Category Archives: Stem Cell Treatment


Stem cell therapy relying on patient’s own unhealthy heart may be dangerous – Genetic Literacy Project

A new study at Tel Aviv University shows that stem cell therapy, one of the few treatments available to patients with severe and end-stage heart failure, can actually harm them unless it is done differently.

We concluded that stem cells used in cardiac therapy should be drawn from healthy donors or be better genetically engineered for the patient, said lead researcher Jonathan Leor of the universitys Sackler Faculty of Medicine and Sheba Medical Center.

Doctors use tissue or adult stem cells to replace damaged tissue, which encourages regeneration of blood vessel cells and new heart muscle tissue. But cardiac stem cells from a diseased heart can lead to a toxic interaction via a molecular pathway between the heart and the immune system, the study found.

We found that, contrary to popular belief, tissue stem cells derived from sick hearts do not contribute to heart healing after injury, Leor said. Furthermore, we found that these cells are affected by the inflammatory environment and develop inflammatory properties. The affected stem cells may even exacerbate damage to the already diseased heart muscle.

[Read the fully study here (behind paywall)]

The GLP aggregated and excerpted this blog/article to reflect the diversity of news, opinion, and analysis. Read full, original post:Study says some stem cells dangerous for heart patients

The rest is here:
Stem cell therapy relying on patient's own unhealthy heart may be dangerous - Genetic Literacy Project

Could you benefit from stem cell treatments? – Good4Utah

Do you have aching knees or shoulders? How about pain in your neck or back?

There are many causes of these kinds of pains: arthritis, degenerative joint or disk disease, tendonitis, sciatica, sprains and many more.

Dr. William Cimikoski, Medical Director of Utah Stem Cells Joint Treatment and Wellness Center, joined Midday to talk about Stem Cell Regeneration.

Dr. Cimikoski says nearly anyone suffering from acute or chronic pain can benefit from this treatment.

Stem Cell Joint Regeneration works by injecting stem cells and platelet rich plasma (PRP) in and around the joint to help your body repair itself. The procedure lasts about 45 minutes and there is essentially no down time.

Utah Stem Cells Joint Treatment and Wellness Center is offering a special promotion for viewers: a free consultation and a $300 gift certificate for yourself, as well as another one for a friend or a family member.

Call the office in Salt Lake City near the Sandy border at: 8010-999-4860 or visit: UtahStemCells.com.

This segment contains sponsored content.

Go here to read the rest:
Could you benefit from stem cell treatments? - Good4Utah

Governor Signs Law to Allow Chronic, Terminally Ill in Texas to Get Stem Cell Treatments – Spectrum News

AUSTIN, Texas -- Gov. Greg Abbott has signed a new law that allows terminally ill or those which chronic diseases receive stem cell treatments in Texas.

Stem cell therapy is the use of stem cells to treat or prevent a disease or condition, and is often patient's last hope for improvement.

Bone marrow transplant is the most widely used stem-cell therapy, and can often help those with multiple sclerosis and other diseases.

MORE |New Law Opens Door for Stem Cell Therapy in Texas

House Bill 810, which was introduced by Rep. Tan Parker, R-Flower Mound, passed in both the Texas House and Senate.

"It is easy to fall into the trap of viewing legislation as just words on a piece of paper," said Sen. Paul Bettencourt, R-Houston, the bill's sponsor in the Senate. "But for the many people who are ill with multiple sclerosis and other diseases that stem cell therapy has the hope of solving in our lifetime, I look at this bill, I look at the possibility of what can happen in the 21st Century, with Texas taking the lead on adult stem cell treatments and this bill has the potential to extend lives and make a difference for these patients."

The Texas Medical Board will be responsible for writing the rules for the treatment.

"Everyone has a zest for life. This adult stem cell treatment possibility gets government out of the way to let these new therapies flourish and give these patients hope for a future good quality of life," Bettencourt added.

The legislation takes effect Sept. 1.

-- Value of Stem Cell Therapy --

According to the National Institues of Health, stem cellshave the remarkable potential to develop into many different cell types in the body during early life and growth.

In addition, in many tissues they serve as a sort of internal repair system, dividing essentially without limit to replenish other cells as long as the person or animal is still alive.

When a stem cell divides, each new cell has the potential either to remain a stem cell or become another type of cell with a more specialized function, such as a muscle cell, a red blood cell, or a brain cell.

