Category Archives: Stem Cell Treatment


Celularity to Present New Data at the ASH Annual Meeting on Novel Allogeneic, Off the Shelf, Placental Derived CAR T and NK Cell Therapy Programs -…

WARREN, N.J.--(BUSINESS WIRE)--

Five abstracts to be presented on the pre-clinical and clinical results, demonstrating the breadth and versatility of the Companys allogeneic, off the shelf, placental derived cell therapy platform in multiple myeloma and lymphoma

Celularity, Inc., a clinical-stage cell therapeutics company developing allogeneic cellular therapies harnessed from human placentas, today announced it will present data supporting its allogeneic, off-the-shelf, placental derived cell therapy programs at the 61st American Society of Hematology (ASH) Annual Meeting & Exposition, taking place December 7-10 at the Orange County Convention Center in Orlando, Florida.

We believe the placenta is natures cell factory, and the data being presented at ASH will illustrate the potential of our investigational placental derived NK- and T cell-based allogeneic cell therapy programs in oncology, said Robert J. Hariri, M.D., Ph.D., Founder, Chairman and CEO at Celularity. We look forward to advancing Celularitys leading-edge technologies that harness the placentas unique immunologic and pro-regenerative biology to produce therapeutic solutions targeting unmet healthcare needs globally.

ASH abstracts are now available at https://www.hematology.org/.

Details for the 2019 ASH poster presentations are as follows:

Title: Development of CD38 CAR Engineered Human Placental Hematopoietic Stem Cell Derived Natural Killer Cells (PNK-CAR38) As Allogeneic Cancer Immunotherapy Date: Saturday, December 7, 2019

Title: Engineering High Affinity and Cleavage Resistant CD16 to Augment ADCC of Placental Hematopoietic Stem Cells-Derived Natural Killer Cells Date: Saturday, December 7, 2019

Title: Preclinical Evaluation of Human Placental-Derived Allogeneic CD19 CAR-T Cells Against B Cell Malignancies Date: Sunday, December 8, 2019

Title: Results of a Phase I Study of PNK-007, Allogeneic, Off the Shelf NK Cell, Post Autologous Transplant in Multiple Myeloma (NCT02955550) Date: Monday, December 9, 2019

Title: Immune Monitoring of CD34+ Placental Cell Derived Natural Killer Cell Therapy (PNK-007) in Phase I Study of Multiple Myeloma Date: Monday, December 9, 2019

About PNK-007 PNK007 is the only allogeneic, off-the-shelf NK cell therapy being developed from placental hematopoietic stem cells as a potential treatment option for various hematologic cancers and solid tumors. NK cells are a unique class of immune cells, innately capable of targeting cancer cells and interacting with adaptive immunity. When derived from the placenta, these cells offer intrinsic safety and versatility, allowing potential use across a range of organs and tissues. PNK cells are currently being investigated as a treatment for acute myeloid leukemia (AML) and multiple myeloma (MM).

About CYNK-001 CYNK-001, a cryopreserved formulation of PNK-007 cells, is the only cryopreserved, off-the-shelf NK cell therapy being developed from placental hematopoietic stem cells as a potential treatment option for various hematologic cancers and solid tumors.

About Celularity Celularity, headquartered in Warren, New Jersey, is a clinical-stage cell therapeutics company delivering transformative allogeneic cellular therapies, engineered from the postpartum human placenta. Using proprietary technology in combination with its IMPACT platform, Celularity is the only company harnessing the purity and versatility of placental derived cells to develop and manufacture innovative and highly scalable off-the-shelf treatments for patients with cancer, inflammatory and age-related diseases. To learn more, please visit http://www.celularity.com.

Forward-Looking Statements This press release contains forward-looking statements. These forward-looking statements are based on expectations and are subject to certain factors, risks and uncertainties that may cause actual results, outcome of events, timing and performance to differ materially from those expressed or implied by such statements. The information contained in this press release is believed to be current as of the date of original issue. Celularity expressly disclaims any obligation or undertaking to release publicly any updates or revisions to any forward-looking statements contained herein to reflect any change in our expectations with regard thereto or any change in events, conditions or circumstances on which any such statements are based.

View source version on businesswire.com: https://www.businesswire.com/news/home/20191106005565/en/

Follow this link:
Celularity to Present New Data at the ASH Annual Meeting on Novel Allogeneic, Off the Shelf, Placental Derived CAR T and NK Cell Therapy Programs -...

Three Podcasts to Listen to in November – The New Yorker

This fall brings a fresh crop of documentary podcast series, many of them timely but not overfamiliar. Tunnel 29, the new season of BBC Radio 4s Intrigue series, reported and narrated by Helena Merriman, tells the true story of Joachim Rudolph, who, in the early sixties, as a twenty-two-year-old engineering student in communist East Germany, escaped to West Berlinand then dug a tunnel back into East Germany, beneath the Berlin Wall, to help other refugees escape. Theres plenty of spade-and-dirt action, and panting, in this Stasi-haunted dramatization of heroism, as Rudolph and an unlikely team of helpers burrow toward an East German basement. But, unlike last seasons narratively unnerving Intrigue: The Ratline (upsetting Schloss, Nazi horrors, typewriter sounds), Tunnel 29 finds a deft balance of realism and drama in its narration, performance, and sound design. A surprisingly lovely toast-eating scene, featuring pineapple marmalade and freedom, packs an unexpected punch.

Bad Batch, from the reporter Laura Beil, could fit into two genres. The first is medical true crime, as pioneered by Beil in her previous series, Dr. Death, about a horrifically injurious Texas neurosurgeon; the second is the startup cautionary tale, la The Dropout, about Elizabeth Holmes and Theranos. Bad Batch delves into the promising but murky realm of stem-cell medical treatments, beginning with a deep dive into an incident in which treatments using a bad batch of stem cells, originating from a single company, almost killed several people. Beil, who hosts, takes us through backstories involving health-care fraud, a Ponzi scheme, and high-pressure stem-cell educational seminars, which hoodwink vulnerable people into spending thousands on dubious therapies. Four episodes in, Bad Batch has enlightened me more about fraudsters than science; future episodes may go further to sort out stem-cell fact from fiction. Meanwhile, Im pleased that this series, produced, like Dr. Death, by the sensationalism-prone hitmaker Wondery, so far avoids the noir impulses of its predecessor.

Like Nashville Public Radios excellent The Promise, about a public-housing gambit in Nashville, the new season of USA Todays The City, featuring Robin Amer and Anjeanette Damon, tells the story of a fast-changing city via one vivid enclave within it; here, its Reno, Nevada, and its strip clubs. A tech boom in Reno, near Elon Musks Tesla Gigafactory 1, has driven a real-estate frenzy and a gentrification battle, and The City takes us inside itso far, to city-council meetings, private-eye stakeouts, and a newly vulnerable residential hotel. The reporting has a sensitive ear for distinctive characters, like Velma Shoals, a hotel resident determined to save her home, and Kamy Keshmiri, a straight-talking Reno native and former athlete whose family owns the hotel and a strip club. (Its sad that youre bringing private investigators in to look at boobs, he says at one point, about officials hoping to catch illegal activity at the club. Yeahtheres boobs.) The series provides an impressively sweeping but intimate look at an American city; I began it knowing little about Reno and emerged wanting to know everything.

