Category Archives: Stem Cell Treatment


Stem Cell Therapy: Repair and Regenerate Our Bodies – Live … – Live Trading News

Stem Cell Therapy: Repair and Regenerate Our Bodies

$USRM

Stem Cells 101: The primary purpose of stem cells is to maintain, heal and regenerate tissues wherever they reside in the body. This is a continuous process that occurs inside the body throughout life. If we did not have stem cells, our lifespan would be about 1 hour, because there would be nothing to replace exhausted cells or damaged tissue.

Notably: any time the body is exposed to any sort of toxin, the inflammatory process causes stem cells to swarm the area to repair the damage.

While it is easy to think of stem cell therapy as some sort of magic, it is wise to implement strategies that nourish and optimize the stem cells we already have in your body.

Dr. Kristin Comella, a notable Stem Cell innovator, writes: You have to create an appropriate environment for these cells to function in. If you are putting garbage into your body and youre constantly burdening your body with toxins, your stem cells are getting too distracted trying to fight off those toxins. By creating an appropriate environment, optimizing your diet and reducing exposure to toxins, that will allow the stem cells that were putting in to really home in and focus on the true issue that were trying to treat.

The other thing weve discovered over the years is that [stem cell therapy] is not the type of thing where you take one dose and youre cured forever. Your tissues are constantly getting damaged Youre going to have to repeat-dose and use those stem cells to your advantage.

When you think about a lizard that loses its tail, it takes two years to grow back the tail. Why would we put unrealistic expectations on the stem cells that were trying to apply to repair or replace damaged tissue? This is a very slow process. This is something that will occur over months and may require repeat dosing.

Stem cells historically were isolated from bone marrow, and have been used for bone marrow transplants for cancer patients since the 1930s. However, we can get stem cells from just about any tissue in the body, every tissue contains stem cells.

Actually our marrow has very low amounts of mesenchymal stem cells, which are now believed to be the most important, from a therapeutic perspective.

Mesenchymal stem cells help trigger an immunomodulatory response or a paracrine effect, which means they send signals out to the rest of the body, calling cells to the area to help promote healing.

What weve discovered in more recent years is that a more plentiful source of stem cells is actually your fat tissue. [Body] fat can contain up to 500 times more cells than your bone marrow, as far as these mesenchymal type stem cells go.

One thing thats also critically important when youre talking about isolating the cells is the number of other cells that are going to be part of that population. When youre isolating a bone marrow sample, this actually is very high in white blood cells, which are pro-inflammatory, Ms. Comella writes.

White blood cells are part of the human immune response.

When an injury occurs, or a foreign body enters our system, white blood cells will attack. Unfortunately, white blood cells do not discriminate, and can create quite a bit of damage as they clean the area out.

Stem cells, in particular the mesenchymal cells, quiet down the white blood cells and then start the regeneration phase, which leads to new tissue. Bone marrow tends to be very high in white blood cells and low in the mesenchymal cells.

So, isolating stem cells from fat tissue is preferred not only because its easier on the patient, but fat also contains a higher population of mesenchymal cells and fewer white blood cells.

The benefit also of isolating [stem cells from] fat is that its a relatively simple procedure. Theres typically no shortage of fat tissue, especially in Americans, Dr.. Comella says. Also, as you age, your bone marrow declines with regards to the number of cells in it, whereas the fat tissue maintains a pretty high number of stem cells, even in older individuals.

Fat can be successfully harvested from just about anyone, regardless of their age or how thin they are. The procedure is done under local anesthesia, meaning that the patient stays awake. We can harvest as few as 15 cubic centimeters of fat, which is a very small amount of fat, and still get a very high number of stem cells.

A stem cell procedure can cost anywhere from $5,000 15,000, depending on what one is having done, and rarely if ever will insurance cover it.

Still, when compared it to the cost of long-term medications or the out-of-pocket cost of getting a knee replacement, stem cell therapy may still be a less expensive alternative.

Also, a single extraction will typically yield enough stem cells for 20 to 25 future treatments, should one decide to store his/her stem cells for future needs.

I think its accessible for patients, Dr.. Comella says. Its an out-patient procedure. You plan to be in clinic for about two hours; no real limitations afterwards, just no submerging in water, no alcohol, no smoking for a week. But other than that, patients can resume their normal activities and go about their regular daily lives.

She notes that patients who eat a very healthy diet, focusing on Organic and grass fed foods, have body fat that is very hearty and almost sticky, yielding high amounts of very healthy stem cells.

We can grow much better and faster stem cells from that fat than [the fat from] somebody who eats a grain-based diet or is exposed to a lot of toxins in their diet, she says. Their fat tends to be very fluffy, buttery yellow. The cells that come out of that are not necessarily as good a quality. Its just been very interesting. And of note, patients that are cigarette smokers, their fat is actually gray-tinged in color. The stem cells do not grow well at all.