Doctors say stem cells are important for living organisms for many reasons.

In the 3- to 5-day-old embryo, called ablastocyst, the inner cells give rise to the entire body of the organism, including all of the many specialized cell types and organs such as the heart, lungs, skin, sperm, eggs and other tissues.

In some adult tissues, such as bone marrow, muscle, and brain, discrete populations of adult stem cells generate replacements for cells that are lost through normal wear and tear, injury, or disease.

---

Join the Discussion:

Follow Spectrum News Austin on Facebook | Twitter | Instagram

Read the original:
Governor Signs Law to Allow Chronic, Terminally Ill in Texas to Get Stem Cell Treatments - Spectrum News

‘Advances made in stem cell therapy in Asia far more than those made in US’ – The Hindu

'Advances made in stem cell therapy in Asia far more than those made in US'
The Hindu
Indigenously developed therapeutic modules for neuro development disorders like autism have demonstrated a higher rate of recovery and improvement among sufferers, Nandini Gokulchandran, a Mumbai-based researcher in the field of stem cell therapy ...

Read the original:
'Advances made in stem cell therapy in Asia far more than those made in US' - The Hindu

Lab-created antibody could hold the secret to making stem cell therapy safer – Phys.Org

June 15, 2017 Researchers from the A*STAR Bioprocessing Technology Institute involved in the study. Credit: A*STAR Bioprocessing Technology Institute

Stem cells have paved the way for a new era in regenerative medicine, but their use is fraught with risk. Now, A*STAR scientists have developed an antibody that could make stem cell therapy safer.

Human pluripotent stem cells that can differentiate in a petri dish to become any cell needed to repair tissues and organs, hold great promise. Since the first human embryonic stem cells were isolated in 1998, scientists have edged closer to developing 'cell therapy' for humans. In early 2017, a Japanese man became the first patient to receive a retina transplant made of reprogrammed pluripotent stem cells to treat macular degeneration.

These potential rewards come with great risk. Differentiating stem cells into other cell types is an imperfect process, and any stem cells that remain in a culture of transplanted cells can form dangerous by-products, including tumors, such as teratomas.

"If stem cells become a cell therapy product there will be the question of safety," Andre Choo, from the A*STAR Bioprocessing Technology Institute, explains.

Choo and his team are working to make stem cell treatments safer by creating antibodies that 'clean up' the pluripotent stem cells which fail to differentiate.

In 2016, the researchers used a whole-cell immunization strategy to generate different antibodies by injecting mice with viable embryonic stem cells. They then isolated the antibodies and tested their ability to search and destroy pluripotent stem cells in a culture dish.

One antibody, tagged 'A1', was discovered which destroyed pluripotent stem cells in minutes but left other cells unharmed.

Choo's team then focused on how the antibody destroyed its target. The scientists discovered that A1 docks to sugar molecules that are only present on the surface of embryonic stem cells, setting off a signaling cascade that ruptures the stem cell.

"That was quite exciting because it now gives us a view of the mechanism that is responsible for the cell-killing effect," says Choo.

Understanding this mechanism could allow Choo's team to combine the A1 antibody with other treatments to clean stem cells from a mixture of differentiated cells even more effectively.

The finding could also pinpoint how best to target antibodies against sugar molecules on other unwanted cells, including cancer cells.

"We hope that in the near future regenerative medicine will have a place in the clinic," says Choo, who wants this antibody to be part of that process.

The A*STAR-affiliated researchers contributing to this research are from the Bioprocessing Technology Institute. For more information about the team's research, please visit the Stem Cell 1 group webpage.

Explore further: New tools to study the origin of embryonic stem cells

More information: Ji Yun Zheng et al. Excess reactive oxygen species production mediates monoclonal antibody-induced human embryonic stem cell death via oncosis, Cell Death and Differentiation (2017). DOI: 10.1038/cdd.2016.164

Researchers at Karolinska Institutet have identified cell surface markers specific for the very earliest stem cells in the human embryo. These cells are thought to possess great potential for replacing damaged tissue but ...

An International Reserach Team coordinated by Igb-Cnr has discovered a key role of vitamins and amino acids in pluripotent stem cells. The research is published in Stem Cell Reports, and may provide new insights in cancer ...

