Category Archives: Stem Cell Treatment


RenovaCare: Stem Cell Treatment Heals Burns In Weeks Not Months – Seeking Alpha

RenovaCare Inc. (OTCQB:RCAR) is a New York City-based biotechnology company developing its patented CellMist and SkinGun stem cell technologies for treating burns in weeks or less as well as treating chronic and acute wounds, acne scarring, and skin defects and diseases. In December, it received a U.S. patent for its SkinGun device.

Before joining RenovaCare, CEO Thomas Bold was CEO of StemCell Systems. He has more than 15 years of experience in medical biotechnology device manufacturing and stem cell platform development.

Harlan Levy: How does your CellMist technology specifically work?

Thomas Bold: Doctors isolate a high concentration of the most desirable stem cell population from a very small donor sample of the patient's own skin and suspended in the liquid CellMist Solution. It's then gently sprayed onto wound sites using our SkinGun, which looks like Captain Kirk's particle-beam gun, the "Phaser" in the Star Trek TV series.

The isolated cells include cells that proliferate rapidly in order to achieve quick re-epithelialization. This is the stage at which a burn is technically considered "healed" and patients are often discharged. The average person would recognize this healing phase as the point at which the wound develops a thin, shiny, pink-colored protective layer.

H.L.: What are existing burn treatments, and how do they compare with the SkinGun treatment?

T.B.: Traditional skin grafting has been the treatment for burns and wounds for centuries. More recently, mesh grafting has become the latest standard of care. This process surgically removes large sheets of healthy skin from the patient. Following this painful donor procedure, the sheet is punctured in a grid-like pattern to form an expandable mesh. Surgeons pull this mesh as wide as feasible and surgically stitch this skin to the patient's wound. The procedure is extremely painful, creates an additional wound at each donor site and results in poor cosmetic outcomes, often with scarred and deformed skin.

This transplanted skin can result in restricted joint movement and is unable to grow with the patient. Consequently, mesh graft patients require months and sometimes up to a year of physical therapy and can face psychological problems from the permanent disfigurement of scarring. In addition, long-term pain management with painkillers is very often necessary.

With the RenovaCare treatment technology, by spraying the patient's stem cells, the SkinGun overcomes the need for removing large sheets of donor skin, and the resultant healing does not require prolonged physical therapy. The spray procedure is gentle, and the skin that regrows looks, feels, and functions as the original skin that it replaces. Most often the healing process takes only a week.

It's very important to note here that a sheet of meshed skin covers only up to six times its original donor area. The RenovaCare system covers up to 100 times its donor skin sample. This is why the donor skin sample can be so small compared to the injured treatment area.

H.L.: What about scars and infection potential compared with conventional treatments?

T.B.: A wound heals from the edges towards the middle. The bigger the wound, the longer this process takes. And the longer this process takes, the higher the risk of infection and scarring.

Imagine a large burn of 20, 30, 40 percent of your total body surface. With our CellMist System, the doctor sprays the patient's own stem cells with a highly regenerative capacity onto the wound and, by doing so, creates tens of thousands of little regenerative islands across the wound. These islands grow outwards, ultimately connecting to each other to create a protective epithelial skin layer that covers the wound.

Experts believe the formation of this pink-colored layer marks the moment of re-epithelization where the risk of infection is reduced and the patient's wound is effectively healed. Beyond this stage, the cosmetic healing process also happens entirely natural to produce a scar-free result where, finally, skin color, tone and pigmentation are restored.

Since the RenovaCare spray procedure uses the patient's own stem cells, there isn't the risk of tissue rejection, infection, or ongoing immuno suppression therapy.

H.L.: What results have you found for patients using the SkinGun?

T.B.: We have many examples of patients recovering from severe burns within a week or two, scar-free, and walking away with unlimited joint restrictions.

In the case of one patient with severe electrical burns to over a third of his body, we were able to spray his wounds with 23 million stem cells isolated from a tiny two-inch-by two-inch sample of his own skin. Within five days of treatment, his chest and arms were already healed. Four days later, the patient was discharged from the hospital.

It's also important to note that reconstructive surgery for burn patients is especially challenging when tackling joints in the body. To this end, the authors of a case study in the reputable journal "Burns," said, "Cell-spray grafting is also especially suitable for hands and joint areas, where prolonged times to re-epithelization may significantly impact functionality and esthetic outcome."

H.L.: What different uses does the SkinGun have beside burns?

T.B.: Currently, we are focusing on severe second-degree burns, but we see the RenovaCare technology also applicable for other indications such as cosmetic procedures targeting skin pigmentation disorders, scar treatment, and other related conditions.