What has been described above is whats called an autologous donation, meaning a person is getting the stem cells from oneself. A number of companies provide non-autologous donations using cells harvested from other people, typically women, like amniotic or embryonic mesenchymal cells.

This is an important distinction.

There are now just a couple of studies that have been published comparing an autologous source, meaning cells from you own body, to an allogeneic source, meaning cells from someone else.

So far, what has been discovered is that the autologous cells will outperform somebody elses cells inside ones body. This is not fully understood yet. It may be that the environment that ones own cells function in, and that they used to that environment. They recognize it. It is the same DNA and they can function well there.

But, once the culture is expanded and a pure population of these mesenchymal cells, not necessarily the sample thats coming right off of the liposuction, but a sample that has been taken to the lab and grown, those cells will not elicit an immune response if you use them in someone else. You could scientifically and medically use those in an unmatched person. However, there are some regulatory aspects of that with regards to the FDA.

In the US, there are a variety of new stem cell products available, referred to as amniotic, cord blood products or placenta products, which are prepared at a tissue bank. Such facilities must be registered with the FDA, and the products must undergo additional processing.

For example, they must be morselized, or snap frozen or blended in some way. Such processing typically breaks the membrane, releasing growth factors, and the resulting products are called acellular, meaning there are no living cells remaining in the sample.

The amniotic products available in the US are not so much stem cell products as they are growth factor products.

Dr. Comella notes: They can be useful in creating an immunomodulatory response, which can help to promote healing, but that still differs from the living stem cell procedures that can be done by either isolating cells from your fat or bone marrow. As a general rule, you do not achieve the clinical benefits when using an amniotic product, primarily because they do not contain living stem cells.

I want to contrast that to what are called embryonic stem cells, Dr. Comella adds. The products obtained from cord blood, from women who are having babies, are not embryonic stem cells. Embryonic stem cells are when you are first bringing the egg and sperm together. Three days after that, you can isolate what is called an inner cell mass. This inner cell mass can be used to then grow cells in culture, or that inner cell mass could eventually lead to the formation of a baby.

Those are embryonic stem cells, and those are pluripotential, meaning that they have the ability to form an entire being, versus adult stem cells or stem cells that are present in amniotic tissue, [which] are multipotential, which only have the ability to form subsets of tissue.

When youre dealing with different diseases or damaged tissue or inflammation, mostly you want to repair tissue. If somebody has damage in their knee, they dont necessarily need embryonic cells because they dont need a baby in their knee. They need new cartilage in their knee.

A common question is whether stem cells can cause overgrowth, leading to cancer or tumor formation.

As noted by Dr. Comella, this is a problem associated with embryonic stem cells, which tend to grow very rapidly and can form a teratoma because of the rapid cell growth. Adult stem cells, the cells obtained from ones own body, have growth inhibitions and will not form teratomas.

The theoretical concern that has been addressed in animal models or in petri dishes is that if you take cancer cells that are growing in a dish and apply stem cells, it may make those cancer cells grow more rapidly. But this does not translate in-vivo to humans.

If there was truly an issue with applying stem cells to a patient who has cancer, we would know about it by now, because weve been dosing cancer patients with stem cells since the 1930s. The safety profile is strong and there are tens of thousands of patients documented with these treatments, Dr. Comella says.

Another useful therapy is platelet-rich plasma (PRP).

Our peripheral blood contains platelets, which act as 1st responders when theres an injury. They come in and start the clotting mechanism, thereby preventing one from bleeding to death. They also give marching orders to other cells.

For example: platelets can command stem cells to multiply and grow, or to differentiate and form new tissue.

These platelets also have many different growth factors associated with them, which can help to promote healing and stop inflammation. PRP involves taking a blood sample and then spinning the blood in a centrifuge to isolate the platelets. The platelet-rich plasma is then injected back into the area that is inflamed.

One of the most common uses of platelet-rich plasma or PRP is in a joint. Now, platelets are going to be most successful in something that is rich in stem cells [such as] an acute or a very recent injury.

If you just hurt your knee, the first thing you should do is get PRP, because its going to help promote healing, and those platelets will attach to the surface receptors of the stem cells that are already going to the area to promote healing. It would be like putting fertilizer on your seed, which are the stem cells.

If you have something more chronic, this tends to be a stem cell-poor environment. In other words, you have osteoarthritis or youve got knee pain thats 5 years old and its been there for a long time; just putting PRP in it would be like putting fertilizer on dirt without planting a seed first.

The beauty of stem cell therapy is that it mimics a process that is ongoing in the human body all the time. Our stem cells are continuously promoting healing, and they do not have to be manipulated in any way. The stem cells naturally know how to home in on areas of inflammation and how to repair damaged tissue.

All were doing is harnessing the cells from one location where theyre sitting dormant and relocating them to exactly where we want them and we need them to work, Dr. Comella says. Basically, anything inside your body that is inflamed, that is damaged in some way, that is lacking blood supply, the [stem] cells can successfully treat.