A*STAR researchers and colleagues have developed a method to isolate and expand human heart stem cells, also known as cardiac progenitor cells, which could have great potential for repairing injured heart tissue.

Adding just the right mixture of signaling moleculesproteins involved in developmentto human stem cells can coax them to resemble somites, which are groups of cells that give rise to skeletal muscles, bones, and cartilage ...

Scientists have discovered the gene essential for chemically reprogramming human amniotic stem cells into a more versatile state similar to embryonic stem cells, in research led by UCL and Heinrich Heine University.

Oxygen in the air is well known to cause damaging rust on cars through a process known as oxidation. Similarly, a research group at Lund University in Sweden, has now identified that certain cells during embryonic development ...

Researchers have identified properties in DNA's protective structure that could transform the way scientists think about the human genome.

Almost all life on Earth is based on DNA being copied, or replicated. Now for the first time scientists have been able to watch the replication of a single DNA molecule, with some surprising findings. For one thing, there's ...

Scientists from Rutgers University-New Brunswick, the biotechnology company NAICONS Srl., and elsewhere have discovered a new antibiotic effective against drug-resistant bacteria: pseudouridimycin. The new antibiotic is produced ...

Until now, the fauna of the Himalayas was considered to be an "immigration fauna", with species that have immigrated primarily from neighbouring regions to the west and east since the geological formation of this mountain ...

James Cook University scientists have found evidence that even distantly related Australian fish species have evolved to look and act like each other, which confirms a central tenet of evolutionary theory.

Stem cells have paved the way for a new era in regenerative medicine, but their use is fraught with risk. Now, A*STAR scientists have developed an antibody that could make stem cell therapy safer.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Follow this link:
Lab-created antibody could hold the secret to making stem cell therapy safer - Phys.Org

Kilkenny legend Richie Power: ‘Stem-cell treatment is my last hurrah … – Independent.ie

Following extensive research the eight-time All-Ireland winner has opted to take a leaf out of the book of many American Football players and hopes such therapy can help prolong an inevitable knee replacement.

To keep hurling with Carrickshock would be a bonus but doing the simple things in life without pain is what really attracted him to Zagreb clinic (which costs "under 1,000") in what he admits is "a last hurrah" after six operations.

"It's regenerating the cartilage in the left knee. They take some good cartilage from the right knee, bring it into the lab and more or less clone it.

"Then they inject it back into your left knee and you are hoping that the blood will run to it and regenerate there," the 31-year-old former Kilkenny star said.

"It's not to get back playing. It's just to get a quality of life with my own knee. Some days I'd find it hard to go and puck around with Rory (his son) like.

"That makes it very hard. It's for things like that as the years go on. I'm probably looking at a knee replacement by the time I'm 40.

"It is just to try and give me an extra 15-20 years with my own knee and if they can do that then great, it will be well worth it. If not I need to make a decision and maybe end up hanging up the boots altogether. Look, if it has to be done it has to be done.

"I'd like to be in a position where I am completely pain-free. I'd like to maybe run around and not worry about the leg going under me. I went to see everyone. I sat down with the Aussie Rules doctors and teams when they were here and absolutely everyone and anyone that I could. This is the last hurrah. If it doesn't work, it doesn't work."

Subscribe to The Throw-In, Independent.ie's weekly Championship podcast, for the best in GAA discussion and analysis every Monday, with some of the biggest names in football and hurling from Joe Brolly, Toms 'S, Brendan Cummins and John Mullane.

See more here:
Kilkenny legend Richie Power: 'Stem-cell treatment is my last hurrah ... - Independent.ie

Hong Kong biotech start-up claims world first in stem cell treatment of Alzheimer’s and Parkinson’s diseases – South China Morning Post

Oper Technology, a Hong Kong biotechnology start-up, has pioneered what it claims is a world first in stem cell treatment that it says could potentially help millions of patients suffering from Alzheimers and Parkinsons diseases.

The business was co-founded by Hong Kong Baptist Universitys Professor Ken Yung, who specialises in neurobiology and neurological diseases in the universitys biology department.

He and his team has now developed a method of harvesting neural stem cells from the brains of live subjects using specially developed nanoparticles.

The exploration of using stem cells to repair damaged neural cells is not a new concept. Scientists in the US and elsewhere have experimented using stem cells from fat and skin, developing them into neural cells.

