Category Archives: Stem Cell Treatment


Innovative Medical Solutions: Stem Cell Therapy – NewsChannel5.com


NewsChannel5.com
Innovative Medical Solutions: Stem Cell Therapy
NewsChannel5.com
Every day, many Americans are turning to medical advances to treat chronic pain. On today's segment, sponsored by Innovative Medical Solutions, Dr. Miceli talks to us about stem cell therapy and how it might help you. Be sure to tune in! Show Caption
Women Were Left Blind After Stem Cell Treatment In Unapproved Clinical TrialsHealth Thoroughfare
Global Stem Cell Market Positive long term growth outlook 2016-21Medgadget (blog)
A Doctor's View: Media has responsibility to spare us misleading advertisingDuluth News Tribune

all 11 news articles »

Go here to see the original:
Innovative Medical Solutions: Stem Cell Therapy - NewsChannel5.com

Regenerating the Body With Stem Cells Hype or Hope? – Labiotech.eu (blog)

When the Japanese researcher Shinya Yamanaka managed to reprogram adult cells into an embryonic-like state to yield induced pluripotent stem cells (iPSCs), this was supposed to herald a revolution in regenerative medicine. But 10 years after their discovery, a therapeutic breakthrough is still outstanding.

The overall stem cell therapy field has failed today to show a very clear cut clinical benefit, told me Georges Rawadi, VP for Business Development at Celyad. The field now needs some significant success to attract attention.

Even though investors prefer placing their bets on the hot T cell therapies these days, some stem cell technologies such as iPSCs are starting to get traction as big industry players are exploring the territory. Last year, Bayer and Versant threw $225M into the pot to launch BlueRock Therapeutics, a regenerative medicine company that plans to develop iPSC-based therapies. A year before, Fujifilm spent $307M to acquire the iPSC company Cellular Dynamics.

Although a big success story is still lagging behind, recent advances in the field argue that stem cells indeed have the potential to translate into effective therapies for currently intractable diseases. Heres an overview of what biotechs stem cells are up to!

Stem cell treatment is not a new concept hematopoietic stem cells (HSCs) were described as early as the 1960s and bone marrow transplants have been used to treat blood cancer for decades.

The reason that we get excited about stem cell therapies comes from our experience with the hematopoietic stem cells. If you want to see what a mature stem cell therapy is like, you only need to look at bone marrow transplantation explained James Peyer, Managing Partner at Apollo Ventures, who has a Ph.D. in stem cell biology.

According to Peyer, the hematopoietic stem cell field is one of the most active areas in the stem cell world right now, mainly fueled by our advances in the gene editing space. Tools like CRISPR and TALEN allow for the genetic modification of a patients own bone marrow stem cells, which can then be expanded and returned to the patient for the correction of a genetic defect.

Last year, regulators gave green light to one of the first therapies of this kind. Strimvelis, developed by GSK, consists of an ex vivo stem cell gene therapy to treat patients with the very rare type of Severe Combined Immunodeficiency (SCID). Using the patients own cells avoids the risk of graft versus host disease (GvHD), which still affects around 30% of people receiving a bone marrow transplant.

Small wonder that the CRISPR companies, CRISPR Therapeutics, Editas, and Intellia are all active in this field, with preclinical programs in a number hematological diseases.

To date, the most prominent stem cells in the clinic are mesenchymal stem cells (MSCs), which are moving through more than 300 registered clinical trials for a wide array of diseases. These cells are able to form a variety of tissues including bone, cartilage, muscle or fat, and can be readily harvested from patients or donors for use in autologous or allogeneic therapies.

While MSCs have deluded the biotech scene with good safety profiles in clinical trials, their actual regenerative potential remains controversial, and there have been a great number of clinical failures, which many blame on a lack of demonstrated mechanisms of action.

As Peyer explained, The problem here is that, as opposed to other adult stem cells, the MSC has been unclearly defined. We know roughly what it does but we dont fully understand the molecular mechanisms driving these cells. On top of being unclearly defined, the regenerative powers of MSCs have been massively over-claimed in the past.

Another reason for the lack of clinical benefit has also been attributed to the use of undifferentiated MSCs, as Rawadi explained to me. The Belgian biotech Celyad, which has been pioneering cell therapy in the cardiovascular space, is using bone-marrow derived autologous MSCs and differentiates them into cardiomyocyte precursors to produce new heart muscle in patients with heart failure.

