine years ago Jeanne Loring and her colleagues at Scripps Research debuted a test that leveraged advances in genomics and data science to determine, without testing in animals, whether human stem cells were pluripotent, or able to become any type of cell in the body.

Being able to prove that has become increasingly important as scientists look to induced pluripotent stem cells (iPSCs)mature, specialized cells that have been reprogrammed as immature cells, regaining the capability of becoming any type of cellas material for new regenerative medicines.

Now Loring and Andres Bratt-Leal, who joined her lab in 2012 as a post-doctoral researcher, have founded a biotech that combines stem cell biology and genomics know-how to advance a potential cell therapy for Parkinsons disease.

The startup announced Thursday it raised a seed round of $6.5 million to support its work. Aspens lead drug candidate, which is in preclinical testing, is intended to replace neurons in the brains of people with the disease, which causes those cells to become damaged or die.

When people with Parkinsons disease lose neurons, they also lose a chemical messenger the cells produce, called dopamine. Without dopamine, communication between nerve cells falters, which leads to the debilitating motor problems that characterize the disease. Existing Parkinsons drugs aim to alter dopamine levels. Aspen, however, wants to fix the upstream problem that leads to those lowered levels by reconstructing patients damaged neural networks.

The cell therapy would involve harvesting patients own living cells through a skin biopsy, reprogramming them to immature cells, or iPSCs, then further engineering them to become predisposed to mature into neurons. Once enough of those cells have been grown in the lab, those neuron precursor cells would be delivered directly to the brain.

Using a patients own cells avoids the dangerous immune system reactions that can occur when donor cells are used in such therapies, and obviates the need for immunosuppression drugs. Two cell therapies that use genetic engineering have been approved by the FDA, both of which take and tweak patients T cells into treatments for cancer. Stem cell transplants have been used to treat some cancers.

Aspen worked to ensure the company could ably manufacture a so-called autologous replacement cell therapy, or one from a patients one cells, by improving the process of differentiating iPSCs into dopamine neurons, Loring says. And the group developed another predictive genomic-based test, similar to the effort Loring spearheaded nearly a decade ago to determine whether cells were pluripotent, that can detect which iPSCs are destined to become neurons.

(Bratt-Leal) put his biological engineering expertise into coming up with a way that was reproducible, that we would get the same cells no matter who we got the original cells from, she says.

The company plans to test the therapy in patients that they determine, through genomic testing, have the most common form of Parkinsons, which is referred to as sporadic and arises without a clear genetic predisposition. It also has a second treatment in the works that it intends to develop for patients with familial forms of the disease, and uses a gene editing toolyet to be selectedto alter their stem cells during the reprogramming process.

Howard Federoff, who was most recently vice chancellor for health affairs and CEO of the UC Irvine Health system, is Aspens CEO. Federoff says he has come to believe that Parkinsons patients need more than just to stabilize their disease They need to turn the clock back.

Many companies are working on drugs to treat Parkinsons, but most are meant to manage symptoms rather than reverse the disease. Levodopa, which supplants missing dopamine, is used widely, but it can cause side effects, including involuntary movement called dyskinesia; and, as the disease progresses, the drug eventually stops working between doses.

Aspen claims it is the only company working toward an autologous neuron replacement. The company, however, will need to raise a Series A round to move its drug candidates through Phase 2 proof-of-concept trials, Loring says.

The company raised its seed round from a group of investors including Domain Associates, Alexandria Venture Investments, Arch Venture Partners, Axon Ventures, OrbiMed, and Section 32. Initially, it was financed through grants from Summit for Stem Cell, a San Diego-based nonprofit.

Sarah de Crescenzo is an Xconomy editor based in San Diego. You can reach her at sdecrescenzo@xconomy.com.