But Yung claims his team is the first to successfully harvest stem cells directly from the brain and re-inject the developed neural cells back into a live subject, thereby artificially regenerating any cells which have died off, due to neurological diseases from neural stem cells themselves.

Stem cells have the potential to develop into different types of cells with specialised functions.

The nanoparticles which are made of a type of iron oxide work like magnets to attract the stem cells within the brain.

Yung said these can then be developed into more specific neural cells and re-injected into the brain to replace damaged cells caused by diseases such as Alzheimers and Parkinsons, where neurons in the patients brains progressively die off with time.

He suggests the treatment could benefit almost 100 million patients around the world, who suffer from neurodegenerative diseases, including strokes.

China alone has the largest population of people with dementia, with an estimated 23.3 million now projected to suffer from the condition by 2030, according to the World Health Organisation.

Yung co-founded Oper Technology and serves as its chairman.

The company is being developed under Hong Kong Science and Technology Parks Incu-Bio programme, which provides select biotechnology start-ups with laboratory and support services, and ultimately it aims to commercialise its medical technology.

If you put the [developed] cells in a different environment from where the [stem cells are harvested], there might be [misdirected] growth in an uncontrolled environment, said Yung.

We want to use neural cells to repair neural cells, and since the stem cells and re-injected neural cells are from the same micro-environment, there will not be uncontrollable growth.

The method has proven to be very successful when tested on rats, especially in cases of Parkinsons, according to Yung, who suggested the method could eventually become an ultimate treatment for the disease.

Furthermore, the risks of this treatment are similar to what is currently on the market today, he added.

The treatment could also help to treat early-stage Alzheimers patients, slowing down or even halting the degeneration process, although Yung acknowledged that its effectiveness in treating terminal stage patients may be limited since it would be difficult to regenerate enough neural cells when patients brains have shrunk due to the condition.

While animals subjected to the treatment displayed an improvement in neural function following the re-injection, the team has yet to start on clinical trials as such cell therapy is still nascent and largely unregulated in Hong Kong.

Oper Technology is currently seeking investment and often sets up booths at conferences such as last weeks EmTech Hong Kong conference, which focuses on innovation and emerging technologies.

Yung hopes to raise enough funds to begin clinical trials in Australia in the near future, where autologous cell therapies are legal and thus provides an ideal environment for clinical trials.

Read the original here:
Hong Kong biotech start-up claims world first in stem cell treatment of Alzheimer's and Parkinson's diseases - South China Morning Post

Stem Cell Therapy Becomes Law in Texas – PR Newswire (press release)

"At StemGenex, we are committed to helping people achieve optimum health and better quality of life through the healing benefits of their own stem cells," said Alexander. "Specifically, we use adipose-derived adult stem cell therapy for patients battling conditions such as Multiple Sclerosis, Parkinson's disease, COPD, Rheumatoid Arthritis and Osteoarthritis. We are also committed to the science of stem cell therapy and sponsor five clinical outcome studiesregistered with theNational Institute of Health (NIH) for these diseases."

"What I personally witnessed before the start of StemGenex were patients who had exhausted conventional medical treatments but wanted to try alternative therapies. I was one of them, suffering from severe Rheumatoid Arthritis. Ihad only three options; I could seek a clinical trial, travel to outside of the U.S. to try alternative therapies such as stem cell treatment or petition the FDA for access to drugs under the agency's "expanded access," or "compassionate use" program. Now, new state laws like the one just passed in Texas, built on model legislation from the Goldwater Institute in Arizona, will allow doctors and patients to make their own informed decisions on treatments that have cleared the safety phase of FDA testing."

Last year, in a move that was seen by some as a response to "Right to Try" laws, the 21st Century Cures Act, a landmark piece of legislation focused on medical innovation and medical research, was signed into law by President Obama. This Act provides the FDA with the flexibility to accelerate how it evaluates regenerative medicine treatments, such as stem cell therapies, while maintaining its high standards of safety and efficacy.

"We're on the cusp of a major change on how patients can access stem cell therapy," saidAlexander. "Today, new treatments and advances in research are giving new hope to people affected by a wide range of autoimmune and degenerative illnesses," said Alexander. "StemGenex Medical Group is proud to offer the highest quality of care and to potentially help those with unmet clinical needs improve their quality of life."