Although the company missed its primary endpoint in a phase III trial last year, Celyad has staked out a patient subpopulation that showed significant improvement. Its technology still has the confidence of the FDA, which just handed out a Fast Track designation and Celyad is now planning a refined Phase III trial.

One of Celyads major competitors, Australian Mesoblast, is forging ahead using allogeneic MSCs with Phase III programs in heart failure, chronic low back pain (CLBP) due to disc degeneration, as well as a range of inflammatory conditions including GvHD and rheumatoid arthritis.

Although the ability of MSCs to regenerate tissues remains questionable, the Mesoblasts approach hinges on a body of evidence showing that MSCs can suppress inflammation and mobilize endogenous repair mechanisms through indirect effects on immune cells.

Indeed, the first-ever approved stem cell therapy, Prochymal, also depends on this mechanism. Prochymal was developed by US-based Osiris Therapeutics and in 2012 received Canadian approval to treat acute GvHD. But after Sanofi opted to shelve its partnership with Osiris prior to FDA approval, the biotech sold out its off-the-shelf stem cell platform to Mesoblast in a $100M deal.

In Belgium, companies like TiGenix and Promethera are also banking on the immunomodulatory properties of MSCs. The companies are developing treatments for patients with Crohns disease and liver diseases, respectively.

The ultimate hope for stem cell therapies has been to regenerate damaged or diseased tissues as found in diabetes, heart failure or blindness. Holostem Terapie Avanzate, a spin-off from the University of Modena and Reggio Emilia was the first company to move towards this goal.

Building on 20 long years of research, the biotech has developed Holoclar, the first and only autologous stem cell therapy (apart from bone marrow transplants) to enter the European market. Holoclar is based on limbal stem cells, located in a part of the eye called the limbus, which can be used to restore eyesight in patients that have lost sight due to burn injuries.

Meanwhile, UK-based Reneuron is developing off-the-shelf therapies that aim to restore the cognitive function of patients following a stroke. Backed by no other than Neil Woodford, the company recently raised an impressive 100M to advance its lead therapy to the market.

The biotechs fetal-derived neural stem cell line CTX was able to significantly reduce the disability of post-stroke patients in a Phase II trial and ReNeuron is now planning to push its candidate into pivotal trials.

A major question in the space a decade ago was safety. Today, theres been a lot of trials done that show that safety is not an issue. I think safety is kind of off the table but efficacy is still a question mark. And thats what were trying to deliver now, Olav Helleb, CEO of ReNeuron, told me.

While neural stem cells and other tissue-specific stem cells are able to regenerate the cells of a particular tissue, Embryonic Stem Cells (ESCs) and their engineered counterparts, iPSCs, are capable of making every cell type in the body, a property known as pluripotency. Pluripotent stem cells can also expand indefinitely in culture and their identification unlocked massive expectations for these cells to transform the regenerative medicine field.

Yet, these cells come with significant challenges associated with the safety of the final preparation. Apart from ethical issues surrounding ESCs, today, a lot of companies have been cautious about using these cells for therapy, because undifferentiated pluripotent cells can drive tumor formation, explained Rawadi. Since ESCs can, in principle, form every cell type, they can lead to the formation of teratomas.

A major reason for the fairly slow progress in the field is based on the difficulties of directing a pluripotent cell to exactly the cell type that is needed for cell therapy. We can readily drive the cells from the undifferentiated state to the differentiated state. However, getting those cells to pause anywhere in the middle of this continuum to yield progenitor cells is incredibly challenging, Peyer explained. Another challenge, he says, is to engraft the cells in the right place to enable them to become fully integrated.

Besides initial hurdles, companies like US-based Asterias or ViaCyte are now running the first Phase I/II trials with ESC-derived cells to treat patients with spinal cord injuries and to restore the beta cells in type I diabetes. So far, the eye has been the the dominant organ for many of the first human clinical trials with pluripotent stem cells, where the cells are assessed in diseases such as age-related macular degeneration (AMD) to restore the loss of the retinal epithelium.

Deriving retinal epithelium from pluripotent cells is relatively easy and in fact, researchers in Japan are now running the very first clinical trial using donor-derived iPSCs to treat patients with AMD. For reasons of safety and standardization, the trial is based on an allogeneic approach. However, since this doesnt offer an exact genetic match, allogeneic therapies raise the prospect of immune rejection, an issue that has been plaguing the use of ESCs.