Read this article:
Aspen Neuro Bags $6.5M to Test Parkinson's Disease Stem Cell Therapy - Xconomy

LentiGlobin Gene Therapy Continues to Show Promising Results in SCD, Updated Trial Data Shows – Sickle Cell Anemia News

LentiGlobin, Bluebird Bios investigational gene therapy for sickle cell disease (SCD), continues to show promising results in SCD patients participating in the companys Phase 1/2 HGB-206 clinical trial, according to the latest study data.

The new findings which included data from additional patients treated in the trial, updated data from those previously reported, and exploratory analyses were presented at the 61st American Society of Hematology (ASH) Annual Meeting and Exposition, held Dec. 6-10 in Orlando, Fla.

LentiGlobinisa gene therapy that has been developed to increase the levels of hemoglobin the protein that transports oxygen in the blood in people with SCD.

The therapy works by delivering functional copies of a modified form of the beta-globin gene (A-T87Q-globin gene) into patients red blood cell precursors, known as hematopoietic stem cells, or HSCs. Once these precursors differentiate, their red blood cells start producing a modified version of hemoglobin, called HbAT87Q.

By boosting the production of this anti-sickling form of the protein, LentiGlobin reduces the proportion of defective hemoglobin in patients red blood cells. That, in turn, reduces the sickling and destruction of these red blood cells and other complications associated with SCD.

The safety and efficacy of LentiGlobin is currently being evaluated in three groups identified as A-C of SCD patients participating in Bluebirds ongoing open-label, Phase 1/2 HGB-206 trial (NCT02140554).

Those in group A were treated per the original trial protocol. Meanwhile, those in groups B and C received an enhanced treatment protocol, approved in 2016, that is designed to increase the therapys efficiency. In groups A and B, patients HSCs were extracted from the bone marrow, while in group C, they were extracted from the blood.

As of the data cutoff date of August 26, 2019, seven participants in group A, two in group B, and 17 in group C had been treated with LentiGlobin. According to new data presented at the meeting, only two patients from group A required regular blood transfusions after the treatment.

In addition, the updated findings revealed that the levels of anti-sickling HbAT87Q remained stable in all participants from groups A and B over a post-treatment follow-up period of three years. Similarly, levels of total hemoglobin also were found to have remained stable in both patient groups over a two-year follow-up.

At the trial participants last visit, the median levels of anti-sickling HbAT87Q were 0.9 g/dL among those from group A, and 3.6 g/dL and 7.1 g/dL in the two patients from group B. The median levels of total hemoglobin were 9.0 g/dL among patients from group A, and 11.3 g/dL and 13.0 g/dL among those from group B.

Normal levels of hemoglobin in the blood range from 12.5 to 17.5 g/dL.

Among 12 patients from group C who were followed for at least six months, the median levels of anti-sickling HbAT87Q made up at least 40% of their total hemoglobin. At their last visit, the levels of anti-sickling HbAT87Q ranged from 2.7 to 9.0 g/dL, and the levels of total hemoglobin from 9.3 to 15.2 g/dL.

In groups A and B, LentiGlobin reduced the frequency of painful vaso-occlusive crises (VOCs) and acute chest syndrome (ACS) in the two years following treatment.

Nine patients from group C who were followed for at least six months had experienced four or more VOCs or ACS episodes in the two years prior to receiving LentiGlobin. Treatment with the gene therapy led to a reduction of 99% in the frequency of annual VOCs and ACS. In this group, there were no reports of ACS or severe VOCs for up to 21 months following treatment.

Moreover, among those from group C, LentiGlobin reduced the levels of different markers of red blood cells destruction, including reticulocytes, lactate dehydrogenase (LDH), and bilirubin.

LentiGlobins safety profile was consistent with previous data. No serious adverse events related to treatment were reported during the study. Only one mild, non-serious event of hot flush was found to be related to LentiGlobin. That event was rapidly resolved and did not require treatment.

Exploratory analyses were performed in a sub-group of patients from all three groups. In 12 participants who had been followed for at least six months, more than 70% of the individuals red blood cells were found to contain the anti-sickling HbAT87Q at the last study visit, these analyses showed. Moreover, in four of these patients, nearly all their red blood cells (90%) were positive for HbAT87Q.