ABOUT StemGenex Medical Group

StemGenex Medical Group is committed to helping people achieve optimum health and better quality of life through the healing benefits of their own stem cells. StemGenex provides stem cell therapy options for individuals suffering with inflammatory and degenerative illnesses. Committed to the science and innovation of stem cell treatment,StemGenex sponsors five clinical outcome studiesregistered with theNational Institutes of Health (NIH) for Multiple Sclerosis, Parkinson's Disease, Rheumatoid Arthritis, Chronic Obstructive Pulmonary Disease (COPD) and Osteoarthritis. These have been established to formally document and evaluate the quality of life changes in individuals following adipose-derived stem cell treatment.

Contact: Jamie Schubert, Director of Media & Community Relations jschubert@StemGenex.com, (858) 242-4243

To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/stem-cell-therapy-becomes-law-in-texas-300472809.html

SOURCE StemGenex Medical Group

http://www.stemgenex.com

Read more here:
Stem Cell Therapy Becomes Law in Texas - PR Newswire (press release)

Bank on stem cells, gift a life – Calcutta Telegraph

Panchwati Tower on Harmu Road in Ranchi where the stem cell bank is expected to come up. (Hardeep Singh)

In what may be a game-changer for healthcare in Jharkhand, a group of doctors from Ranchi have teamed up with a Mumbai-based pioneering research firm to plan the first stem cell bank of eastern India in the state capital.

Stem cells are undifferentiated biological cells that can differentiate into specialised cells and divide to produce more stem cells. They can be transplanted routinely to treat a variety of blood and bone marrow diseases, including cancer and immune disorders, while extensive research is underway on their potential to cure neurological and muscular problems.

In short, a stem cell bank in Ranchi will allow residents to store their embryonic or adult stem cells, which can be accessed anytime to treat ailing blood relatives.

Dr Deepak Verma, a senior orthopaedic consultant in the city specialising in difficult trauma surgery, said if everything went according to plan, the stem cell bank was expected to debut at Panchwati Tower on Harmu Road in another three to six months.

Dr Verma, along with pathologist Dr Sangita Agrawal and orthopaedic surgeon Dr S.N. Yadav, will form the core team of the Rs 6.5-crore facility, which will be set up in association with stem cell banking company ReeLabs, Mumbai.

"Ranchi will boast the fifth stem cell bank in India after Mumbai, Delhi, Chennai and Ahmedabad. It will be first such facility in eastern India. We plan to establish a stem cell treatment centre and a cancer immunotherapy centre to turn Ranchi into a healthcare destination," Dr Verma told this newspaper on Sunday.

While the bank will sprawl over an area of 5,000sqft, another 6,000sqft will be reserved for the therapy centres.

Elaborating on the banking system, the doctor said stem cells would be stored in cryogenic vials at minus 176 degrees and liquid nitrogen would be used to acquire the very low temperatures.

"People wishing to use the stem bank service will have to open an account. The bank will then collect stem cells from different sources such as placenta, amniotic sac, amniotic fluid, umbilical cord blood and cord tissue, menstrual blood, dental pulp, bone marrow and peripheral blood," Dr Verma said.

To deposit the stem cells, one may have to pay Rs 45,000 to Rs 2 lakh, depending on the package chosen.

"Those who will deposit stem cells can access the same for blood relatives suffering from 110 listed diseases that cannot be treated using conservative medicines," the doctor said, adding that stem cell therapy could help in cases of leukemia, thalassemia, Alzheimer's disease, cardiovascular diseases, stroke, diabetes and cirrhosis of liver, among others.

Do you think people in the state are aware of stem cell therapy?

Tell [emailprotected]

Read the original post:
Bank on stem cells, gift a life - Calcutta Telegraph

Stem Cell Therapy: Repair and Regenerate Our Bodies – Live … – Live Trading News

Stem Cell Therapy: Repair and Regenerate Our Bodies

$USRM

Stem Cells 101: The primary purpose of stem cells is to maintain, heal and regenerate tissues wherever they reside in the body. This is a continuous process that occurs inside the body throughout life. If we did not have stem cells, our lifespan would be about 1 hour, because there would be nothing to replace exhausted cells or damaged tissue.

Notably: any time the body is exposed to any sort of toxin, the inflammatory process causes stem cells to swarm the area to repair the damage.

While it is easy to think of stem cell therapy as some sort of magic, it is wise to implement strategies that nourish and optimize the stem cells we already have in your body.