But the scientists in Japan have contended that iPSC banks could potentially solve this problem. The team in Japan is currently establishing an iPSC bank, consisting of HLA-characterized cell lines from 5-10 different donors, which should match 3050% of Japans population.

Such haplobanks have the benefits of allogeneic cell therapy, namely cost-effectiveness and standardization, but you still have matching immune systems, Peyer agrees.

For now, this remains a vision for the future, but the potential seems enormous. As Julian Howell, CMO of ReNeuron, told me, iPSCs have still got an awful long way to go. For the iPSC program running in Japan, they recently acknowledged that it took about $1.5M and 6 months to treat each patient. Its a great idea but its still got some way to go before it reaches the scale that could get into the clinic.

Images via nobeastsofierce,Natali_ Mis,vchal/ Shutterstock

Read the original here:
Regenerating the Body With Stem Cells Hype or Hope? - Labiotech.eu (blog)

Broomfield’s Regenexx in merger with Iowa company – Boulder Daily Camera

Dr. John Schultz gives an injection of bone marrow derived stem cells into the knee of patient Steve Brink from Washington state at the Regenexx offices in Broomfield June 12. (Paul Aiken / Staff Photographer)

_Broomfield's Regenexx, a stem cell treatment network, has completed its merger with Des Moines, Iowa-based Harbor View Medical.

The company corporate headquarters will move to Des Moines as a result, with the company's medical headquarters remaining in Broomfield, according to spokeswoman Caroline Patterson.

Patterson there would be no layoffs in Broomfield as a result of the merger.

Regenexx co-founder, Dr. Christopher Centeno, a pioneer in using stem cells to treat orthopedic injuries, will maintain his role as chief medical officer and Jason Hellickson will become CEO.

Regenexx treatments include injection of a patient's own stem cells and platelet-rich plasma (PRP) to encourage healing of tendons, joints and muscles.

"Most of what we currently call orthopedic surgery will, in the next 10-20 years, be in the dust bin of history," Centano told the Daily Camera last month. "Thirty years from now, cutting people open and drilling holes will be considered barbaric."

Despite advances in research, critics say the safety and effectiveness of these regenerative treatments is largely unregulated and remains poorly understood.

A study by Mayo Clinic, whose results were published last year, noted that patients in a blind study, who had arthritis in both knees, saw benefits from the treatment, but that it wasn't clear why. Just one knee had actually been injected with the stem cells.

The stem cell treatments,have generated controversy among some medical professionals because they cost thousands of dollars and have not been widely studied. Last year the U.S. Food and Drug Administration (FDA) held a series of scientific meetings examining how best to regulate and ensure the safety and efficacy of this approach.

The Mayo Clinic study, overseen by the FDA, concluded that the procedure it sstudied was safe to undergo, but it was not ready to recommend it for "routine arthritis care."

Still the use of stem cell treatments in everything from veterinary clinics to dermatology orthopedic practices is growing. Founded in 2005, Regenexx lists 48 clinics worldwide, including a new facility it opened in Mumbai this month.

Jerd Smith: 303-473-1332, smithj@dailycamera.com or twitter.com/jerd_smith

See original here:
Broomfield's Regenexx in merger with Iowa company - Boulder Daily Camera

A tall order: Giraffe receives stem-cell therapy for chronic arthritis – Source

How do veterinarians help a giraffe ease its arthritis pain? Well, it takes a little more than an aspirin and a gulp of water.

Recently, Colorado State University veterinarians traveled to Cheyenne Mountain Zoo to help Mahali, a 14-year-old giraffe, with arthritis pain in his front left hoof.

Arthritis is a common problem for giraffes, especially geriatric giraffes like Mahali. Who can blame them? Weighing in at 2,000 pounds on average, their four feet support more than one ton of weight. Thats like carrying two grand pianos on your back all day.

With its 17-giraffe herd trained for voluntary husbandry, including hoof trims, blood draws and radiographs, Cheyenne Mountain Zoo is uniquely suited to help find better arthritis treatments for giraffes.

Dr. Amanda Morphet, who is training to specialize in exotic and zoo animal medicine at CSU, believes stem-cell therapy can help alleviate arthritis pain.