Our goal is to bring to market the world's most advanced technology for skin repair using a patient's own stem cells.

H.L.: Is there a record of the SkinGun use in the States and abroad?

T.B.: Having treated 72 burn patients to date, the company's early clinical target is burns with follow-on indications, including chronic wounds and cosmetic procedures.

H.L.: How much research went into creating the SkinGun and over what time period?

T.B.: The birth of RenovaCare technology goes back to the early 2000s in Berlin, Germany. Researchers, at that time, were trying to "grow" skin by seeding stem cells inside multi-dimensional bioreactors. They soon discovered that these artificial chambers were no match for the growth of the same cells when transplanted inside a human body; thus, the birth of a concept to use a patient's own wound as a natural bioreactor.

A study published in "Advances in Plastic Surgery" highlights 19 early patients with deep dermal wound burns to the face and neck, complex three-dimensional surfaces. Researchers achieved such outstanding results using our cell spray that they refused to perform further skin grafting. Instead, surgeons adopted our founding technology as their standard of care.

Let me quote from the surgeons' study, which states

"We refuse to perform a prospective randomized study with groups in which traditional skin grafting and/or wound healing are still applied for the therapy for deep dermal burns due to the excellent results in our study. The method of CEA spray application has become our standard of care for these indications. The faster wound closure, the promotion of spontaneous wound healing by keratinocyte application, as well as the preservation of donor sites are further advantages of the method."

The same paper concluded that "using a spray technique results in excellent cosmetic outcomes compared with any other method."

H.L.: How has the technology changed since then?

T.B.: Since the time of this early approach, our technology has evolved and matured significantly. Our cell isolation no longer requires complex procedures, culturing, expansion, and processing time, and our stem cell spray device no longer requires multiple hand-assembled parts. Its independent power and flow-control unit has been condensed in size from a 2-foot cube down to a 9-volt battery placed inside the handle of a single handheld spray gun.

H.L.: What is the potential market for the technology in dollars and number of patients?

T.B.: Conservatively speaking, the market for our technology exceeds $50 billion. There are nearly a million people who suffer from burns each year in the U.S. alone. According to the American Burn Association, burn injuries continue to be one of the leading causes of accidental death and injury in the U.S, and one civilian fire death occurs every two hours and forty minutes.

H.L.: How much would you estimate the treatment cost may be for each different use?

T.B.: The SkinGun technology is currently under development and not approved for clinical use in the U.S., so it's too early to talk about what the treatment will cost. We have always been mindful of reimbursement, and nearly two years ago, we commissioned an investigation into the reimbursement pathway for our CellMist System. We know that reimbursement opportunities are available by way of current coding and practices.

We have further investigated and evaluated the "bundling" approach currently advocated for by insurers and are confident that that our technology is well placed to take advantages of any shift towards such a model.

H.L: What is the schedule to get Federal Drug Administration clearance?

T.B.: In order to achieve FDA clearance for the CellMist System and the SkinGun, we will be working to show our technology is safe and prove its efficacy within applicable clinical trial formats and according to the relevant regulatory requirements. I can't speculate as to how long the FDA clearance process will take, and, therefore, it's hard to speculate when our product will be commercialized.

H.L.: What other products are you investigating and how may they work?

T.B.: We are focusing on bringing the SkinGun and our stem cell spray technology to market at this time.

H.L.: What is your background, including age, education, prior employment?

T.B.: Before joining RenovaCare I worked as the CEO of StemCell Systems GmbH, a Berlin-based biomedical company engaged in the development and commercialization of advanced cell culture bioreactors. I have more than 15 years of professional business experience in the field of medical biotechnology device manufacturing, stem cell culture technology platform development and regenerative medicine research project management and product development. I also co-founded several start-up companies in Germany.

Disclosure: I/we have no positions in any stocks mentioned, and no plans to initiate any positions within the next 72 hours.

I wrote this article myself, and it expresses my own opinions. I am not receiving compensation for it (other than from Seeking Alpha). I have no business relationship with any company whose stock is mentioned in this article.

Editor's Note: This article discusses one or more securities that do not trade on a major U.S. exchange. Please be aware of the risks associated with these stocks.

Read more:
RenovaCare: Stem Cell Treatment Heals Burns In Weeks Not Months - Seeking Alpha

3 Women Blinded By Unproven Stem Cell Treatments – NPR

Scientists have long hoped that stem cells might have the power to treat diseases. But it's always been clear that they could be dangerous too, especially if they're not used carefully.

Now a pair of papers published Wednesday in the New England Journal of Medicine is underscoring both the promise and the peril of using stem cells for therapy.