Dr. Kristin Comella, a notable Stem Cell innovator, writes: You have to create an appropriate environment for these cells to function in. If you are putting garbage into your body and youre constantly burdening your body with toxins, your stem cells are getting too distracted trying to fight off those toxins. By creating an appropriate environment, optimizing your diet and reducing exposure to toxins, that will allow the stem cells that were putting in to really home in and focus on the true issue that were trying to treat.

The other thing weve discovered over the years is that [stem cell therapy] is not the type of thing where you take one dose and youre cured forever. Your tissues are constantly getting damaged Youre going to have to repeat-dose and use those stem cells to your advantage.

When you think about a lizard that loses its tail, it takes two years to grow back the tail. Why would we put unrealistic expectations on the stem cells that were trying to apply to repair or replace damaged tissue? This is a very slow process. This is something that will occur over months and may require repeat dosing.

Stem cells historically were isolated from bone marrow, and have been used for bone marrow transplants for cancer patients since the 1930s. However, we can get stem cells from just about any tissue in the body, every tissue contains stem cells.

Actually our marrow has very low amounts of mesenchymal stem cells, which are now believed to be the most important, from a therapeutic perspective.

Mesenchymal stem cells help trigger an immunomodulatory response or a paracrine effect, which means they send signals out to the rest of the body, calling cells to the area to help promote healing.

What weve discovered in more recent years is that a more plentiful source of stem cells is actually your fat tissue. [Body] fat can contain up to 500 times more cells than your bone marrow, as far as these mesenchymal type stem cells go.

One thing thats also critically important when youre talking about isolating the cells is the number of other cells that are going to be part of that population. When youre isolating a bone marrow sample, this actually is very high in white blood cells, which are pro-inflammatory, Ms. Comella writes.

White blood cells are part of the human immune response.

When an injury occurs, or a foreign body enters our system, white blood cells will attack. Unfortunately, white blood cells do not discriminate, and can create quite a bit of damage as they clean the area out.

Stem cells, in particular the mesenchymal cells, quiet down the white blood cells and then start the regeneration phase, which leads to new tissue. Bone marrow tends to be very high in white blood cells and low in the mesenchymal cells.

So, isolating stem cells from fat tissue is preferred not only because its easier on the patient, but fat also contains a higher population of mesenchymal cells and fewer white blood cells.

The benefit also of isolating [stem cells from] fat is that its a relatively simple procedure. Theres typically no shortage of fat tissue, especially in Americans, Dr.. Comella says. Also, as you age, your bone marrow declines with regards to the number of cells in it, whereas the fat tissue maintains a pretty high number of stem cells, even in older individuals.

Fat can be successfully harvested from just about anyone, regardless of their age or how thin they are. The procedure is done under local anesthesia, meaning that the patient stays awake. We can harvest as few as 15 cubic centimeters of fat, which is a very small amount of fat, and still get a very high number of stem cells.

A stem cell procedure can cost anywhere from $5,000 15,000, depending on what one is having done, and rarely if ever will insurance cover it.

Still, when compared it to the cost of long-term medications or the out-of-pocket cost of getting a knee replacement, stem cell therapy may still be a less expensive alternative.

Also, a single extraction will typically yield enough stem cells for 20 to 25 future treatments, should one decide to store his/her stem cells for future needs.

I think its accessible for patients, Dr.. Comella says. Its an out-patient procedure. You plan to be in clinic for about two hours; no real limitations afterwards, just no submerging in water, no alcohol, no smoking for a week. But other than that, patients can resume their normal activities and go about their regular daily lives.

She notes that patients who eat a very healthy diet, focusing on Organic and grass fed foods, have body fat that is very hearty and almost sticky, yielding high amounts of very healthy stem cells.

We can grow much better and faster stem cells from that fat than [the fat from] somebody who eats a grain-based diet or is exposed to a lot of toxins in their diet, she says. Their fat tends to be very fluffy, buttery yellow. The cells that come out of that are not necessarily as good a quality. Its just been very interesting. And of note, patients that are cigarette smokers, their fat is actually gray-tinged in color. The stem cells do not grow well at all.

What has been described above is whats called an autologous donation, meaning a person is getting the stem cells from oneself. A number of companies provide non-autologous donations using cells harvested from other people, typically women, like amniotic or embryonic mesenchymal cells.

This is an important distinction.