Read more:
Three Podcasts to Listen to in November - The New Yorker

19-28z CAR-T Therapy in Children and Young Adults With Relapsed/Refractory ALL: Promising Early Results – Cancer Therapy Advisor

According to results of a study published in Blood, children and young adults with relapsed/refractory B-cell acute lymphoblastic leukemia (ALL) who had minimal residual disease (MRD) prior to treatment and received high-dose preconditioning chemotherapy were most likely to respond to a second-generation CD-19 chimeric antigen receptor-T cell (CAR-T) therapy.1

Although it has been estimated that 90% or more of pediatric patients witha diagnosis of ALL will respond to multi-agent chemotherapy, the prognosis forthose with relapsed/refractory disease remains poor. One CD19-directed CAR-Ttherapy, tisagenlecleucel, is approved by the US Food and Drug Administration inpatients up to age 25 years with B-cell precursor ALL who either have refractorydisease or have experienced a second or later relapse.2

This open label, nonrandomized, phase 1 study (Clinical Trial Identifier: NCT01860937), evaluated the toxicity, feasibility, and response of 19-28z CAR-T therapy, a second-generation CD19-directed CAR-T therapy involving T cells expressing a chimeric receptor composed of an anti-CD19 antibody binding site and intracellular domains from the T-cell coactivating receptors, CD28 and the CD3-zeta chain3 in children and young adults up to 25 years of age with very high-risk ALL.1 Inclusion criteria included at least 2 relapses, early bone marrow relapse following complete response (CR), intermediate/late CR with poor response to re-induction therapy, or those with refractory disease, or ineligibility for allogeneic hematopoietic stem cell transplantation (allo-HSCT) or additional chemotherapy.1

The age range of the 25 patients treated with 19-28z CAR-T therapy onstudy was 1 to 22.5 years, with a median age of 13.5 years. Preconditioningchemotherapy involved high-dose cyclophosphamide (15 patients) and low-dosecyclophosphamide (8 patients), with 3 patients in each subgroup also receivingfludarabine.1

Regarding the feasibility of this approach, the prespecified CAR-Tcell dose was achieved for all patients for whom the 19-28z CAR-T therapyprocedure was undertaken.1

With respect to treatment toxicity,approximately one-third of patients experienced a grade 3/4 adverse event,including cytokine release syndrome (CRS) and neurotoxicity in 16% and 28% ofpatients, respectively. With the exception of 1 patient with grade 4 CRS andneurotoxicity who died following refractory Stenotrophomonas septic shock,these adverse events were reversible.1

Of the 24 patients includedin the response analysis, 75% achieved either a CR or a CR with incompletecount recovery (CRi). In the subsets of patients receiving preconditioningchemotherapy with either high- or low-dose cyclophosphamide, the CR/CRi rateswere 94% and 38%, respectively. Furthermore, treatment response was influencedby disease burden as evidenced by the considerably higher CR/CRi rate inpatients with baseline minimal residual disease (ie, less than 5% bone marrowblasts; 93%) compared with morphological evidence of disease at baseline (5% orhigher bone marrow blasts; 50%).1

The CR/CRi rate for thesubset of patients with pretreatment MRD treated with high-dose cytarabine was100%.1

Consolidation allo-HSCT was performed in 83% (15) of the patientsresponding to CAR-T therapy, with a median time from CAR-T infusion toallo-HSCT of 57 days. At a median follow-up of 28.6 months for respondingpatients, over half of these patients (8) were alive and had no evidence ofdisease.1

In their concluding remarks, the study authorscommented that thisanalysis has allowed us to determine the toxicity profile, confirm feasibility,evaluate response of this approach, and provide a direct comparison of the sameCD19-specific CAR T cell product that was previously published[3] inadult patients for the same indication.

The authors went on to highlight the findingof a reversible toxicity profile in the patients within their study as well asthe impact of preconditioning chemotherapy dose intensity and minimal pretreatmentdisease burden on response.

They further noted that within this cohort,the long-term persistence of response is encouraging, and in our primarilytransplant-naive patient population, the ability to proceed to allo-HSCT hasdemonstrated a favorable overall survival, manageable toxicity, and limitedincidence of relapse.

References

Read more here:
19-28z CAR-T Therapy in Children and Young Adults With Relapsed/Refractory ALL: Promising Early Results - Cancer Therapy Advisor

Orchard Therapeutics to Present New Registrational Data of Investigational Gene Therapies at the 61st American Society of Hematology Annual Meeting -…

Registrational Trial for Wiskott-Aldrich Syndrome Met Key Primary and Secondary Endpoints at Three Years; Data from Integrated Analysis Reinforce Treatment Benefits of Gene Therapy and Durability of Effect in Additional Patients

Similar Profiles Reported Between Cryopreserved and Fresh Formulations of OTL-101, Further Supporting Upcoming Regulatory Filing and Broad Patient Availability

BOSTON and LONDON, Nov. 06, 2019 (GLOBE NEWSWIRE) -- Orchard Therapeutics (Nasdaq: ORTX), a leading commercial-stage biopharmaceutical company dedicated to transforming the lives of patients with serious and life-threatening rare diseases through innovative gene therapies, today announced the upcoming presentation of registrational data from multiple programs at the 61st American Society of Hematology (ASH) Annual Meeting in Orlando, FL.

Investigators will describe ongoing clinical progress for two lead development programs in the companys primary immune deficiencies portfolio: OTL-103, an investigational gene therapy in development for the treatment of Wiskott-Aldrich syndrome (WAS) at theSan Raffaele-Telethon Institute for Gene Therapy(SR-Tiget) inMilan, Italy; and OTL-101, an investigational gene therapy in development for the treatment of adenosine deaminase severe combined immunodeficiency (ADA-SCID).

In addition, investigators will deliver an oral presentation featuring updated data from the ongoing proof-of-concept study of OTL-203, an investigational gene therapy in development for the treatment of mucopolysaccharidosis type I (MPS-I) atSR-Tiget.

This growing body of positive data, from dozens of patients across multiple diseases, provides a solid foundation as we advance each program toward its next phase of development, including upcoming regulatory submissions for ADA-SCID and WAS, saidMark Rothera, president and chief executive officer ofOrchard Therapeutics. We now have two supportive data sets one from our OTL-101 program in ADA-SCID and one from our OTL-200 program in metachromatic leukodystrophy that demonstrate cryopreserved formulations are engrafting as expected, similar to the fresh formulation. This supports our strategy for making these therapies, if approved, broadly available to patients in need throughout the world.