In addition, exploratory analyses revealed that participants red blood cells were less prone to sickling following treatment with LentiGlobin.

At ASH, the growing body of data from our clinical studies of LentiGlobin for SCD reflects results from 26 treated patients with up to four years of follow-up, David Davidson, MD, Bluebird Bios chief medical officer, said in a press release.

We continue to observe patients treated in Group C producing high levels of gene-therapy derived anti-sickling hemoglobin, HbAT87Q, accounting for at least 40% of total hemoglobin in those with six or more months of follow-up, and exploratory assays show that HbAT87Q is present in most red blood cells of treated patients, Davidson said.

The robust production of HbAT87Q was associated with substantial reductions of sickle hemoglobin, HbS, as well as improvement in key markers of hemolysis [red blood cells destruction]. Most importantly, patients in Group C have not experienced any episodes of acute chest syndrome or serious vaso-occlusive crises following LentiGlobin for SCD treatment, he added.

The company is recruiting participants with transfusion-dependent -thalassemia (TDT) for a Phase 3 trial (NCT03207009) testing LentiGlobin. Moreover, according to the companys pipeline, there is a Phase 2/3 trial planned in sickle cell disease for this gene therapy.

Joana is currently completing her PhD in Biomedicine and Clinical Research at Universidade de Lisboa. She also holds a BSc in Biology and an MSc in Evolutionary and Developmental Biology from Universidade de Lisboa. Her work has been focused on the impact of non-canonical Wnt signaling in the collective behavior of endothelial cells cells that make up the lining of blood vessels found in the umbilical cord of newborns.

Total Posts: 94

Margarida graduated with a BS in Health Sciences from the University of Lisbon and a MSc in Biotechnology from Instituto Superior Tcnico (IST-UL). She worked as a molecular biologist research associate at a Cambridge UK-based biotech company that discovers and develops therapeutic, fully human monoclonal antibodies.

Read the original:
LentiGlobin Gene Therapy Continues to Show Promising Results in SCD, Updated Trial Data Shows - Sickle Cell Anemia News

CHMP Issues Positive Opinion Recommending DARZALEX (Daratumumab) in Combination with Bortezomib, Thalidomide and Dexamethasone in Frontline Multiple…

Company Announcement

Copenhagen, Denmark; December 13, 2019 Genmab A/S (GMAB) announced today that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) has issued a positive opinion recommending broadening the existing marketing authorization for DARZALEX (daratumumab) in the European Union. The recommendation is for the use of DARZALEX in in combination with bortezomib, thalidomide and dexamethasone for the treatment of adult patients with newly diagnosed multiple myeloma who are eligible for autologous stem cell transplant (ASCT).

We are very pleased with this positive opinion from the CHMP as, if approved, the combination of DARZALEX plus bortezomib, thalidomide and dexamethasone would be the first DARZALEX containing regimen that would be a potential treatment option for newly diagnosed patients with multiple myeloma in Europe who are eligible for ASCT, said Jan van de Winkel, Ph.D., Chief Executive Officer of Genmab.

The Type II variation application was submitted to the EMA by Janssen Pharmaceutica NV in March 2019 and was based on the Phase III CASSIOPEIA (MMY3006) study sponsored by the French Intergroupe Francophone du Myelome (IFM) in collaboration with the Dutch-Belgian Cooperative Trial Group for Hematology Oncology (HOVON) and Janssen R&D, LLC. Data from this study was published in The Lancet and presented at the 2019 American Society of Clinical Oncology (ASCO) Annual Meeting. In August 2012, Genmab granted Janssen Biotech, Inc. an exclusive worldwide license to develop, manufacture and commercialize daratumumab.