That means orthopedics, knee injections, shoulder injections, osteoarthritis, acute injuries, anterior cruciate ligament tears in the back, back pain associated with degenerative disc disease or damaged tendons or ligaments, herniated and bulging discs. You can also use it in systemic issues, everything from diabetes, to cardiac, to lungs, any tissue organ inside your body that has been damaged.

Autoimmune diseases can also be treated. The stem cells are naturally immunosuppressant, meaning they can help quiet down an over reactive immune system and help the immune system function in a more normal way. Neurological diseases, traumatic brain injury, amyotrophic lateral sclerosis, Parkinsons. All of these have to do with tissue thats not functioning properly. The cells can be used to address that.

It is very impressive, the list of different diseases that could benefit from this intervention.

Again, it is not magic, but one can dramatically improve the benefits of this intervention by combining it with other healthy lifestyle factors that optimize mitochondrial function, such as eating a healthy Real food diet, exercising, sleeping well, avoiding toxins and detoxifying from toxic influences.

Stem Cells for Anti-Aging: Stem cells can also be used as part of an anti-aging program.

Dr. Comella has used stem cells on herself for several years, and report feeling better now than she did 10 year ago.

She writes,The ability to reduce inflammation inside your body is basically making yourself live longer. Inflammation is what kills us all. Its what makes our telomeres shrink. Its what causes us pain and discomfort. Its what makes the tissues start to die. The ability to dose yourself with stem cells and bring down your inflammation, which is most likely caused by any sort of toxin that youve been exposed to, breathing air is exposure to toxins, this is going to lengthen your lifespan.

I typically will do a dose every six to 12 months, regardless of whats going on. If I have anything that is bothering me, if I tweak my knee at the gym, then I absolutely will come in and do an injection in my knee. I want to keep my tissue healthy for as long as possible.

I want to stay strong. I dont want to wait until something is wrong with me. I think that this is the future of medicine. This is what were going to start to see. People will begin to get their regular doses of [their own] stem cells and itll just be common practice.

Keep in mind theres a gradual and progressive decline in the quality and the number of stem cells as we age, so if considering this approach, it would be to your advantage to extract and bank your stem cells as early on as possible. US Stem Cell provides a stem cell bank service, so one can store them until a later date when you might need them.

Your stem cells are never as young as they are right now. Every minute that you live, your telomeres are shrinking. The ability to lock in the youth of your cells today can be very beneficial for you going forward, and for your health going forward. God forbid something happens. What if you have a heart attack? Youre not going to get clearance to get a mini-lipo aspirate procedure.

If you have your cells waiting in the bank, ready for you, it becomes very easy to pull a dose and do an IV delivery of cells. Its almost criminal that were not doing this for every single one of our cardiac patients. This should be standard practice. We should be having every single patient bank their stem cells at a young age and have them waiting, ready and available. The technology is there. We have it. Im not sure why this technology is not being made available to everyone, she says.

I think stem cell therapy is very different than traditional medicine. Stem cell therapy may actually make it so that you dont have to be dependent on pharmaceutical medications. You can actually repair the tissue and thats it. This is a very different way of viewing medicine.

For a Physician in your area providing the service, you can go there. US Stem Cell can help you locate a qualified doctor.

Eat healthy, Be healthy, Live lively

blood, bodies, body, cell, cells, damage, grow, help, knee, patients, regenerate, repair, stem, tissue, USRM

Paul A. Ebeling, polymath, excels in diverse fields of knowledge. Pattern Recognition Analyst in Equities, Commodities and Foreign Exchange and author of The Red Roadmasters Technical Report on the US Major Market Indices, a highly regarded, weekly financial market letter, he is also a philosopher, issuing insights on a wide range of subjects to a following of over 250,000 cohorts. An international audience of opinion makers, business leaders, and global organizations recognizes Ebeling as an expert.

See the original post:
Stem Cell Therapy: Repair and Regenerate Our Bodies - Live ... - Live Trading News

Stem cell treatment for lethal STAT1 gene mutation produces mixed … – Medical Xpress

June 8, 2017 One example of STAT1 GOF Mutation phenotype. Credit: Hiroshima University

Researchers report the first-ever study assessing how patients with "gain of function" mutation of the STAT1 gene respond to stem cell transplantation. It involved 15 young patients from nine different countries, each suffering a range of complications caused by the gene's mutation.

Of these, only six survived a regime of stem cell transplantationwith five completely cured and disease free by the study's conclusion.

The study was carried out by Dr. Satoshi Okada (Hiroshima University), Professor Jennifer Leiding (University of Florida), Professor Tomohiro Morio (Tokyo Medical and Dental University), and Professor Troy Torgerson (University of Washington).

Dr. Okada, who first discovered the STAT1 gain of function mutation in 2011, says, "Overall, this result is disappointing but the fact that five patients were cured proves that treatment with stem cells can work, and we now need to learn from these 15 individual cases."

The STAT1 gene plays a vital role in the body's immune system. Rare mutations can lead to STAT1's over-activation (GOF) and autoimmunity.