We are extremely pleased with our continued clinical progress, including the duration of benefits seen in our WAS trial, which is the longest published follow-up of hematopoietic stem cell gene therapy durability to date using lentiviral vector transduction, said Bobby Gaspar, M.D., Ph.D., chief scientific officer of OrchardTherapeutics. The totality of these data underscores the broad applicability of our gene therapy platform approach and the opportunity we have to deliver potentially curative treatments for a variety of devastating and rare genetic disorders.

Full presentation details are below:

Poster Presentation Details

Lentiviral Hematopoietic Stem and Progenitor Cell Gene Therapy for Wiskott-Aldrich Syndrome (WAS): Up to 8 Years of Follow up in 17 Subjects Treated Since 2010Publication Number: 3346Session: 801. Gene Therapy and Transfer: Poster IIDate and time:Sunday, December 8, 6:00-8:00pm ET

This presentation includes results from an integrated analysis of 17 patients treated with OTL-103 for the treatment of WAS, including the complete data set for the eight patients from the registrational study and nine who received OTL-103 as part of an expanded access program (EAP). Participants have been followed for a median of three years.

In the eight-patient registrational trial, investigators reported that the study achieved its key primary and secondary endpoints at three years, including the elimination of severe bleeding episodes and a significant reduction in the frequency of moderate bleeding episodes. Successful engraftment was observed within three months, leading to an increase in WAS protein expression and a vector copy number that has been maintained for up to eight years. Nine months post-administration, all patients stopped receiving platelet transfusions, and no severe bleeding events were reported. A significant reduction in the rate of severe infections was also observed and all patients were able to stop immunoglobin replacement therapy (IgRT), suggesting a complete reconstitution of immune function with durability of effect of up to eight years of follow-up post-gene therapy.

Similar clinical results were seen in the integrated analysis of 17 patients and overall survival was 94% (16/17). One death occurred among the EAP cohort that was considered by the investigator to be unrelated to OTL-103.

Across the original and integrated data sets, there were no adverse events considered to be related to OTL-103, including no evidence of oncogenesis, replication competent lentivirus or abnormal clonal proliferation. Clinical benefit was also attained in patients older than five years of age, a group considered at higher risk when treated with allogeneic hematopoietic stem cell transplantation (HSCT).

Lentiviral Gene Therapy with Autologous Hematopoietic Stem and Progenitor Cells (HSPCs) for the Treatment of Severe Combined Immune Deficiency Due to Adenosine Deaminase Deficiency (ADA-SCID): Results in an Expanded CohortPublication Number: 3345Session: 801. Gene Therapy and Transfer: Poster IIDate and time: Sunday, December 8, 6:00-8:00pm ET

This presentation details the safety and efficacy of OTL-101 in 30 individuals with ADA-SCID, treated with either fresh (n=20) or cryopreserved (n=10) formulations. Patients were followed for a median of 24 months (range 12-24 months overall and 12-18 months for patients treated with the cryopreserved formulation), and results were compared with a historical cohort of 26 ADA-SCID patients treated with allogeneic hematopoietic stem cell transplantation (HSCT), including HSCT both with, and without, a matched related donor.

Results showed engraftment of genetically modified hematopoietic stem cells in 29 of 30 OTL-101 patients by six to eight months, which persisted through follow-up in both studies. Analysis of both the vector copy number in granulocytes (a measure of engraftment) and T-cell reconstitution (a relevant measure of immune recovery) showed consistent performance across the fresh and cryopreserved-treated patients.

In the OTL-101 treated patients, overall survival was 30/30 (100%) and event-free survival was 29/30 (97%). One of the 30 patients restarted treatment with enzyme replacement therapy (ERT) and subsequently withdrew from the study and received a rescue HSCT. In the historical control population, 42% of HSCT patients required re-initiation of ERT, rescue HSCT or other intervention, or died. As expected, there was no incidence of graft versus host disease in the OTL-101 group, compared with eight patients who received HSCT.

Eighteen of 20 patients (90%) in the fresh formulation study stopped immunoglobin replacement therapy (IgRT) after two years, compared to 52% of HSCT patients. Of the seven patients treated with the cryopreserved formulation with 18 months of follow-up, five had discontinued IgRT (71%), which is comparable to the 18-month data for patients treated with the fresh formulation.

Oral Presentation Details

Extensive Metabolic Correction of Hurler Disease by Hematopoietic Stem Cell-Based Gene Therapy: Preliminary Results from a Phase I/II TrialPublication Number: 607Session: 801. Gene Therapy and Transfer: Gene Therapies for Non-Malignant DisordersDate and time:Monday, December 9, 7:00am ET

Investigators will present updated analyses from the ongoing proof-of-concept trial of OTL-203 for mucopolysaccharidosis type I (MPS-I).

About ADA-SCID and OTL-101Severe combined immune deficiency due to adenosine deaminase deficiency (ADA-SCID) is a rare, life-threatening, inherited disease of the immune system caused by mutations in the ADA gene resulting in a lack of, or minimal, immune system development.1-4The first symptoms of ADA-SCID typically manifest during infancy with recurrent severe bacterial, viral and fungal infections and overall failure to thrive, and without treatment the condition can be fatal within the first two years of life. The incidence of ADA-SCID is currently estimated to be one in 500,000 live births inthe United Statesand between one in 200,000 and one in 1 million inEurope.3OTL-101 is an autologous,ex vivo,hematopoietic stem cell-based gene therapy for the treatment of patients diagnosed with ADA-SCID being investigated in multiple clinical trials inthe United StatesandEurope, including a registrational trial at theUniversity of California, Los Angeles(UCLA). OTL-101 has received orphan drug designation from theU.S. Food and Drug Administration(FDA) and the European Medicines Agency (EMA) for the treatment of ADA-SCID, and Breakthrough Therapy Designation from theFDA.

About WAS and OTL-103Wiskott-Aldrich Syndrome (WAS) is a life-threatening inherited immune disorder characterized by autoimmunity and abnormal platelet function and manifests with recurrent, severe infections and severe bleeding episodes, which are the leading causes of death in this disease. Without treatment, the median survival for WAS patients is 14 years of age. Treatment with stem cell transplant carries significant risk of mortality and morbidities. OTL-103 is anex vivo,autologous, hematopoietic stem cell-based gene therapy developed for the treatment of WAS that Orchard acquired from GSK in April 2018 and has been developed at theSan Raffaele-Telethon Institute for Gene Therapy(SR-Tiget) inMilan, Italy. The global incidence of WAS is estimated to be about 100-260 births per year, with a global prevalence of 2,900-4,700 patients.