Currently, arthritis in these megavertebrates is managed through corrective hoof trims, non-steroidal anti-inflammatories, cold-laser therapy and pain medications. But, these practices are not always enough to keep giraffes, which can live up to 30 years, comfortable as they age.

CSU veterinarians Dr. Val Johnson and Dr. Amanda Morphet, and the zoos lead veterinarian Dr. Liza Dadone, are determined to discover a more successful way to treat these gentle giants, and they believe stem-cell therapy is the answer.

Stem-cell therapy has resulted in dramatic clinical improvement in some cases of arthritis in horses and other species, but has not, until now, been attempted in giraffes, Johnson said.

The university and the zoo began working together seven years ago, when CSU veterinarian Dr. Matt Johnston and zoo veterinarians initiated a partnership to treat zoo animals while teaching veterinary students.

This specific stem-cell research partnership began in 2016, when Johnson and Dadone started treating a geriatric elephant for arthritis with stem-cell therapy.

Johnson, who is researching regenerative medicine at CSU, has safely treated a mountain lion, tiger, wolf, coyote and dogs with stem cells over the past five years.

Regenerative medicine is a promising new avenue for treatment of chronic age-related degenerative diseases, Johnson said. I want to develop more effective methods for treating animals.

Johnson and Dadone ran a crowdfunding campaign to develop a technique to grow stem cells from giraffe blood and grow multiple treatments of stem cells. The online campaign was quickly funded.

Cheyenne Mountain Zoo staff and veterinarians use hoof-trimming techniques on giraffes to maintain foot health and help prevent foot arthritis in older giraffes. (Photo by Andrew Schroeder)

In April, Morphet and Johnson traveled with two CSU anesthesiologists, Dr. Marlis Rezende and Dr. Khursheed Mama, to Colorado Springs for the procedure on Mahali.

Mahali was in pain. He wouldnt leave pressure on his front left foot for longer than a minute or two, said Morphet, who is training to specialize in exotic and zoo animal medicine at CSUs James L. Voss Veterinary Teaching Hospital.

Mahali is trained for general footwork, but injecting stem cells requires absolute stillness. Anesthetizing a giraffe, however, is especially dangerous for the animal.

With the length of the neck and limbs, falling during induction and recovery is a big concern, Dr. Morphet said.

The large procedure room was packed tight with veterinarians, zoo staff and volunteers who assisted Mahali, which included repositioning his body, and elevating his head at different angles every 10 minutes to prevent muscle spasms, aspiration and brain swelling. The team of volunteers scooped sand under his back to help Mahali roll up once he awoke.

If this sounds like intense physical work, it is.

Veterinarians took radiographs and successfully injected stem cells while Mahali was anesthetized. Meanwhile, a farrier team trimmed his hooves.

The stem cells, which were grown from giraffe blood, were injected through a vein near Mahalis inflamed hoof. The cells remained at the injection site for 20 minutes to improve absorption into the hoof.

Under the watchful care of veterinarians and zoo staff, Mahali came out of anesthesia safely. And then, they waited six long weeks for the stem cells to take effect.

This was the first time a giraffe has received stem-cell therapy to treat arthritis. The big question: Did it work?

Six weeks after the procedure, Morphet and veterinary students visited Mahali for a check-up.

Weve seen a dramatic improvement in his clinical signs, Morphet said. Not only to his comfort level but the quality of his hoof. Hes letting us work with his feet.

Dadone, the zoo veterinarian, used a thermal camera to view the heat distribution in Mahalis feet.

With the thermal imaging, you can see hot spots in the limbs, said Kara Gendron, a fourth-year veterinary student. The warmer it is, the more likely its inflamed and painful. His left hoof was still a little warmer, but compared to what we were seeing initially, it was very similar to his right [hoof]. So, hes actually doing a lot better.

See the rest here:
A tall order: Giraffe receives stem-cell therapy for chronic arthritis - Source

Stem Cell Treatments in Use at Clinics Worldwide Need Regulation … – Multiple Sclerosis News Today

Advertising forstem cell therapies not supported by clinical researchoftenmadedirectly to patients and sometimes promoted as a cure for diseases like multiple sclerosis or Parkinsons is a growing problem that needs to be addressed and regulated, a team of leading experts say, calling suchstem cell tourism potentially unsafe.

Stem cell tourism is the unflattering name given to the practice of encouragingpatients totravel outside their home country to undergo suchtreatment, typicaly at a private clinic.