While the majority of patients afflicted typically show mild to moderate symptoms involving fungal (mostly Candida), bacterial, and viral infectionsabout 10 percent of cases are severe and life threatening.

Until now, developing suitable treatments has been challenging; e.g. anti-fungal drugs temporarily treat the symptoms but not the source mutation, and immunosuppressive therapies often do more harm than good by knocking out already overburdened immune systems.

With only one confirmed case prior to this study of a sufferer being successfully cured using stem cell transplantation, researchers are keen to build an understanding of best practices in order to offer real hope for the typically young sufferers of this condition.

The 15 selected patients were sourced via an international appeal to transplant centers and consortiums. Their ages ranged from 13 months to 33 years at the time of treatment. Screening by HU researchers confirmed that each had the STAT1-GOF mutation, and that the mutation was the source of their ailments.

Treatment was carried out independently by centers around the world. It used chemotherapy to eradicate the host's bone marrowthe source of the damaging STAT1 mutation in these patients. Healthy stem cell cultures sourced from donors were then transplanted into the subjects with the aim of reconstituting their bone marrow to a mutation-free, disease-fighting state.

The researchers suspect three reasons for the low 40 percent success rate:

In response, the researchers have made several proposals for improving this treatment. Due to most of the patients having mild to moderate ailments, only those suffering from severe symptoms should undergo this treatment. In addition, the chemotherapy dosage should be reduced. Those who received low-dose chemotherapy reacted better.

However, a balance must be struck. Low-dose chemotherapy may not eradicate host bone marrow to the extent required for its reconditioning the chance of transplant rejection is thus increased. With this in mind, support treatment may be required to neutralize host antibodies and prevent attacks of introduced stem cells.

Finally, due to the relative success seen in younger patients, stem cell transplantation should occur at as early an age as possible. Due to recent advancements in STAT1-GOF diagnosis, early detection is now a very real possibility hopefully leading to greater success rates, and less suffering for those carrying this potentially devastating mutation.

Explore further: 'Smart' genetic library makes disease diagnosis easier

More information: Jennifer W. Leiding et al. Hematopoietic stem cell transplantation in patients with Gain of Function STAT1 Mutation, Journal of Allergy and Clinical Immunology (2017). DOI: 10.1016/j.jaci.2017.03.049

Researchers at Hiroshima University have developed a smart genetic reference library for locating and weeding out disease-causing mutations in populations.

A single blood test and basic information about a patient's medical status can indicate which patients with myelodysplastic syndrome (MDS) are likely to benefit from a stem cell transplant, and the intensity of pre-transplant ...

UCLA researchers have developed a stem cell gene therapy cure for babies born with adenosine deaminase-deficient severe combined immunodeficiency, a rare and life-threatening condition that can be fatal within the first year ...

Physicians at the University of Illinois Hospital & Health Sciences System have cured 12 adult patients of sickle cell disease using a unique procedure for stem cell transplantation from healthy, tissue-matched siblings.

Using a technique that avoids the use of high-dose chemotherapy and radiation in preparation for a stem cell transplant, physicians at the University of Illinois Hospital & Health Sciences System have documented the first ...

A large, nationwide study published in the journal JAMA Oncology found that people who received transplants of cells collected from a donor's bone marrow the original source for blood stem cell transplants, developed decades ...

Researchers at UC Berkeley have found unexpected effects of viral infections, a discovery that may explain why viruses can make people feel so lousy.

In news that may bring hope to asthma sufferers, scientists discover a mechanism that provides a possible new target for allergy treatments.

(HealthDay)Administration of allergen immunotherapy (AIT) in patients with allergic asthma leads to lower short-term symptom and medication scores, according to a review published online May 19 in Allergy.

A single treatment giving life-long protection from severe allergies such as asthma could be made possible by immunology research at The University of Queensland.

Malaria caused by Plasmodium parasites is a life-threatening infectious disease that kills at least half a million people annually while causing over 200 million new infections. In some cases, complications can quickly develop ...

Virtually the entire population of sub-Saharan Africa, and some 70% of African Americans, carry a gene variant (allele) which results in a trait referred to as Duffy-negative. It has long been known that carriers of this ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

See more here:
Stem cell treatment for lethal STAT1 gene mutation produces mixed ... - Medical Xpress

Texas is leading the charge on stem cell therapy ThinkProgress – ThinkProgress

In the last weeks of the legislative session, Texas lawmakers passed a historic bill that legalizes investigative stem cell treatments for chronically ill patients. Despite the prevalence of unregulated stem cell clinics in the United States, this could be the first time a state has authorized the treatment for chronic illnesses, if the states governor approves the legislation.

Youre watching an episode of In Session, a weekly series exploring interesting policy changes on the state level.

PHOEBE GAVIN, ThinkProgress: Youll never guess which state is on track to become the first to recognize stem cell therapy as a treatment for chronic illnesses. Ill give you a hint: its former governor and our former president once banned federal funding for research on embryonic stem cells

You guessed it: Its The Lone Star State!