There are now just a couple of studies that have been published comparing an autologous source, meaning cells from you own body, to an allogeneic source, meaning cells from someone else.

So far, what has been discovered is that the autologous cells will outperform somebody elses cells inside ones body. This is not fully understood yet. It may be that the environment that ones own cells function in, and that they used to that environment. They recognize it. It is the same DNA and they can function well there.

But, once the culture is expanded and a pure population of these mesenchymal cells, not necessarily the sample thats coming right off of the liposuction, but a sample that has been taken to the lab and grown, those cells will not elicit an immune response if you use them in someone else. You could scientifically and medically use those in an unmatched person. However, there are some regulatory aspects of that with regards to the FDA.

In the US, there are a variety of new stem cell products available, referred to as amniotic, cord blood products or placenta products, which are prepared at a tissue bank. Such facilities must be registered with the FDA, and the products must undergo additional processing.

For example, they must be morselized, or snap frozen or blended in some way. Such processing typically breaks the membrane, releasing growth factors, and the resulting products are called acellular, meaning there are no living cells remaining in the sample.

The amniotic products available in the US are not so much stem cell products as they are growth factor products.

Dr. Comella notes: They can be useful in creating an immunomodulatory response, which can help to promote healing, but that still differs from the living stem cell procedures that can be done by either isolating cells from your fat or bone marrow. As a general rule, you do not achieve the clinical benefits when using an amniotic product, primarily because they do not contain living stem cells.

I want to contrast that to what are called embryonic stem cells, Dr. Comella adds. The products obtained from cord blood, from women who are having babies, are not embryonic stem cells. Embryonic stem cells are when you are first bringing the egg and sperm together. Three days after that, you can isolate what is called an inner cell mass. This inner cell mass can be used to then grow cells in culture, or that inner cell mass could eventually lead to the formation of a baby.

Those are embryonic stem cells, and those are pluripotential, meaning that they have the ability to form an entire being, versus adult stem cells or stem cells that are present in amniotic tissue, [which] are multipotential, which only have the ability to form subsets of tissue.

When youre dealing with different diseases or damaged tissue or inflammation, mostly you want to repair tissue. If somebody has damage in their knee, they dont necessarily need embryonic cells because they dont need a baby in their knee. They need new cartilage in their knee.

A common question is whether stem cells can cause overgrowth, leading to cancer or tumor formation.

As noted by Dr. Comella, this is a problem associated with embryonic stem cells, which tend to grow very rapidly and can form a teratoma because of the rapid cell growth. Adult stem cells, the cells obtained from ones own body, have growth inhibitions and will not form teratomas.

The theoretical concern that has been addressed in animal models or in petri dishes is that if you take cancer cells that are growing in a dish and apply stem cells, it may make those cancer cells grow more rapidly. But this does not translate in-vivo to humans.

If there was truly an issue with applying stem cells to a patient who has cancer, we would know about it by now, because weve been dosing cancer patients with stem cells since the 1930s. The safety profile is strong and there are tens of thousands of patients documented with these treatments, Dr. Comella says.

Another useful therapy is platelet-rich plasma (PRP).

Our peripheral blood contains platelets, which act as 1st responders when theres an injury. They come in and start the clotting mechanism, thereby preventing one from bleeding to death. They also give marching orders to other cells.

For example: platelets can command stem cells to multiply and grow, or to differentiate and form new tissue.

These platelets also have many different growth factors associated with them, which can help to promote healing and stop inflammation. PRP involves taking a blood sample and then spinning the blood in a centrifuge to isolate the platelets. The platelet-rich plasma is then injected back into the area that is inflamed.

One of the most common uses of platelet-rich plasma or PRP is in a joint. Now, platelets are going to be most successful in something that is rich in stem cells [such as] an acute or a very recent injury.

If you just hurt your knee, the first thing you should do is get PRP, because its going to help promote healing, and those platelets will attach to the surface receptors of the stem cells that are already going to the area to promote healing. It would be like putting fertilizer on your seed, which are the stem cells.

If you have something more chronic, this tends to be a stem cell-poor environment. In other words, you have osteoarthritis or youve got knee pain thats 5 years old and its been there for a long time; just putting PRP in it would be like putting fertilizer on dirt without planting a seed first.