In one report, researchers document the cases of three elderly women who were blinded after getting stem cells derived from fat tissue at a for-profit clinic in Florida. The treatment was marketed as a treatment for macular degeneration, the most common cause of blindness among the elderly. Each woman got cells injected into both eyes.

In a second report, a patient suffering from the same condition had a halt in the inexorable loss of vision patients usually experience, which may or may not have been related to the treatment. That patient got a different kind of stem cell derived from skin cells as part of a carefully designed Japanese study.

The Japanese case marks the first time anyone has given induced pluripotent stem (iPS) cells to a patient to treat any condition.

"These two reports are about as stark a contrast as it gets," says George Q. Daley, Harvard Medical School's dean and a leading stem cell researcher. He wrote an editorial accompanying the two papers. "It's really striking."

The report about the three women in their 70s and 80s who were blinded in Florida is renewing calls for the Food and Drug Administration to crack down on the hundreds of clinics that are selling unproven stem cell treatments for a wide variety of medical conditions, including arthritis, autism and stroke.

"One of the big mysteries about this particular case and the mushrooming stem cell clinic industry more generally is why the FDA has chosen to effectively sit itself out on the sidelines even as this situation overall grows increasingly risky to patients," says Paul Knoepfler, a University of California, Davis, stem cell researcher who has studied the proliferation of stem cell clinics.

"The inaction by the FDA not only puts many patients at serious risk from unproven stem cell offerings, but also it undermines the agency's credibility," Knoepfler wrote in an email.

In response to a query from Shots, an FDA spokeswoman wrote in an email that the agency is in the process of finalizing four new guidelines aimed at clarifying how clinics could use stem cells as treatments. The agency also noted that it had previously issued a warning to patients.

In the meantime, "consumers are encouraged to contact FDA and the appropriate state authorities in their jurisdictions to report any potentially illegal or harmful activity related to stem cell based products," the FDA email says.

Other researchers say the cases should stand as a warning to patients considering unproved stem cell treatments, especially those tried outside carefully designed research studies.

"Patients have to be wary and tell the difference between the snake oil salesmen who are going to exploit them and the kind of slow, painstaking legitimate clinical trials that are also going on," Daley says.

The New England Journal of Medicine report did not name the Florida clinic, but noted that the treatment was listed on a government website that serves as a clearinghouse for research studies. The sponsor is listed as Bioheart, Inc., which is part of U.S. Stem Cell Inc. in Sunrise, Fla.

Kristen Comella, the scientific director of U.S. Stem Cell, would not discuss the cases. "There were legal cases associated with eye patients that were settled under confidentiality, so I am not permitted to speak on any details of those cases due to the confidentiality clause," Comella said by phone.

She acknowledged, however, that the clinic had been performing the stem cell procedures. They were discontinued after at least two patients suffered detached retinas, she says.

But Comella defended the use of stem cells from fat tissue to treat a wide variety of other health problems.

"We have treated more than 7,000 patients and we've have had very few adverse events reported. So the safety track record is very strong," Comella says. "We feel very confident about the procedures that we do, and we've had great success in many different indications."

According to the New England Journal of Medicine report, The Florida clinic was using adult stem cells, which circulate in various parts of the body, including in fat tissue. While those cells may someday be turn out to be useful for treating disease, none have been proven to work.

The body produces a variety of stem cells. The kind that have generated the most excitement and controversy are human embryonic stem cells, which are derived from early human embryos and can be coaxed to become any kind of cell in the body.

Scientists are also excited about iPS cells, which can be made in the laboratory by turning any cell in the body, such as skin cells, into cells that resemble embryonic stem cells.

Those are the cells that were tested by the Japanese scientists. The stem cells were converted into retinal pigment epithelium (RPE) cells, which are the cells that are destroyed by macular degeneration.

"This represents a landmark," says Daley. "It's the first time any patient has been treated with cellular derivatives of iPS cells. So it's definitely a world first."

Daley noted that the scientists only treated one of the patient's eyes in case something went wrong, to ensure remaining vision would not be threatened in the other eye.

After at least a year, no complications had occurred and the patient had not experienced any further deterioration of vision in the treated eye. While that is promising, more patients would have to be treated and followed for much longer to know whether that approach is successful, Daley says.

"Given that macular degeneration is the most frequent cause of vision loss and blindness in the elderly and our population is aging, the prevalence of macular degeneration is going up dramatically," Daley says. "So to be able to preserve or even restore sight would be a really remarkable medical advance."

Despite the potentially encouraging results with the first patient, Daley noted that the Japanese scientists decided not to treat a second patient and suspended the study. That's because they discovered worrisome genetic variations in the RPE cells they had produced for the second patient.