In the last week of its legislative session, Texas lawmakers approved a bill that legalizes Investigational Stem Cell Treatment, which basically means treatments that have been evaluated by an institutional review board but have not yet been approved by the FDA.

Keep in mind, though: this isnt about embryonic stem cells. The cells will come from banked umbilical cords and the patients themselves, who will be allowed to pursue the treatment as a last resort. So people who suffer from debilitating chronic illnesses like Parkinsons, ALS, and multiple sclerosis could see relief.

For TX Rep. Springer, this is personal.

REP. DREW SPRINGER (R-TX68): I pray to God every time I go to mass, every time I close my eyes, that one day my wifeand not for my sake, but for her sakewould have the chance to have that opportunity again to be able to walk.

GAVIN: The bill almost missed the deadline until he came to the podium. After his plea, it unanimously passed the House and sailed through the Senate. It now awaits Gov. Greg Abbotts signature, and hes already tweeted his support for it.

But not everyone is on board. Two different stem-cell research organizations have vocalized their opposition, arguing that the lack of quote rigorous evidence of safety and efficacy would put vulnerable patients at risk.

But the reality is, patients have already been taking this risk without the states explicit authorization. There are hundreds of clinics across the country that have been operating under regulatory loopholesat least 71 in TX alone. Without regulation, these clinics are completely unchecked. And patients who seek help there have felt the consequences: theyve been blinded, developed tumors and even died after seeking unregulated stem cell treatment. But with this new bill, if something goes wrong, patients have the right to sue.

So there you goTexas, creating accountability for stem cell clinics for the first time in the US. An unprecedented act from a unpredictable state.

Read the original post:
Texas is leading the charge on stem cell therapy ThinkProgress - ThinkProgress

Bioquark Hopes to Bring Dead Back to Life Using Stem Cell Therapy – India West

A Philadelphia-based company along with an Indian orthopedic surgeon has said it will start a new type of stem cell therapy that claims it can bring people back from the dead.

Bioquark, led by chief executive Ira Pastor, said it will begin conducting trials of the therapy later in the year in an undisclosed country in Latin America, according to a New York Post report.

Pastor and Indian orthopedic surgeon Himanshu Bansal had initially hoped to run tests in India in 2016 but the Indian Council of Medical Research pulled the plug on their plans and asked them to take the trials elsewhere, the Post reported.

Most countries officially declare someone dead when there is irreversible loss of brain function. The Bioquark therapy boasts it can reboot the brain.

The company said it will begin testing on humans, with no plans to experiment on animals.

Scientists plan to examine individuals aged between 15 and 65 who have been declared brain dead from a traumatic brain injury, the report noted, citing a published study.

The three-stage process starts with harvesting stem cells from the patients own blood before injecting them back into their body. Next, the patient is given a dose of peptides injected into their spinal cord. The final step is a 15-day course of laser and median nerve stimulation while monitoring the patient with MRI scans.

Bansal practices in New Delhi.

Link:
Bioquark Hopes to Bring Dead Back to Life Using Stem Cell Therapy - India West

Doctors Targets Stem Cell Therapy Launch – Bahamas Tribune

ByNEIL HARTNELL

Tribune Business Editor

nhartnell@tribunemedia.net

DOCTORS Hospital plans to launch stem cell therapy and enter the primary healthcare market during its current financial year, after profits for the year to end-January 2017 increased five-fold.

The BISX-listed healthcare provider said it planned to launch both initiatives at its Bahamas Medical Centre facility on Blake Road, having received the necessary approvals for one stem cell programme and another in its final stages.

Doctors Hospitals 2017 annual report did not identify the types of stem cell treatment involved, but said: It is envisioned that stem cell therapy will occur at the facility [Bahamas Medical Centre] in fiscal 2018, with one programme already receiving the necessary approvals and the second programme in its final stages of assessment and approval......

We anticipate that in fiscal 2018 we will launch one of our primary care centres at this location, supported by increased specialist services to best serve the neighbouring communities.

Joe Krukowski, Doctors Hospitals chairman, told shareholders via the annual report that the launch of primary care services will be a vital component in the continuum of care we provide.

We will seek to provide our customers with multiple entry points for this level of care, he added.

Doctors Hospitals stem cell initiatives, in particular, represent a potential boost to the Bahamas national effort to make greater inroads into the medical tourism market while also exploiting legislation passed by the former Christie administration.

The healthcare providers move into primary care will effectively create a fully-integrated model, combining with its core business in secondary and tertiary care provision to potentially make Doctors Hospital almost a one-stop shop for all medical needs.

The expansion comes after Doctors Hospital saw total comprehensive income for the year to end-January 2017 grow by 409 per cent or more than five-fold, from $702,790 to $3.578 million year-over-year.