About MPS-I and OTL-203Mucopolysaccharidosis type I (MPS-I) is a rare inherited neurometabolic disease caused by a deficiency of the IDUA (alpha-L-iduronidase) lysosomal enzyme required to break down glycosaminoglycans (also known as GAGs or mucopolysaccharides). The accumulation of GAGs across multiple organ systems results in the symptoms of MPS-I including neurocognitive impairment, skeletal deformity, loss of vision and hearing, hydrocephalus, and cardiovascular and pulmonary complications. MPS-I occurs at an overall estimated frequency of one in every 100,000 live births.5There are three subtypes of MPS-I; approximately 60 percent of MPS-I patients have the severe Hurler subtype and, when untreated, these patients rarely live past the age of 10.IdTreatment options for MPS-I include hematopoietic stem cell transplant and chronic enzyme replacement therapy, both of which have significant limitations. Though early intervention with enzyme replacement therapy has been shown to delay or prevent some clinical features of the condition, it has only limited efficacy on neurological symptoms. OTL-203 is anex vivo, autologous, hematopoietic stem cell-based gene therapy being studied for the treatment of MPS-I. Orchard was granted an exclusive worldwide license to intellectual property rights to research, develop, manufacture and commercialize the gene therapy program for the treatment of MPS-I developed by theSan Raffaele-Telethon Institute for Gene TherapyinMilan, Italy.

About Orchard Orchard Therapeuticsis a fully integrated commercial-stage biopharmaceutical company dedicated to transforming the lives of patients with serious and life-threatening rare diseases through innovative gene therapies.

Orchards portfolio ofex vivo, autologous, hematopoietic stem cell (HSC) based gene therapies includes Strimvelis, a gammaretroviral vector-based gene therapy and the first such treatment approved by theEuropean Medicines Agencyfor severe combined immune deficiency due to adenosine deaminase deficiency (ADA-SCID). Additional programs for neurometabolic disorders, primary immune deficiencies and hemoglobinopathies are all based on lentiviral vector-based gene modification of autologous HSCs and include three advanced registrational studies for metachromatic leukodystrophy (MLD), ADA-SCID and Wiskott-Aldrich syndrome (WAS), clinical programs for X-linked chronic granulomatous disease (X-CGD), transfusion-dependent beta-thalassemia (TDT) and mucopolysaccharidosis type I (MPS-I), as well as an extensive preclinical pipeline. Strimvelis, as well as the programs in MLD, WAS and TDT were acquired by Orchard from GSK inApril 2018and originated from a pioneering collaboration between GSK and theSan Raffaele Telethon Institute for Gene TherapyinMilan, Italyinitiated in 2010.

Orchard currently has offices in the UK and the U.S., including London, San Francisco and Boston.

Forward-Looking StatementsThis press release contains certain forward-looking statements about Orchards strategy, future plans and prospects, which are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. Such forward-looking statements may be identified by words such as anticipates, believes, expects, intends, projects, and future or similar expressions that are intended to identify forward-looking statements.Forward-looking statements include express or implied statements relating to, among other things, the therapeutic potential of Orchards product candidates, including the product candidate or candidates referred to in this release, Orchards expectations regarding the timing of regulatory submissions for approval of its product candidates, including the product candidate or candidates referred to in this release, the timing of announcement of clinical data for its product candidates and the likelihood that such data will be positive and support further clinical development and regulatory approval of these product candidates, including any cryopreserved formulations of such product candidates, and the likelihood of approval of such product candidates by the applicable regulatory authorities. These statements are neither promises nor guarantees and are subject to a variety of risks and uncertainties, many of which are beyond Orchards control, which could cause actual results to differ materially from those contemplated in these forward-looking statements. In particular, the risks and uncertainties include, without limitation: the risk that any one or more of Orchards product candidates, including the product candidate or candidates referred to in this release, will not be successfully developed or commercialized, the risk of cessation or delay of any of Orchards ongoing or planned clinical trials, the risk that prior results, such as signals of safety, activity or durability of effect, observed from preclinical studies or clinical trials will not be replicated or will not continue in ongoing or future studies or trials involving Orchards product candidates, the delay of any of Orchards regulatory submissions, the failure to obtain marketing approval from the applicable regulatory authorities for any of Orchards product candidates, the receipt of restricted marketing approvals, and the risk of delays in Orchards ability to commercialize its product candidates, if approved.Given these uncertainties, the reader is advised not to place any undue reliance on such forward-looking statements.

Other risks and uncertainties faced by Orchard include those identified under the heading "Risk Factors" in Orchards annual report on Form 20-F for the year endedDecember 31, 2018as filed with theU.S. Securities and Exchange Commission(SEC) onMarch 22, 2019, as well as subsequent filings and reports filed with theSEC. The forward-looking statements contained in this press release reflect Orchards views as of the date hereof, and Orchard does not assume and specifically disclaims any obligation to publicly update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as may be required by law.

1Orphanet. SCID due to ADA deficiency.2Whitmore KV, Gaspar HB. Front Immunol. 2016;7:314.3Kwan A, et al. JAMA. 2014;312:729-738.4Sauer AV, et al. Front Immunol. 2012;3:265. 5Beck et al. The Natural History of MPS I: Global Perspectives from the MPS I Registry. Genetics in Medicine 2014, 16(10), 759.

Contacts

InvestorsRenee LeckDirector, Investor Relations+1 862-242-0764Renee.Leck@orchard-tx.com

MediaMolly CameronManager, Corporate Communications+1 978-339-3378media@orchard-tx.com

Read more from the original source:
Orchard Therapeutics to Present New Registrational Data of Investigational Gene Therapies at the 61st American Society of Hematology Annual Meeting -...

MD Anderson on a Roll with Another Pharma Deal, This Time with Artios and ShangPharma – BioSpace

Only a day after The University of Texas MD Anderson Cancer Center announced it has partnered with Takeda Pharmaceutical on immuno-oncology therapies, MD Anderson announced it was involved in an in-licensing deal with Artios Pharma and ShangPharma.

Under the new deal, Artios Pharma licensed rights to research, develop, manufacture and commercialize products globally from a small-molecule ATR inhibitor program that was jointly developed by MD Anderson and ShangPharma. Artios Pharma, based in Cambridge, UK, plans to file an Investigational New Drug (IND) application with the U.S. Food and Drug Administration (FDA) by the second half of 2020.

ATR is a signaling protein in DNA double-strand break repair and replication stress. Inhibiting ATR can kill tumors that have an ATM deficiency. This occurs through a process dubbed synthetic lethality. Many types of cancers have high levels of ATM mutations and protein loss, which makes them particularly promising targets for cancer therapeutics.

We are proud of the entire collaboration team, including ChemPartner, led by Sarah Lively, PhD, vice president of Innovation and New Technologies, for advancing the program from early-stage research to formal drug discovery and development, said Walter Moos, chief executive officer of ShangPharma, which is based in China and San Francisco. We are pleased to transition this important program to the capable development team at Artios, and we hope this ultimately provides an impactful therapy for those afflicted with cancer.

The ATR inhibitor program is the results of a collaboration between MD Andersons Therapeutics Discovery group and ShangPharma. The Therapeutics Discovery team was created within MD Anderson to promote the next generation of cancer drugs.

After clinical studies at MD Anderson, Therapeutics Discovery worked with ShangPharma and its affiliate, ChemPartner, to develop small-molecule inhibitors of the DNA Damage response (DDR) that would be effective across several cancer types.