The article, titledMarketing of unproven stem cellbased interventions: A call to actionandrecently published inthe journal Science Translational Medicine, was co-authored by scientistswith universities and hospitals in the U.S., Canada, U.K., Belgium, Italy, Japan, and Australia. It focuses on the global problem of thecommercial promotion of stem cell therapies and ongoing resistance to regulatory efforts.

Its authors suggest that a coordinated approach, at national and international levels, be focused on engagement, harmonization, and enforcement in order to reduce risks associated with direct-to-consumer marketing of unproven stem cell treatments.

Treatments involving stem cell transplants are now being offered by hundreds of medical institutions worldwide, claiming efficacy in repairing tissue damaged by degenerative disorders like MS, even thoughthose claim often lack or are supported bylittle evidence .

They alsonoted that the continued availability of these treatments undermines the development of rigorously tested therapies, and potentially canendanger a patients life.

The researchers emphasizethat tighter regulations on stem cell therapy advertising are needed, especiallyregarding potential clinical benefits. They support the establishment ofinternational regulatory standards for the manufacture and testing of human cell and tissue-based therapies.

Many patients feel that potential cures are being held back by red tape and lengthy approval processes. Although this can be frustrating, these procedures are there to protect patients from undergoing needless treatments that could put their lives at risk, Sarah Chan, a University of Edinburgh Chancellors Fellow and report co-author, saidin anews release.

Chan and her colleagues are also calling for the World Health Organization to offer guidance on responsible clinical use of cells and tissues, as it does for medicines and medical devices.

Stem cell therapies hold a lot of promise, Chan said, but we need rigorous clinical trials and regulatory processes to determine whether a proposed treatment is safe, effective and better than existing treatments.

According to the release, the report and its recommendationsfollowed the death of two children at a German clinic in 2010. The clinichas since been shut down.

Certainstem cell therapies mostly involving blood and skin stem cells have undergone rigorous testing in clinical trials, the researchers noted. A number of theseresulted in aprovedtreatments for certain blood cancers, and to grow skin grafts for patients with severe burns.

Information about the current status of stem cell research andpotential uses of stem cell therapiesis availableon the websiteEuroStemCell.

View original post here:
Stem Cell Treatments in Use at Clinics Worldwide Need Regulation ... - Multiple Sclerosis News Today

Human Neural Stem Cell Therapy for Chronic Ischemic Stroke | GEN – Genetic Engineering & Biotechnology News

Stem cells and stroke

The past decade has seena rise in the number of stem cell-derived therapies targeting ischemic stroke in preclinical and early clinical studies. Corroborated by numerous scientific reports, the therapeutic benefits of stem cells include an extension of the time window for drug intervention, improvement of neurological deficits, reduction of infarct volume, pro-regenerative cerebral reorganization, mitigation of poststroke neuro-inflammation, and tissue restoration, all of which depend on the time after infarct, cell type used, and route of administration13. The wide range of effects observed for stem cell therapies demonstrates that functional recovery after stroke occurs via multiple mechanisms rather than a single target46. Research indicates that the mode of action may depend on the stem cell type and other key factors, including infarct size and location, mode of intervention, and timing poststroke68. Thus, some understanding of the cellular, molecular, and biochemical events that are involved in the mode of action of a stem cell type is a prerequisite to improving and optimizing its therapeutic benefits.

Our 2012 review of cell therapy in stroke showed the wide variety of cell types used preclinically and clinically in stroke treatment research1. Mesenchymal stromal cells (MSCs) of multiple origins and phenotypes are most commonly employed in the literature and mainly applied systemically in high doses in acute stroke settings, because of their nonengraftment and potent drug-like biological activity. Neural stem cells (NSCs), by contrast, are multipotent cells that are derived from developing or adult brain tissue or differentiated from pluripotent cells such as embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) in culture. These stem cells have both capacity for engraftment and neural cell differentiation as well as potent biological activity and are delivered intracerebrally in smaller volumes and cell doses; we believe that they are more suitable in patients presenting with pre-existing chronic, stable disability. Currently, there is a growing number of hNSC-derived therapies in preclinical development for ischemic stroke (Table). Leading these therapies, ReNeuron's CTX0E03 cell line (CTX) has been evaluated in a first-in-human, single-center trial in patients with moderate-to-severe disability, 6 months to 5 years after ischemic stroke9. Currently, a Phase II stroke trial in patients with upper-limb disability, 312 months poststroke is underway across multiple sites in the United Kingdom (clinicaltrials.govNCT02117635). In this review, we summarize nearly 15 years of research behind the CTX line and discuss its mode of action together with implications for therapeutic potential in stroke disability.