The growth was driven entirely by the companys main Collins Avenue facility, where profits more than doubled, increasing by 157.4 per cent to $4.778 million compared to $1.856 million the year before. The Bahamas Medical Centres net loss increased slightly compared to the prior year, rising from $1.153 million to $1.2 million.

An improved top-line drove Doctors Hospitals improved profitability, with patient services revenue up $3.65 million or 7.4 per cent at $52.713 million.

Patient days increased by 6 per cent from the previous year, the annual report said of the main Collins Avenue hospital. Increases in the Intensive and Intermediary Care Units accounted for 37per centof the change, and the balance in medical surgical and maternity.

Total admissions to the facility were 4,114 in fiscal 2017 compared to 4,063 in fiscal 2016. The continued flat admission numbers and increased patient days are indicative of the trend toward a rising severity of illness. The average daily census increased to 33 patients per day from 31.2 in the previous year.

Doctors Hospitals total expenses grew by $818,452 or 1.7 per cent year-over-year, with salaries and benefits rising by $1.176 million or 5.6 per cent to $23.209 million. Due to the top-line growth, these fell as a percentage of patient net revenue from 44.3 per cent to 43.5 per cent.

At Bahamas Medical Centre, revenues rose by $28,015 or 1.9 per cent to $1.462 million. This slightly outpaced the increase in expenses, which jumped by 1.5 per cent or $43,479 to $2.819 million as a result of rising medical supplies costs.

Doctors Hospital is budgeting $7 million for capital spending projects in its financial year to end-January 2018, a sum more than double the prior years $3.1 million, as it bids to upgrade facilities and replace equipment.

Bad debt expense, as a percentage of patient service revenues, decreased to 2.6per centfor the year ended January 31, 2017, compared to 3.4per centthe previous year, Doctors Hospital said.This represented a decrease of $316,808, or 18.8per cent. This decrease is a result of a write-off of third-party receivables.

The number of days revenue in accounts receivable at year-end (AR Days) for fiscal 2017 stand at 51 compared with fiscal 2016 at 43 days, and net receivables as a percentage of net patient revenue increased to 14.1per centfrom 11.8per cent. These increases area result of high activity in the months of December and January, and payments not received until after year-end.

View post:
Doctors Targets Stem Cell Therapy Launch - Bahamas Tribune

Column: Stem Cell Therapy A medical revolution – Current in Carmel

Commentary by Dmitry M. Arbuck, MD, President and Medical Director, Indiana Polyclinic

We are at a truly revolutionary time in health and medicine. The introduction of stem cell technology represents innovation on the same level as the development of antibiotics or the invention of modern imaging (MRIs, etc.). Stem cells are already changing the way medicine is delivered, increasing lifespans and saving countless lives.

Arbuck

Scientists and researchers have been studying the benefits of stem cells for more than 30 years. They have found that these special cells provide great benefits all over the body, from muscles and joints to chronic diseases, to growing new teeth. You may have read about athletes treated with stem cells to speed healing after an injury or about burn victims who use stem cell therapy to minimize scarring.

Stem cells used to be associated with embryos, but this is no longer the case. Today, live cells for treatment are either adult stem cells or umbilical cord blood stem cells. Adult stem cells are most likely extracted from tissue, like bone marrow or fat, which can be a painful and invasive process. Additionally, as we age, so do our stem cells, which become less potent and productive over time. Like every other tissue in our bodies, they are exposed to the toxins, radiation and other pollutants in the environment. Umbilical cord blood stem cells are collected from the donated cord blood and placenta of healthy newborns. The cells are then screened for disease and genetic problems. These umbilical stem cells are vibrant, vital and healthy.

When umbilical cord stem cells are infused, they carry a whole host of immune stabilizing factors throughout the body and work to repair the immune system. This is likely why stem cells are so helpful in the treatment of autoimmune diseases such as rheumatoid arthritis, Crohns disease, dermatitis and myasthenia gravis. Other things that may be successfully treated with this therapy include MS, lupus, graft vs. host disease and other immune conditions.

The future is today. For more, visit StemCellsIndy.com.

Read the original post:
Column: Stem Cell Therapy A medical revolution - Current in Carmel

Column: Stem Cell Therapy A medical revolution – Current in Westfield

Commentary by Dmitry M. Arbuck, MD, President and Medical Director, Indiana Polyclinic

We are at a truly revolutionary time in health and medicine. The introduction of stem cell technology represents innovation on the same level as the development of antibiotics or the invention of modern imaging (MRIs, etc.). Stem cells are already changing the way medicine is delivered, increasing lifespans and saving countless lives.

Arbuck

Scientists and researchers have been studying the benefits of stem cells for more than 30 years. They have found that these special cells provide great benefits all over the body, from muscles and joints to chronic diseases, to growing new teeth. You may have read about athletes treated with stem cells to speed healing after an injury or about burn victims who use stem cell therapy to minimize scarring.