Targeting DNA damage repair has the potential to provide an important therapeutic option for many patients in need of new treatments, said Philip Jones, vice president of Therapeutics Discovery at MD Anderson. We are pleased Artios will leverage its unique expertise in this field to advance this novel therapy toward the clinic to improve outcomes for cancer patients.

No financial details were disclosed.

Yesterday, MD Anderson and Takeda announced an exclusive license deal and research agreement to develop cord-blood derived chimeric antigen receptor-directed natural killer (CAR NK)-cell therapies. They say these CAR-NK therapies will be armored with IL-15 to treat B-cell and other cancers.

Under the deal, Takeda will access MD Andersons CAR-NK technology platform and pick up the exclusive rights to develop and commercialize up to four programs. Those programs include a CD19-targeted CAR-NK-cell therapy and a B-cell maturation antigen (BCMA)-targeted CAR-NK therapy. They will collaborate on research to advance the programs.

Our vision is to improve upon existing treatments by developing armored CAR NKs that could be administered off-the-shelf in an outpatient settingenabling more patients to be treated effectively, quickly and with minimal toxicities, said Katy Rezvani, professor of Stem Cell Transplantation and Cellular Therapy at MD Anderson. With their expertise in hematologic malignancies and commitment to developing next-generation cell therapies, Takeda is the ideal collaborator to help our team advance CAR NK-cell therapies to patients in need of treatments.

MD Andersons allogeneic CAR NK technology platform collects umbilical cord blood, isolates NK cells for it, and then engineers those NK cells to express CARs against specific cancer targets. They utilize a retroviral vector to deliver genes to the CAR NK cells, which both improves their effectiveness and fine-tunes them for specific cancer cells. The CD19 CAR makes the cells even more specific for B-cell malignancies, and the IL-15 improves the proliferation and survival of the CAR-NK cells in the body.

Read more here:
MD Anderson on a Roll with Another Pharma Deal, This Time with Artios and ShangPharma - BioSpace

Rocket Pharmaceuticals to Present Preliminary Phase 1 Data of RP-L102 Process B for Fanconi Anemia at the 61st American Society of Hematology Annual…

NEW YORK--(BUSINESS WIRE)--Rocket Pharmaceuticals, Inc. (NASDAQ: RCKT) (Rocket), a leading U.S.-based multi-platform clinical-stage gene therapy company, today announces presentations at the upcoming 61st American Society of Hematology (ASH) Annual Meeting being held December 7-10, 2019 in Orlando, Florida. The two poster presentations will highlight clinical data from the Phase 1 study of RP-L102 utilizing Process B for the treatment of Fanconi Anemia (FA), as well as long-term follow-up data from the Phase 1/2 EUROFANCOLEN trial.

Details for Rockets poster presentations are as follows:Title: Changing the Natural History of Fanconi Anemia Complementation Group-A with Gene Therapy: Early Results of U.S. Phase I Study of Lentiviral-Mediated Ex-Vivo FANCA Gene Insertion in Human Stem and Progenitor CellsSession Title: Gene Therapy and Transfer: Poster IIPresenter: Sandeep Soni, M.D.Session Date: Sunday, December 8, 2019Session Time: 6:00 p.m. 8:00 p.m. ESTLocation: Orange County Convention Center, Hall B

Title: Hematopoietic Engraftment of Fanconi Anemia Patients through 3 Years after Gene TherapySession Title: Gene Therapy and Transfer: Poster IIIPresenter: Paula Ro, Ph.D.Session Date: Monday, December 9, 2019Session Time: 6:00 p.m. 8:00 p.m. ESTLocation: Orange County Convention Center, Hall B

The Sunday poster session will be followed by a breakout session to give investors and analysts the opportunity to ask questions and discuss the data. The breakout session, hosted by Rocket management, will be held on Sunday, December 8th at 8:30 p.m. EST, directly after Dr. Sonis presentation. At the event, Dr. Soni, Clinical Associate Professor of Stem Cell Transplantation and Regenerative Medicine at the Stanford University School of Medicine and principal investigator of the U.S. Phase 1 trial of RP-L102 and Paula Ro, Ph.D., Senior Scientist, Divisin de Terapias Innovadoras en el Sistema Hematopoytico, CIEMAT/CIBERER Unidad Mixta de Terapias Avanzadas CIEMAT/IIS Fundacin Jimnez Daz will be participating in a Q&A panel. For further information, please contact investors@rocketpharma.com.

About Fanconi Anemia

Fanconi Anemia (FA) is a rare pediatric disease characterized by bone marrow failure, malformations and cancer predisposition. The primary cause of death among patients with FA is bone marrow failure, which typically occurs during the first decade of life. Allogeneic hematopoietic stem cell transplantation (HSCT), when available, corrects the hematologic component of FA, but requires myeloablative conditioning. Graft-versus-host disease, a known complication of allogeneic HSCT, is associated with an increased risk of solid tumors, mainly squamous cell carcinomas of the head and neck region. Approximately 60-70% of patients with FA have a FANC-A gene mutation, which encodes for a protein essential for DNA repair. Mutation in the FANC-A gene leads to chromosomal breakage and increased sensitivity to oxidative and environmental stress. Chromosome fragility induced by DNA-alkylating agents such as mitomycin-C (MMC) or diepoxybutane (DEB) is the gold standard test for FA diagnosis. Somatic mosaicism occurs when there is a spontaneous correction of the mutated gene that can lead to stabilization or correction of a FA patients blood counts in the absence of any administered therapy. Somatic mosaicism, often referred to as natures gene therapy provides a strong rationale for the development of FA gene therapy because of the selective growth advantage of gene-corrected hematopoietic stem cells over FA cells1.

1Soulier, J.,et al. (2005) Detection of somatic mosaicism and classification of Fanconi anemia patients by analysis of the FA/BRCA pathway. Blood 105: 1329-1336

About Rocket Pharmaceuticals, Inc.

Rocket Pharmaceuticals, Inc. (NASDAQ: RCKT) (Rocket) is an emerging, clinical-stage biotechnology company focused on developing first-in-class gene therapy treatment options for rare, devastating diseases. Rockets multi-platform development approach applies the well-established lentiviral vector (LVV) and adeno-associated viral vector (AAV) gene therapy platforms. Rocket's clinical programs using LVV-based gene therapy are for the treatment of Fanconi Anemia (FA), a difficult to treat genetic disease that leads to bone marrow failure and potentially cancer, Leukocyte Adhesion Deficiency-I (LAD-I), a severe pediatric genetic disorder that causes recurrent and life-threatening infections which are frequently fatal, and Pyruvate Kinase Deficiency (PKD) a rare, monogenic red blood cell disorder resulting in increased red cell destruction and mild to life-threatening anemia. Rockets first clinical program using AAV-based gene therapy is for Danon disease, a devastating, pediatric heart failure condition. Rockets pre-clinical pipeline program is for Infantile Malignant Osteopetrosis (IMO), a bone marrow-derived disorder. For more information about Rocket, please visit http://www.rocketpharma.com.