About the CASSIOPEIA (MMY3006) studyThis Phase III study is a randomized, open-label, multicenter study, run by the French Intergroupe Francophone du Myelome (IFM) in collaboration with the Dutch-Belgian Cooperative Trial Group for Hematology Oncology (HOVON) and Janssen R&D, LLC, including 1,085 newly diagnosed subjects with previously untreated symptomatic multiple myeloma who are eligible for high dose chemotherapy and stem cell transplant. In the first part of the study, patients were randomized to receive induction and consolidation treatment with daratumumab combined with bortezomib, thalidomide (an immunomodulatory agent) and dexamethasone (a corticosteroid) or treatment with bortezomib, thalidomide and dexamethasone alone. The primary endpoint is the proportion of patients that achieve a stringent Complete Response (sCR). In the second part of the study, patients that achieved a response will undergo a second randomization to either receive maintenance treatment of daratumumab 16 mg/kg every 8 weeks for up to 2 years versus no further treatment (observation). The primary endpoint of this part of the study is progression free survival (PFS).

About multiple myelomaMultiple myeloma is an incurable blood cancer that starts in the bone marrow and is characterized by an excess proliferation of plasma cells.1 Approximately 16,830 new patients were expected to be diagnosed with multiple myeloma and approximately 10,480 people were expected to die from the disease in the Western Europe in 2018.2 Globally, it was estimated that 160,000 people were diagnosed and 106,000 died from the disease in 2018.3 While some patients with multiple myeloma have no symptoms at all, most patients are diagnosed due to symptoms which can include bone problems, low blood counts, calcium elevation, kidney problems or infections.4

About DARZALEX (daratumumab)DARZALEX (daratumumab) intravenous infusion is indicated for the treatment of adult patients in the United States: in combination with bortezomib, thalidomide and dexamethasone as treatment for patients newly diagnosed with multiple myeloma who are eligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of patients with multiple myeloma who have received at least one prior therapy; in combination with pomalidomide and dexamethasone for the treatment of patients with multiple myeloma who have received at least two prior therapies, including lenalidomide and a proteasome inhibitor (PI); and as a monotherapy for the treatment of patients with multiple myeloma who have received at least three prior lines of therapy, including a PI and an immunomodulatory agent, or who are double-refractory to a PI and an immunomodulatory agent.5 DARZALEX is the first monoclonal antibody (mAb) to receive U.S. Food and Drug Administration (U.S. FDA) approval to treat multiple myeloma. DARZALEX intravenous infusion is indicated for the treatment of adult patients in Europe: in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of adult patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; for use in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of adult patients with multiple myeloma who have received at least one prior therapy; and as monotherapy for the treatment of adult patients with relapsed and refractory multiple myeloma, whose prior therapy included a PI and an immunomodulatory agent and who have demonstrated disease progression on the last therapy6. The option to split the first infusion of DARZALEX over two consecutive days has been approved in both Europe and the U.S. In Japan, DARZALEX intravenous infusion is approved for the treatment of adult patients: in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone for the treatment of relapsed or refractory multiple myeloma; in combination with bortezomib, melphalan and prednisone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant. DARZALEX is the first human CD38 monoclonal antibody to reach the market in the United States, Europe and Japan. For more information, visit http://www.DARZALEX.com.

Story continues

Daratumumab is a human IgG1k monoclonal antibody (mAb) that binds with high affinity to the CD38 molecule, which is highly expressed on the surface of multiple myeloma cells. Daratumumab triggers a persons own immune system to attack the cancer cells, resulting in rapid tumor cell death through multiple immune-mediated mechanisms of action and through immunomodulatory effects, in addition to direct tumor cell death, via apoptosis (programmed cell death).5,6,7,8,9,10

Daratumumab is being developed by Janssen Biotech, Inc. under an exclusive worldwide license to develop, manufacture and commercialize daratumumab from Genmab. A comprehensive clinical development program for daratumumab is ongoing, including multiple Phase III studies in smoldering, relapsed and refractory and frontline multiple myeloma settings. Additional studies are ongoing or planned to assess the potential of daratumumab in other malignant and pre-malignant diseases in which CD38 is expressed, such as amyloidosis, NKT-cell lymphoma and B-cell and T-cell ALL. Daratumumab has received two Breakthrough Therapy Designations from the U.S. FDA for certain indications of multiple myeloma, including as a monotherapy for heavily pretreated multiple myeloma and in combination with certain other therapies for second-line treatment of multiple myeloma.