Stem cells used to be associated with embryos, but this is no longer the case. Today, live cells for treatment are either adult stem cells or umbilical cord blood stem cells. Adult stem cells are most likely extracted from tissue, like bone marrow or fat, which can be a painful and invasive process. Additionally, as we age, so do our stem cells, which become less potent and productive over time. Like every other tissue in our bodies, they are exposed to the toxins, radiation and other pollutants in the environment. Umbilical cord blood stem cells are collected from the donated cord blood and placenta of healthy newborns. The cells are then screened for disease and genetic problems. These umbilical stem cells are vibrant, vital and healthy.

When umbilical cord stem cells are infused, they carry a whole host of immune stabilizing factors throughout the body and work to repair the immune system. This is likely why stem cells are so helpful in the treatment of autoimmune diseases such as rheumatoid arthritis, Crohns disease, dermatitis and myasthenia gravis. Other things that may be successfully treated with this therapy include MS, lupus, graft vs. host disease and other immune conditions.

The future is today. For more, visit StemCellsIndy.com.

See the rest here:
Column: Stem Cell Therapy A medical revolution - Current in Westfield

Stem cell-based spinal cord therapy expanded to more patients – The San Diego Union-Tribune

An experimental therapy to repair spinal cord injury with stem cell-derived tissue is progressing smoothly, according to a leader of that trial who spoke at a conference on stem cell therapy.

The Phase 1 safety trial is proceeding with no complications, said Dr. Joseph Ciacci, a University of California San Diego neurosurgeon. The conference was held last week at the Sanford Consortium for Regenerative Medicine in La Jolla.

With safety looking good, the green light has been given to treat more patients, Ciacci said. However, to produce effectiveness, more cells will need to be transplanted.

Four patients have been treated with neural stem cells, injected into the spinal cord. They had experienced complete loss of motor and sensor function below the injury. They had been injured between 1 and 2 years previously.

Moreover, the cells show signs of integrating with the surrounding tissue in animal studies, Ciacci said. If the preliminary evidence holds up, Ciacci and colleagues plan to submit a paper detailing the results.

Curing paralysis from spinal cord injury was a big selling point for those who successfully advocated Proposition 71, which authorized selling $6 billion in state bonds to establish and fund the California Institute for Regenerative Medicine, or CIRM. The institute got $3 billion, the remaining half is going for interest over the life of the bonds.

While CIRM has been under pressure to show results, doctors are taking great care to establish safety first in the spinal cord treatment, because of potential risks in the procedure.

We are now enrolling and recruiting for the second cohort, which is for chronic cervical spinal cord injuries, Ciacci said. They are medically classified as C5-C7 ASIA A Complete.

Chronic injuries need to have taken place more than 1 year before treatment. For this study, the injury must also be under two years old. The trial is being conducted at UCSD with Ciacci serving as the principal investigator.

For more information on the Phase I Chronic SCI study, contact Ciaccis research group at (619) 471-3698, nksidhu@ucsd.edu.

In addition, the researchers have been approved to start another spinal cord injury trial with a different set of cells. These oligodendrocyte progenitor cells, derived from embryonic stem cells, can turn into several different types of neural cells.

The trial, sponsored by Asterias, treats newly injured patients, between 14 and 30 days after injury.

For more information on the Asterias trial, contact the UCSD Alpha Stem Cell Clinic at 858-534-5932 alphastemcellclinic@ucsd.edu or visit http://www.scistar-study.com and j.mp/ucsdast.

Asterias acquired the technology from Geron, which had undertaken the work with a CIRM grant. Geron later canceled the work and refunded the money to CIRM. Asterias got funding from CIRM to continue the work.

The Asterias trial will use the same technique as used with the Chronic SCI trial, a technique which can improve safety, Ciacci said. The cells will be injected in a series of progressively larger amounts that may give evidence of the dose relates to effectiveness, although safety remains the main concern.

This cell line is cryopreserved, its sent to us as a single dose the day of surgery, Ciacci said. Were going to study different doses 2 million, 10 million, 20 million cells per injection. Its going to be a direct injection, just like what weve done before.

As in previous treatments, patients will also receive immune suppression to prevent rejection of the cells. Likewise, they will be monitored for many years after treatment.

Another trial coming to UCSD will test for efficacy in ALS, Ciacci said.

Ciacci said hes looking for qualified patients for these trials, and urged those in the audience to help find them.

Related stories

Stem cell treatments reaching patients

Loving football but knowing risks, doctor wonders if son should play

bradley.fikes@sduniontribune.com

(619) 293-1020

Original post:
Stem cell-based spinal cord therapy expanded to more patients - The San Diego Union-Tribune

Stark County teen’s stem cell treatment ‘going in the right direction’ – Peoria Journal Star

Gary L. Smith of the Journal Star

TOULON A large benefit auction and dinner Friday evening will raise funds to help cover medical expenses for a Stark County teenager who is undergoing experimental stem cell treatment for a debilitating autoimmune disorder.