Rocket Cautionary Statement Regarding Forward-Looking Statements

Various statements in this release concerning Rocket's future expectations, plans and prospects, including without limitation, Rocket's expectations regarding the safety, effectiveness and timing of product candidates that Rocket may develop, to treat Fanconi Anemia (FA), Leukocyte Adhesion Deficiency-I (LAD-I), Pyruvate Kinase Deficiency (PKD), Infantile Malignant Osteopetrosis (IMO) and Danon disease, and the safety, effectiveness and timing of related pre-clinical studies and clinical trials, may constitute forward-looking statements for the purposes of the safe harbor provisions under the Private Securities Litigation Reform Act of 1995 and other federal securities laws and are subject to substantial risks, uncertainties and assumptions. You should not place reliance on these forward-looking statements, which often include words such as "believe," "expect," "anticipate," "intend," "plan," "will give," "estimate," "seek," "will," "may," "suggest" or similar terms, variations of such terms or the negative of those terms. Although Rocket believes that the expectations reflected in the forward-looking statements are reasonable, Rocket cannot guarantee such outcomes. Actual results may differ materially from those indicated by these forward-looking statements as a result of various important factors, including, without limitation, Rocket's ability to successfully demonstrate the efficacy and safety of such products and pre-clinical studies and clinical trials, its gene therapy programs, the pre-clinical and clinical results for its product candidates, which may not support further development and marketing approval, the potential advantages of Rocket's product candidates, actions of regulatory agencies, which may affect the initiation, timing and progress of pre-clinical studies and clinical trials of its product candidates, Rocket's and its licensors ability to obtain, maintain and protect its and their respective intellectual property, the timing, cost or other aspects of a potential commercial launch of Rocket's product candidates, Rocket's ability to manage operating expenses, Rocket's ability to obtain additional funding to support its business activities and establish and maintain strategic business alliances and new business initiatives, Rocket's dependence on third parties for development, manufacture, marketing, sales and distribution of product candidates, the outcome of litigation, and unexpected expenditures, as well as those risks more fully discussed in the section entitled "Risk Factors" in Rocket's Annual Report on Form 10-K for the year ended December 31, 2018. Accordingly, you should not place undue reliance on these forward-looking statements. All such statements speak only as of the date made, and Rocket undertakes no obligation to update or revise publicly any forward-looking statements, whether as a result of new information, future events or otherwise.

See the rest here:
Rocket Pharmaceuticals to Present Preliminary Phase 1 Data of RP-L102 Process B for Fanconi Anemia at the 61st American Society of Hematology Annual...

Dystrogen Therapeutics Announces That Treatment With Dystrophin Expressing Chimeric (DEC) Cells Improves Cardiac Function in Preclinical Duchenne’s…

CHICAGO, Nov.5, 2019 /PRNewswire/ -- Scientists from Dystrogen Therapeutics Corp. published data supporting cardioprotective effects of the Company's therapy for muscular dystrophy disorders. Cardiomyopathy is the most devastating cause of morbidity and mortality in Duchenne Muscular Dystrophy (DMD) patients and affects 30% of patients by 14years of age and 50% of patients by 18years of age. Heart failure in these patients is the result of cardiac myocyte death and fibrosis, leading to both diastolic and systolic dysfunction. Dystrogen Therapeutics Corp has developed an engineered chimeric cell therapy which has been previously shown to restore muscle function in pre-clinical studies. For Duchenne's muscular dystrophy, the company has developed dystrophin expressing chimeras "DECs." Using the company's proprietary technology, DECs are created by an ex vivo fusion of allogeneic human myoblast from a healthy donor with autologous human myoblast received from DMD patient. DECs have been shown to maintain the ability to express normal dystrophin protein in previously published pre-clinical studies. The new study published in the October 15th, 2019 online edition of the journal Stem Cell Reports and Reviewsconfirmed the protective effect of DEC on cardiac function after intraosseous delivery shown by increased values of both ejection fraction and fractional shortening, which at 90days revealed a rebound effect when compared to the vehicle injected controls and mice receiving not-chimeric cell therapy. Moreover, these functional improvements correlated with restoration of dystrophin expression in cardiac muscle at 90days post-DEC treatment.

"These findings are potentially significant for the treatment of DMD," said Dr. Maria Siemionow, MD, PhD Dystrogen Therapeutics Corp chief scientific officer and the therapy's inventor. "This study establishes DEC as a promising new option for cardiac protection and potential amelioration of DMD related cardiac pathology."

"These data add to the growing body of literature supporting the potential of our chimeric cell platform to restore systemic muscle function, with less potential side effects then gene therapy-based approaches," said Dr. Kris Siemionow, MD, PhD Dystrogen Therapeutics Corp CEO. "We are very pleased to have these data published in a highly relevant journal for the field and look forward to further exploring this opportunity."

About Dystrogen Therapeutics

Dystrogen Therapeutics is a clinical-stage life sciences company committed to developing personalized therapies for rare diseases. The company has developed a chimeric cell therapy platform. Dystrophin expressing chimeras "DEC" are based on ex vivo fusion of allogeneic human myoblast derived from donors with autologous human myoblast received from the DMD patient, where chimeric cells maintain the ability to express normal dystrophin protein. DEC cells increase the number/pool of normal myoblasts and reduce inflammation. DEC cells induce replacement of fibrotic tissue, thus significantly improving muscle strength and function in DMD pre-clinical studies. The therapy minimizes immune response effects and the need for immunosuppression. This new approach will be based on delivery and restoration of dystrophin in affected muscles preventing the premature loss of mobility and early mortality of DMD patients. The company is planning on enrolling patients for its DEC chimeric cell therapy Duchenne muscular dystrophy trial. This therapy offers a unique advantage and allows the patient's body and immune system to accept the chimeric cells without rejection. Pre-clinical results have demonstrated that increased dystrophin levels correlate with improved functional outcomes. First clinical results from DEC therapy are expected in late 2020.

Contact: info@dystrogen.com

View original content:http://www.prnewswire.com/news-releases/dystrogen-therapeutics-announces-that-treatment-with-dystrophin-expressing-chimeric-dec-cells-improves-cardiac-function-in-preclinical-duchennes-study-300951205.html

SOURCE Dystrogen Therapeutics Corp

Read more:
Dystrogen Therapeutics Announces That Treatment With Dystrophin Expressing Chimeric (DEC) Cells Improves Cardiac Function in Preclinical Duchenne's...