Link:
Human Neural Stem Cell Therapy for Chronic Ischemic Stroke | GEN - Genetic Engineering & Biotechnology News

Lack of stem cell donations plagues patients – Times of India

Visakhapatnam: Lack of awareness on the importance of becoming a blood stem cell donor is hindering the treatment of people suffering from blood cancer and other fatal blood disorders like thalassemia and aplastic anaemia.

Since the only cure is a blood stem cell transplant, the need of the hour is to sensitise people of the city on the necessity of becoming a potential blood stem cell donor to save lives, experts say.

According to oncologists based in Vizag, the cases of blood cancer are increasing and the treatment options are very few. Moreover, patients with blood cancer are sent to Hyderabad and other centres for treatment as neither there are donors nor equipment for stem cell transplant in the port city.

For a successful transplant, patients suffering from fatal blood disorders need blood stem cells from a healthy and genetically matched donor. Unfortunately, the probability of finding a genetically matched donor is one in 10,000 to one in over a million.

Only about 25 per cent of the patients find a donor from within their family. Rest need to wait for a life-saving donor.

"The chances of finding a match for patients suffering from these fatal blood disorders could only widen if there are more number of donors registered," says Ravindranath Chava, co-ordinator of a Chennai-based blood stem cell donors registry- DATRI.

More here:
Lack of stem cell donations plagues patients - Times of India

Stem cell therapy to treat paralytic dogs draws pet owners from across country to IVRI – Times of India

Bareilly: Dog owners from across the country, including Delhi and Gujarat, are turning up with their paralytic pets at the Indian Veterinary Research Institute (IVRI) here for stem cell therapy. Scientists treat a paralyzed dog by transplanting stem cells from healthy dogs. IVRI is the second institute in the country to offer this treatment, after Madras Veterinary College, Chennai.

According to scientists, no research has been conducted to determine the number of dogs who suffer from paralysis every year in India. However, the institute receives at least four cases every week of spinal trauma which causes paralysis in dogs. IVRI recorded 143 cases of posterior paralysis in 2016. These were treated with stem cell therapy and medicines.

If dogs are treated only with medicines, recovery is witnessed only in a few cases, said Amarpal (who goes by his first name), head and principal scientist, division of surgery, IVRI. On an average, 17% recovery rate was noted among dogs administered only medicines.

However, the best response was recorded among severely affected dogs when they were treated using stem cells, where almost all the patients responded to treatment to variable extent, said the scientist. Though we have cases where recovery was 100%, the average recovery rate is about 50%. The experiment proved the efficacy of stem cell therapy in cases of paralysis due to spinal trauma, said Amarpal.

The paralytic dog is first administered anesthesia before the stem cells are injected into its spinal cord. It takes only one session for a dog to undergo the therapy and it is discharged the same day.. After this, the owner has to bring his pet for check-ups for two or more times so that vets can monitor how the animal is responding to the treatment and if it is suffering from any reaction, said Amarpal.

View original post here:
Stem cell therapy to treat paralytic dogs draws pet owners from across country to IVRI - Times of India

Anger as Scots patients miss out on ‘breakthrough’ stem cell therapy … – Herald Scotland

LUCY Clarke was facing a downhill spiral when she flew to Russia to undergo a cutting edge stem cell transplant.

Two years on she says the procedure not only halted her illness in its tracks, but reversed much of the damage inflicted by multiple sclerosis.

The 41-year-old from Inverness is now backing crowdfunding efforts so that her friend and neighbour, Rona Tynan, can receive the same life-changing operation in Mexico before she becomes too ill to qualify.

Mrs Tynan, 50, has until the end of August to raise the 60,000 needed.

However, both are angry at a cross-border divide which means that a small number of MS patients in England can undergo the treatment for free on the NHS, while in Scotland despite having some of the highest rates of MS in the world the health service has refused patients' funding and no clinical trials are planned.

Mrs Clarke, a chemistry graduate and acupuncturist, began investigating AHSCT (autologous haematopoietic stem cell transplantation) in 2014 after her condition progressed from relapsing-remitting to secondary progressive MS. At the time her son was three and she feared ending up in a wheelchair.