Proceeds of the event to be held 5 8:30 p.m. at the Orwig Auction and Event Center at the east edge of Toulon will benefit BrookeLynn Montgomery, 15, of rural Toulon, a Wethersfield High School student who was diagnosed last year with Postural Orthostatic Tachycardia Syndrome.

POTS symptoms, which arise from a malfunction of the autonomic nervous system, can include low blood volume, fiber neuropathy, dizziness, exercise intolerance, nausea, diminished concentration, fainting, and shortness of breath. They often are similar to those experienced in congestive heart failure and chronic obstructive pulmonary disease.

The teen received a two-stage stem cell treatment at a suburban Chicago clinic in April, and improvements seen since then indicate that things are going in the right direction, said her mother, Shelly Montgomery.

But the surgeon treating her believes that at least one more treatment probably will be necessary, though details of that will be determined at a follow-up appointment with Dr. Mark J. Holterman in Peoria next week, she added.

Weve had a little bit of improvement, Montgomery said. Shes not 100 percent yet, but she has more energy. She still has some symptoms, but they are getting better.

The out-patient treatments took place at the Mariam Clinic in Oakbrook Terrace, which specializes in regenerative medicine. It was co-founded by Holterman, according to its website.

Holterman diagnosed Brooke last year at Childrens Hospital of Illinois at OSF Saint Francis Medical Center of Peoria, where he also practices. He also is a professor of surgery and pediatrics at the University of Illinois College Of Medicine at Peoria.

He was really happy with the way the procedures went, said Montgomery. She did really well.

Fridays benefit has been organized by extended family members to help with the cost of the stem cell procedures, which are not covered by insurance, as well as accumulated costs of past medical care that was not covered or had extensive co-pays, Montgomery said.

At this point, we still have bills coming in from her being in the hospital last summer, she noted.

The items that have been donated for the auction range from Cubs and Cardinals tickets to Maui Jim sunglasses to a wide assortment of furniture to a whole hog and processing, ready to be picked up at a meat locker.

Its been overwhelming, Montgomery said. Theres been so many people who want to help people who dont even know Brooke.

Brooke is expected to be at the auction. Friends have been keeping in close touch with her, and she was even able to have a short visit to Matthiesen State Park recently, her mother said.

But she missed much of the school year and is still trying to finish her freshman year with visits from a tutor, Montgomery said. A key goal is for her to be able to return to school for her sophomore year.

Its going the right direction, she said. Thats all we can hope for at this point.

More information on the benefit is available at the Facebook page for the Brooke Montgomery Benefit, or by calling Ed Smith (her grandfather) at 883-8435. Donations can also be made to the Brooke Montgomery Medical Expenses account at State Bank of Toulon, 102 W. Main St., Toulon IL 61483.

Gary L. Smith can be reached at (800) 516-0389 or glsmith@mtco.com. Follow him on Twitter @Glsmithx.

See the article here:
Stark County teen's stem cell treatment 'going in the right direction' - Peoria Journal Star

New Single Injection Stem Cell Treatment May be a "Cure" for Asthma and Allergies to Bees, Peanuts, Seafood – eMaxHealth

A mothers worse nightmare is hearing her child gasping for breath. Imagine a single injection treatment that could completely cure asthma and eliminate allergic responses for a lifetime by changing the gene within T cells which react to proteins in peanuts, seafood, and in bee venom.

In people who have allergies or asthma, the T cells have developed a kind of immune memory and have become resistant to treatment. Patients with asthma and allergies usually experience chronic respiratory problems and the potential of death due to anaphylaxis is very real. Allergic asthma affects approximately 235 million people worldwide.

Scientists working in gene therapy have taken blood stem cells and altered or wiped clean the memory within the T cell so they no longer respond to an allergen. As these new cells reproduce their cellular offspring are also free of the allergic memory response meaning the new healthy cells only produce healthy cells that are non-reactive.

When you are exposed to an allergy early in life you tend to be more likely to have an allergic response, says Associate Professor Ray Steptoe, Diamantina Institute, University of Queensland, and with each subsequent exposure the response gets bigger and bigger. What weve done is to interrupt that process and by altering the gene we can turn off that response. What that means is the disease is stopped in its tracks.

Associate Professor Ray Steptoe from The University of Queensland on Vimeo.

Current approaches to this disease really use drugs that limit side effects, limit acute symptoms, says Steptoe, but what we do is stop the underlying disease.

Steptoe believes the technology will revolutionize the treatment of severe allergies and prevent life-threatening allergic episodes by just getting one single shot of the altered blood stem cells. While this treatment has worked in mice it is not yet ready for use in humans and may take as long as 5 or 6 years before clinical trials in humans could begin and another 5 years of human trials.

One of the things that would really accelerate this research, adds Steptoe, would be to obtain additional research funding.

The study was published in JCI Institute June, 2, 2017.

Visit link:
New Single Injection Stem Cell Treatment May be a "Cure" for Asthma and Allergies to Bees, Peanuts, Seafood - eMaxHealth