Transient Wave of Hematopoietic Stem Cell Production in Late Fetuses and Young Adults – Technology Networks

Hematopoietic stem cells (HSCs) are responsible for the constant replenishment of all blood cells throughout life. One of the major challenges in regenerative medicine is to produce tailor-made HSCs to replace the defective ones in patients suffering from blood related diseases. This would circumvent the shortage of donor HSCs available for the clinic. To achieve the controlled production of bona fide HSCs in vitro, in a dish, a better understanding is required of where, when and how HSCs are physiologically produced in vivo, in the living body. Researchers from the groups of Catherine Robin(Hubrecht Institute) and Thierry Jaffredo (UPMC, LBD IBPS, Paris) have found a previously unappreciated hematopoietic wave taking place in the bone marrow of late fetuses and young adults and producing HSCs from resident hemogenic endothelial cells of somite origin. This transient hematopoietic wave fills the gap between the completion of embryonic blood production and the beginning of adult bone marrow hematopoietic production in both chicken and mice.

Endothelial origin of hematopoietic stem cells

The constant production of short-lived blood cells, needed for proper oxygenation of tissues and protection against pathogens throughout life, relies on a small cohort of HSCs. The first HSCs derive from specialized endothelial cells, named hemogenic endothelial (HE) cells, via an endothelial to hematopoietic transition (EHT). EHT transiently occurs in the main arteries, such as the aorta, during the embryonic development of vertebrates. The pool of HSCs is then amplified before migrating to the bone marrow where HSCs will reside during adult life. Whether EHT occurs past the embryonic stage and in other organs, such as the bone marrow, was unknown until now.

Hemogenic endothelial cells in the bone marrow

To find out whether EHT occurs past the embryonic stage and in the bone marrow, the researchers used a combination of experimental embryology, genetic, transcriptomic and functional approaches on chicken and mouse models. By tracing bone marrow-forming endothelial cells through fluorescent genetic labelling and live imaging analyses, they found that the entire vascular network of the bone marrow derives from the somites. The somites are segments of the body that will progressively form important tissues of the organism as the embryo develops, including bones, muscles and skin. Unexpectedly, the researchers found that some somite-derived endothelial cells produce HSCs and multipotent progenitors in the late fetus and young adult bone marrow, through the same EHT process that was thus far only seen in the embryo. These cells are molecularly very similar to the cells undergoing EHT or recently emerged HSCs in the embryonic aorta, with a prominent Notch pathway, endothelial-specific genes and transcription factors involved in EHT. The results therefore demonstrate that HSCs are newly generated past embryonic stages, from hemogenic endothelial cells from somitic origin and via EHT, the same mechanism that occurs in the embryo.

A new wave of blood cell production

The yolk sac of the embryo produces two partially overlapping waves of hematopoiesis. The first (primitive) wave gives rise to hematopoietic cells that last only during embryonic development. The second (definitive) wave produces various progenitors that migrate to the fetal liver to produce the immediately needed blood cells. These progenitors are sufficient for the embryo to survive until birth, when the aorta-derived HSC-dependent wave will take over. The transient hematopoietic production discovered in the present study fills the gap between the end of the yolk sac hematopoiesis and the bone marrow HSC-dependent production of blood cells. Indeed, the pool of HSCs that expanded in the fetal liver starts to colonize the bone marrow only just before birth. HSCs are present in very low numbers and time is most likely required before they find their final adult-type niches and start to differentiate and proliferate into more committed progenitors and mature blood cells. The transient hematopoietic wave that the researchers describe in late fetal and young adult stages might also prepare the bone marrow niches for the HSCs coming from the fetal liver.

Stem cell therapies

Defects in HSCs lead to various blood-related disorders and cancers that are partly treated by HSC transplantations. The controlled production of bona fide HSCs from pluripotent precursors remains very difficult to achieve in vitro, in a petri dish, and therefore requires a better understanding of the HSC production as it occurs physiologically in vivo, in the living body. Identifying all steps of hematopoietic production and the molecular events controlling this process is of fundamental interest and should help to devise innovative stem cell therapies for hematopoietic disorders in the future.

Reference:Yvernogeau, L., Gautier, R., Petit, L., Khoury, H., Relaix, F., Ribes, V., Jaffredo, T. (2019). In vivo generation of haematopoietic stem/progenitor cells from bone marrow-derived haemogenic endothelium. Nature Cell Biology. https://doi.org/10.1038/s41556-019-0410-6

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Read more from the original source:
Transient Wave of Hematopoietic Stem Cell Production in Late Fetuses and Young Adults - Technology Networks

Three UCLA scientists receive grants totaling more than $18 million – UCLA Newsroom

Three researchers at theEli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLAhave received awards totaling more than $18 million from the California Institute for Regenerative Medicine, the states stem cell agency.

The recipients are Dr. Sophie Deng, professor of ophthalmology at the UCLA Stein Eye Institute;Yvonne Chen, a UCLA associate professor of microbiology, immunology and molecular genetics; and Dr. Caroline Kuo, a UCLA assistant clinical professor of pediatrics. The awards were announced at a CIRM meeting today.

Dengs four-year, $10.3 million award will fund a clinical trial for a blinding eye condition called limbal stem cell deficiency. Limbal stem cells are specialized stem cells in eye tissue that help maintain the health of the cornea. Because of genetic defects or injuries caused by infections, burns, surgeries or other factors, some people do not have enough limbal stem cells, which results in pain, corneal scarring and blindness.

The approach she is testing involves extracting a small number of limbal stem cells from a persons eye, multiplying them in a lab, and then transplanting them back into the eye, where they could regenerate the cornea and restore vision. The research will be conducted in collaboration with theUCLAUCI Alpha Stem Cell Clinic, a partnership between UCLA and UC Irvine.

The grants awarded to Chen and Kuo are for projects that are heading toward the FDAs investigational new drug application process, which is required by the agency before a phase 1 clinical trial the stage of testing that focuses on a treatments safety.

Chens two-year, $3.2 million award will fund efforts to create a more effectiveCAR T cell therapyfor multiple myeloma, a blood cancer that affects white blood cells. The research will evaluate a specialized form of CAR T therapy that simultaneously targets two markers, BCMA and CS1, commonly found on multiple myeloma cells. CAR T therapies that target BCMA alone have been effective in clinical trials, but the presence of BCMA on multiple myeloma cells is not uniform.

Previous research has shown that the marker CS1 is present in around 90% of multiple myeloma cells. A CAR T therapy that targets both markers could potentially help more patients and reduce the likelihood of a cancer relapse.

Kuos 2 1/2-year, $4.9 million award, will support the development of a stem cell gene therapy for a deadly immunodeficiency called X-linked hyper IgM syndrome, or XHIM.

The syndrome, which is caused by a mutation in the CD40LG gene, results in invasive infections of the liver, gastrointestinal tract and lungs. Currently, the only potential cure is a bone marrow transplant from a matched donor, which carries life-threatening risks and is often less effective for XHIM patients than patients with other forms of immune deficiency. Even with current treatments, only 30% of people with the syndrome live to age 30.

Kuo will evaluate a stem cell gene therapy that corrects the genetic mutation that causes XHIM. After removing blood-forming stem cells from a person with the syndrome, the therapy would use a genetic engineering technique called CRISPR to insert a correct copy of the affected gene into the DNA of the stem cells. The corrected blood-forming stem cells would be infused back into the patient, where they could regenerate a healthy immune system.