The beauty of stem cell therapy is that it mimics a process that is ongoing in the human body all the time. Our stem cells are continuously promoting healing, and they do not have to be manipulated in any way. The stem cells naturally know how to home in on areas of inflammation and how to repair damaged tissue.

All were doing is harnessing the cells from one location where theyre sitting dormant and relocating them to exactly where we want them and we need them to work, Dr. Comella says. Basically, anything inside your body that is inflamed, that is damaged in some way, that is lacking blood supply, the [stem] cells can successfully treat.

That means orthopedics, knee injections, shoulder injections, osteoarthritis, acute injuries, anterior cruciate ligament tears in the back, back pain associated with degenerative disc disease or damaged tendons or ligaments, herniated and bulging discs. You can also use it in systemic issues, everything from diabetes, to cardiac, to lungs, any tissue organ inside your body that has been damaged.

Autoimmune diseases can also be treated. The stem cells are naturally immunosuppressant, meaning they can help quiet down an over reactive immune system and help the immune system function in a more normal way. Neurological diseases, traumatic brain injury, amyotrophic lateral sclerosis, Parkinsons. All of these have to do with tissue thats not functioning properly. The cells can be used to address that.

It is very impressive, the list of different diseases that could benefit from this intervention.

Again, it is not magic, but one can dramatically improve the benefits of this intervention by combining it with other healthy lifestyle factors that optimize mitochondrial function, such as eating a healthy Real food diet, exercising, sleeping well, avoiding toxins and detoxifying from toxic influences.

Stem Cells for Anti-Aging: Stem cells can also be used as part of an anti-aging program.

Dr. Comella has used stem cells on herself for several years, and report feeling better now than she did 10 year ago.

She writes,The ability to reduce inflammation inside your body is basically making yourself live longer. Inflammation is what kills us all. Its what makes our telomeres shrink. Its what causes us pain and discomfort. Its what makes the tissues start to die. The ability to dose yourself with stem cells and bring down your inflammation, which is most likely caused by any sort of toxin that youve been exposed to, breathing air is exposure to toxins, this is going to lengthen your lifespan.

I typically will do a dose every six to 12 months, regardless of whats going on. If I have anything that is bothering me, if I tweak my knee at the gym, then I absolutely will come in and do an injection in my knee. I want to keep my tissue healthy for as long as possible.

I want to stay strong. I dont want to wait until something is wrong with me. I think that this is the future of medicine. This is what were going to start to see. People will begin to get their regular doses of [their own] stem cells and itll just be common practice.

Keep in mind theres a gradual and progressive decline in the quality and the number of stem cells as we age, so if considering this approach, it would be to your advantage to extract and bank your stem cells as early on as possible. US Stem Cell provides a stem cell bank service, so one can store them until a later date when you might need them.

Your stem cells are never as young as they are right now. Every minute that you live, your telomeres are shrinking. The ability to lock in the youth of your cells today can be very beneficial for you going forward, and for your health going forward. God forbid something happens. What if you have a heart attack? Youre not going to get clearance to get a mini-lipo aspirate procedure.

If you have your cells waiting in the bank, ready for you, it becomes very easy to pull a dose and do an IV delivery of cells. Its almost criminal that were not doing this for every single one of our cardiac patients. This should be standard practice. We should be having every single patient bank their stem cells at a young age and have them waiting, ready and available. The technology is there. We have it. Im not sure why this technology is not being made available to everyone, she says.

I think stem cell therapy is very different than traditional medicine. Stem cell therapy may actually make it so that you dont have to be dependent on pharmaceutical medications. You can actually repair the tissue and thats it. This is a very different way of viewing medicine.

For a Physician in your area providing the service, you can go there. US Stem Cell can help you locate a qualified doctor.

Eat healthy, Be healthy, Live lively

blood, bodies, body, cell, cells, damage, grow, help, knee, patients, regenerate, repair, stem, tissue, USRM

Paul A. Ebeling, polymath, excels in diverse fields of knowledge. Pattern Recognition Analyst in Equities, Commodities and Foreign Exchange and author of The Red Roadmasters Technical Report on the US Major Market Indices, a highly regarded, weekly financial market letter, he is also a philosopher, issuing insights on a wide range of subjects to a following of over 250,000 cohorts. An international audience of opinion makers, business leaders, and global organizations recognizes Ebeling as an expert.

See the original post:
Stem Cell Therapy: Repair and Regenerate Our Bodies - Live ... - Live Trading News