Although the treatment has been available overseas for decades, it has never been routinely available on the NHS and is considered unproven by many neurologists.

It is also a highly aggressive therapy, using intensive chemotherapy to strip out sufferers faulty immune systems before replenishing it with stem cells harvested from their own bone marrow or donor tissue. Despite the risks, many patients including Mrs Clarke credit it with transforming their lives.

She underwent the procedure in Moscow over a period of four weeks in April and May 2015. She said: From when my son was three to when I had the transplant, my walking had deteriorated, I needed to use a walking stick all the time, I had very poor balance, debilitating fatigue, I had brain fog, I used to slur my words.

"Im left-handed and my left hand was really weak so my writing was bad. Other things would come and go numbness in my legs, tingling, cramps in my calves, sore and painful legs. The majority of them have gone since the transplant.

I noticed quite quick improvements in things like balance. The biggest thing is not really having fatigue, and the brain fog completely went. I stopped slurring my words quite quickly after treatment. I was more alert. I had more concentration, more focus. Within six months the shaking in my left arm had gone. Ive still got drop foot in my right leg and I still use a walking stick, but once youve got to the stage of secondary progressive it all gets a bit scary. Things are going downhill and youre told theres nothing that can be done, so really my goal from treatment was just to halt the progression to know I wasnt getting any worse. Thankfully, and luckily, I have seen lots of benefits.

Eighteen months on, MRI brain scans show no signs of disease progression and while Mrs Clarke stresses that the treatment is neither a magic bullet nor a walk in the park, she is supporting Rona Tynans bid to undergo the same surgery in October.

Mrs Tynan, a retired Metropolitan police sergeant and mother-of-two from Inverness, also has secondary progressive MS. She is already in a wheelchair and fears that unless she undergoes the treatment soon she will become too ill. She said: Im a 7.5 out of 10 on the disease progression scale, where 10 is death. Most clinics stop taking you at seven, but Mexico just raised it to 8.5. Thats brilliant for people like myself, but I cant afford to get any more ill.

So far, Mrs Tynans fundraising page on JustGiving has raised nearly 4000, but she is frustrated that more is not being done to help Scottish patients. In England, clinical trials are ongoing in London and Sheffield but a small number of patients with relapsing-remitting MS can be referred for the treatment off-trial, for free, on the NHS. In Scotland, however, eligible patients have been turned down for NHS funding.

Mrs Tynan said: It seems crazy to me that Brits are going to Chicago and Mexico and Russia for a treatment that in the long-run could save the NHS loads of money. Scotland is one of the worst places in the world for MS yet in England you can get this treatment for free. Why arent we fighting in Scotland to get this?

Mrs Clarke added: Its very unfair. It just seems a no brainer to me why they wouldnt make it available not for all patients but for some. The Scottish Government said referral decisions were "for clinicians".

A spokesman said: "Whilst the vast majority of healthcare provided by NHS Scotland is delivered in Scotland, NHS boards can commission treatment in other countries on an ad hoc basis, particularly where highly specialised treatment is involved. Decisions to refer patients are for clinicians, based on agreed guidelines, which ensure best practice, equity of access and consistency of treatment for all patients.

"HSCT is not currently widely available anywhere on the NHS, but people from Scotland can participate in trials held in other centres across the UK, where clinically determined appropriate and beneficial."

Read the rest here:
Anger as Scots patients miss out on 'breakthrough' stem cell therapy ... - Herald Scotland

Is stem cell therapy approved in Singapore? – The Straits Times

Reader Charles Wang wrote to ask if stem cell therapy - the use of stem cells to treat various medical conditions - is approved in Singapore. Mr Wang also asked where one could seek this treatment if it is available. Health reporter Linette Lai answered.

Any new treatment must be backed up by sufficient scientific evidence to ensure that it is safe and effective. However, there is still not enough scientific evidence available for stem cell therapy to be approved as a mainstream treatment in Singapore.

A Ministry of Health spokesman said: "To date, stem cell therapy has not been substantiated by sufficient clinical evidence as a form of mainstream treatment for any diseases or ailments, and it is not available as a treatment in our public hospitals.

"If any registered medical practitioners or institutions want to administer stem cells as a form of medical treatment, it would have to be conducted within the context of clinical trials."

Continue reading here:
Is stem cell therapy approved in Singapore? - The Straits Times