She will collaborate with Dr. Donald Kohn, a UCLA distinguished professor of microbiology, immunology and molecular genetics who has successfully treated two other immune deficiencies bubble baby disease and X-linked chronic granulomatous disease with a similar therapy.

Read more from the original source:
Three UCLA scientists receive grants totaling more than $18 million - UCLA Newsroom

Can This Cell Therapy Help Fight the NASH… – Labiotech.eu

Nonalcoholic steatohepatitis (NASH) is the most severe form of nonalcoholic fatty liver disease (NAFLD) and is characterized by a fatty liver, inflammation, and liver cell damage. If left untreated, NASH can further develop into liver fibrosis, the formation of scar tissue in the liver, and liver cirrhosis. To date, a patients only option at the final stage of liver disease is a liver transplant. There is no alternative available yet.

This year alone has already seen a number of disappointments within the NASH clinical trial landscape. In April, Gilead announced that its anti-fibrosis compound selonsertib failed to reach the endpoint in phase III. In June, Conatus and Novartis NASH cirrhosis treatment emricasan also missed its primary endpoint in a phase IIb trial. And although Intercepts Ocaliva showed an effect on fibrosis in phase III, the results were overshadowed by strong side effects.

The therapy landscape for NASH is currently dominated by small molecules that address defined targets. Many of the currently ongoing trials are focusing on the earlier stages of NASH, covering the fibrotic stages F1 and F2. The later stages of NASH, F3 and F4, on the other hand, are receiving attention at the clinical stage but are difficult to treat.

If you look at the number of therapies in development for cirrhotic NASH F4 and indications further down the disease progression path, you will find a blue ocean, says Henrik Luessen, CBO at Promethera. There is not much competition to be found in that space. NASH is a spectrum disease in which many factors play a role, including inflammation, immune activation, stellate cell activation, lipid metabolism, and fibrosis. Most molecules can only target one of these factors and the action is therefore very limited. In later stages, where many more factors are involved, there is a need for an approach that addresses more than one target. That is the key challenge in NASH.

Promethera has taken a leap into the blue ocean and has developed a cell therapy in which liver-derived cells can address several factors of the disease. These cells have a potent paracrine effect and are able to respond to the cause of the disease by secreting or expressing various molecules, including hepatic growth factor (HGF), indoleamine 2,3-dioxygenase (IDO), and prostaglandin E2 (PGE2), to reduce inflammation, inhibit stellate cell activation, and to further interrupt the fibrotic or cirrhotic process and restore liver function.

Based on the behavior of our cells observed over more than six years of intense clinical research following the inception of Promethera, we decided to focus on end-stage NASH and acute-on-chronic liver failure (ACLF), the end-stages of the disease where patients are suffering from at least one organ failure and have a very low prognosis to survive the next three months, Luessen explains. When we found promising signs of efficacy and safety in ACLF we decided to move further into the NASH field and focus on the late stages of the disease where there is a strong unmet medical need. In both cases, we are positioning our cells as an alternative to liver transplantation.

The data of the completed HEP101 study in ACLF patients will be published at the upcoming American Association for the Study of Liver Diseases (AASLD) meeting in Boston on 10th November 2019, for the first time.

Moreover, in May 2019, Promethera started the PANASH study, which is evaluating the safety of HepaStem in NASH F3 and F4 patients at different dosages. Efficacy markers will also be investigated as a study outcome.

Prometheras pipeline is comprised of two allogeneic cell therapies and one antibody. Designed to target the tumor necrosis factor receptor 1 (TNF-R1), the companys antibody Atrosimab is currently in preclinical development. TNF is known to interact with receptors one (R1) and two (R2). While R1 is responsible for triggering inflammatory responses and apoptosis, R2 is actually a type of regenerative receptor.

Classical TNF inhibitors inhibit all systemic TNF, including all interactions with R2, Luessen says. Atrosimab only inhibits R1, which allows the regenerative properties of R2 to be maintained. It can also be potentially used in combination with our HepaStem technology.

HepaStem, currently in phase II, is a cell therapy that addresses different components of the NASH disease progression. Consisting of liver-derived mesenchymal stem cells (MSC), HepaStem is administered intravenously without the need for immunosuppressants and enters the liver via the bloodstream, where it then targets multiple changed pathways. HepaStem can reduce tissue fibrosis and promote the restoration of liver function by lowering inflammation, deactivating stellate cells, and reducing fibrosis.

Prometheras second cell therapy, H2Stem, is currently at a preclinical stage. H2Stem are liver-derived progenitor cells from the hepatobiliary tract that can express various markers, can differentiate into hepatocyte-like cells in vitro and have been observed to home and repopulate the liver of humanized mice. H2Stem has shown good signs of engraftment in mice, which allows us to assume that it might have strong regenerative or repair properties, but we are still collecting evidence, says Luessen.

Prometheras allogeneic cell line is unique in that it also has the potential for liver homing, meaning the cells have a liver imprint and remain in the liver where they can fight the cause of the disease. Moreover, the cells do not provoke immunogenic responses, which enables the intravenous injection of the therapy without needing immune suppression. Even a second injection, triggers no acute immunogenicity or toxicity.

Our product has undergone the chemistry, manufacturing, and controls (CMC) part of development, Luessen explains. This means that we have a very scalable product. We are now moving to bioreactors, which will allow us to treat thousands of patients with only one liver. We are confident that we can meet global demand with our new in-house process, in particular when we move to our state-of-the-art facilities in Gosselies, Belgium, in 2020. At the moment, the only option for end-stage liver disease patients is a liver transplant, so with one liver we could avoid a very high number of liver transplants, at least exceeding the currently recorded global numbers of transplants. Thats what makes our technology unique and very promising.

Many companies are now becoming increasingly aware that addressing only one target in early-stage NASH does not add many benefits to patients, Luessen says. In fact, patients often have to take several medications continuously, which can come with unpleasant side effects. Furthermore, early-stage NASH patients can greatly benefit from lifestyle changes, including dietary measures and physical exercise.

In the early stages of NASH, during F1 and F2, many patients are not aware of their disease because they do not show any symptoms. Once the disease is felt, patients are often already in the later stages, F3 and F4, and here, the medicinal landscape becomes very poor, Luessen explains. Looking at the future, I think this will be recognized and there will be a greater focus on the fibrotic and cirrhotic stages of NASH. We can already see different pharma companies, who are usually competitors, working together. They are combining their compounds to have a more efficient treatment. This will be the only way to address the disease outside of cell therapy.

Do you want to discover more about how Prometheras cell therapy could revolutionize NASH treatments? Check out Prometheras website for more information or get in touch with their experienced team!

Images via Promethera and Shutterstock.com

Author: Larissa Warneck, Science Journalist, Labiotech.eu

See the original post here:
Can This Cell Therapy Help Fight the NASH... - Labiotech.eu