About Genmab Genmab is a publicly traded, international biotechnology company specializing in the creation and development of differentiated antibody therapeutics for the treatment of cancer. Founded in 1999, the company has two approved antibodies, DARZALEX (daratumumab) for the treatment of certain multiple myeloma indications, and Arzerra (ofatumumab) for the treatment of certain chronic lymphocytic leukemia indications. Daratumumab is in clinical development for additional multiple myeloma indications, other blood cancers and amyloidosis. A subcutaneous formulation of ofatumumab is in development for relapsing multiple sclerosis. Genmab also has a broad clinical and pre-clinical product pipeline. Genmab's technology base consists of validated and proprietary next generation antibody technologies - the DuoBody platform for generation of bispecific antibodies, the HexaBody platform, which creates effector function enhanced antibodies, the HexElect platform, which combines two co-dependently acting HexaBody molecules to introduce selectivity while maximizing therapeutic potency and the DuoHexaBody platform, which enhances the potential potency of bispecific antibodies through hexamerization. The company intends to leverage these technologies to create opportunities for full or co-ownership of future products. Genmab has alliances with top tier pharmaceutical and biotechnology companies. Genmab is headquartered in Copenhagen, Denmark with core sites in Utrecht, the Netherlands and Princeton, New Jersey, U.S.

Contact: Marisol Peron, Corporate Vice President, Communications & Investor Relations T: +1 609 524 0065; E: mmp@genmab.com

For Investor Relations: Andrew Carlsen, Senior Director, Investor RelationsT: +45 3377 9558; E: acn@genmab.com

This Company Announcement contains forward looking statements. The words believe, expect, anticipate, intend and plan and similar expressions identify forward looking statements. Actual results or performance may differ materially from any future results or performance expressed or implied by such statements. The important factors that could cause our actual results or performance to differ materially include, among others, risks associated with pre-clinical and clinical development of products, uncertainties related to the outcome and conduct of clinical trials including unforeseen safety issues, uncertainties related to product manufacturing, the lack of market acceptance of our products, our inability to manage growth, the competitive environment in relation to our business area and markets, our inability to attract and retain suitably qualified personnel, the unenforceability or lack of protection of our patents and proprietary rights, our relationships with affiliated entities, changes and developments in technology which may render our products or technologies obsolete, and other factors. For a further discussion of these risks, please refer to the risk management sections in Genmabs most recent financial reports, which are available on http://www.genmab.com and the risk factors included in Genmabs final prospectus for our U.S. public offering and listing and other filings with the U.S. Securities and Exchange Commission (SEC), which are available at http://www.sec.gov. Genmab does not undertake any obligation to update or revise forward looking statements in this Company Announcement nor to confirm such statements to reflect subsequent events or circumstances after the date made or in relation to actual results, unless required by law.

Genmab A/S and/or its subsidiaries own the following trademarks: Genmab; the Y-shaped Genmab logo; Genmab in combination with the Y-shaped Genmab logo; HuMax; DuoBody; DuoBody in combination with the DuoBody logo; HexaBody; HexaBody in combination with the HexaBody logo; DuoHexaBody; HexElect; and UniBody. Arzerra is a trademark of Novartis AG or its affiliates. DARZALEX is a trademark of Janssen Pharmaceutica NV.

1 American Cancer Society. "Multiple Myeloma Overview." Available at http://www.cancer.org/cancer/multiplemyeloma/detailedguide/multiple-myeloma-what-is-multiple-myeloma.Accessed June 2016.2 Globocan 2018. Western Europe Fact Sheet. Available at http://gco.iarc.fr/today/data/factsheets/populations/926-western-europe-fact-sheets.pdf Accessed March 20183 Globocan 2018. World Fact Sheet. Available at http://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf. Accessed December 2018.4 American Cancer Society. "How is Multiple Myeloma Diagnosed?" http://www.cancer.org/cancer/multiplemyeloma/detailedguide/multiple-myeloma-diagnosis. Accessed June 20165 DARZALEX Prescribing information, September 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761036s024lbl.pdf Last accessed September 20196 DARZALEX Summary of Product Characteristics, available at https://www.ema.europa.eu/en/medicines/human/EPAR/darzalex Last accessed October 20197De Weers, M et al. Daratumumab, a Novel Therapeutic Human CD38 Monoclonal Antibody, Induces Killing of Multiple Myeloma and Other Hematological Tumors. The Journal of Immunology. 2011; 186: 1840-1848.8 Overdijk, MB, et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs. 2015; 7: 311-21.9 Krejcik MD et al. Daratumumab Depletes CD38+ Immune-regulatory Cells, Promotes T-cell Expansion, and Skews T-cell Repertoire in Multiple Myeloma. Blood. 2016; 128: 384-94.10Jansen, JH et al. Daratumumab, a human CD38 antibody induces apoptosis of myeloma tumor cells via Fc receptor-mediated crosslinking.Blood. 2012; 120(21): abstract 2974.

Company Announcement no. 60CVR no. 2102 3884LEI Code 529900MTJPDPE4MHJ122

Genmab A/SKalvebod Brygge 431560 Copenhagen VDenmark

Attachment

Read this article:
CHMP Issues Positive Opinion Recommending DARZALEX (Daratumumab) in Combination with Bortezomib, Thalidomide and Dexamethasone in Frontline Multiple...

Treatment Characteristics and Outcomes for Patients With Rare Forms of T-Cell Lymphoma – Hematology Advisor

Researchers evaluated treatment characteristics and outcomes of 3 rare subtypes of T-cell lymphoma, and their findings were published in the American Journal of Hematology.

The prospective study assessed treatments and clinical outcomes for patients with enteropathy-associated T-cell lymphoma (EATL), hepatosplenic T-cell lymphoma (HSTCL), and peripheral gamma delta T-cell lymphoma (PGDTCL). Patient cases were identified from the T Cell Project (ClinicalTrials.gov Identifier: NCT01142674) database, and therapies were guided by treating physicians.

Among 1553 eligible patient cases, a total of 65 patients (4.2%) were diagnosed with EATL, 31 (2%) with HSTCL, and 19 (1.2%) with PGDTCL.

Median study follow-up was 77 months for patients with PGDTCL, 64 months for patients with HSTCL, and 32 months for patients with EATL.

The 5-year overall survival (OS) rates were 30% with EATL, 40% with HSTCL, and 51% with PGDTCL. Median progression-free survival (PFS) was shortest for patients with EATL, at 7 months (95% CI, 4-10). For patients with HSTCL, median PFS was 11 months (95% CI, 8-14), and for patients with PGDTCL, median PFS was 14 months (95% CI, 6-21).

Treatment data were evaluable for 93 patients. All evaluable patients with PGDTCL and 97% of those with EATL received anthracycline-based therapies, compared with 60% of evaluable patients with HSCTL. Complete response rates to initial chemotherapy regimens were 30% for EATL, 40% for HSCTL, and 25% for PGDTCL. Autologous stem cell transplantation was used during first remission in a minority of patients with each of the 3 subtypes of T-cell lymphoma.

The study investigators highlighted the value of registries in studies of rare diseases. In the case of this study, the investigators noted a lack of standardized treatment practices for the examined T-cell lymphoma subtypes, and they recommended that patients with rare T-cell lymphoma subtypes be included in studies of novel agents.

Reference

See original here:
Treatment Characteristics and Outcomes for Patients With Rare Forms of T-Cell Lymphoma - Hematology Advisor