"They weren't certain these would cause problems for the patient, but they were restrained enough and cautious enough that they decided not to go forward," Daley says. "That's what contrasts so markedly with the approach of the second group, who treated the three patients with an unproven stem cell therapy that ended up have devastating effects on their vision."

In this case, the New England Journal of Medicine report says, patients paid $5,000 each to receive injections of solutions that supposedly contained stem cells that were obtained from fat removed from their abdomens through liposuction.

Even though the safety and effectiveness of this procedure is unknown, all three patients received injections in both eyes.

"That's what led to these horrible results," says Thomas Albini, a retina specialist at the University of Florida's Bascom Palmer Eye Institute, who helped write the report.

Before the procedure, all three women still had at least some vision. Afterwards, one woman was left completely blind while the other two were effectively blind, Albini and his colleagues reported.

The cases show that patients need to be warned that something that "sounds too good to be true may indeed be too good to be true and may even be horrible," Albini says.

Original post:
3 Women Blinded By Unproven Stem Cell Treatments - NPR

Stem Cell Therapy | Runner’s World – Runner’s World


Runner's World

See more here:
Stem Cell Therapy | Runner's World - Runner's World

Veterinary Doctors Conduct Study Looking To Ease Arthritis Pain – CBS Philly

March 13, 2017 6:01 PM By Stephanie Stahl

PHILADELPHIA (CBS) Doctors at the University of Pennsylvania School of Veterinary Medicine are conducting a study to see if stem cell therapy will ease the pain of arthritis and the results of their research could benefit human patients as well.

Its Zoeys last check up,walking on a special mat called a forceplate to measure how much weight she puts on each leg.

It was just a year ago that putting weight on her front legs was painful.The 2-year-old Golden Retriever was diagnosed with elbow dysplasia, a condition that created arthritis in both elbows.

It is the most common cause of chronic pain in dogs, saidDr. Kimberly Agnello at Penn Vet.

Zoeys owner, Christine Brown, says she was a bundle of energy when she first got Zoey.

She was so sweet, said Brown. She was your typical energetic puppy.

But soon Brown knew her dog was hurting.

After coming back from a walk and taking a nap, she would get up and limp, said Brown. With her being a puppy it was devastating.

Zoey was enrolled in aPenn Vet trial to determine the benefits of stem cell therapy as a treatment to ease arthritic pain.

They are randomized into three groups, whether they receive an interarticular joint injection of hyaluronic acid or they geteither stem cells derived from their bone marrow or stem cells derived from fat, saidAgnello.

The stems cells from the dogs bone marrow are injected back into the elbow joint. Doctors hope it will relieve the arthritic pain.

We also remove a little fragment of bone that can be causing some more pain, saidAgnello.

The research isnt just about arthritis in dogs but humans as well.

The goals of this study are to look for different treatments to not only help our canine patientsbut also to help human patients with arthritis, saidAgnello.

For now results are promising.

Oh my gosh, she is not limping, she runs and jumps, and has a great time, said Brown.

The trial is ongoing so there is no hard data yet to show final results if stem cells are effective for treating arthritis, but Dr.Agnello says there are many dogs in the study and almost all of them have improved during the year-long research.

Stephanie Stahl, CBS 3 and The CW Philly 57s Emmy Award-winning health reporter, is featured daily on Eyewitness News. As one of the television industrys most respected medical reporters, Stephanie has been recognized by community and he...

DIY St. Patricks Day Party Guide

A Taste Of Philly Wine Week

Getaway Guide To Early Spring

See the original post here:
Veterinary Doctors Conduct Study Looking To Ease Arthritis Pain - CBS Philly

New Cardiac Stem Cell Therapy passes Phase I/II Trials – Labiotech.eu (blog)

TiGenix announces positiveone-year results forits phase I/II trial of donor-derived cardiac stem cell therapy in acute myocardial infarction (AMI).

The Belgian biotech TiGenixis developing allogeneic stem cell therapies. Now the companyhasannouncedthat its cardiac stem cell therapyAlloCSC-01 reached its primary endpoints in aphase I/IItrial.

In 2015, the companyacquired Coretherapixin a292M deal for its allogeneic cardiac stem cell pipeline, which is being developed for the treatment of AMI.The first-in-human trial was designed to test the safety and feasibility of an intracoronary infusion of donor-derivedexpanded cardiac stem cells (AlloCSCs)in patients with AMI and left ventricular dysfunction.

AlloCSC-01consists of adult allogeneic cardiac stem cells isolated from the heartof donors and expanded in vitro. In vivo studies suggest that these cellshave cardio-reparative potential by activating regenerative pathways and promoting the formation of new hearttissue.

Thecurrent phase II study demonstrated thesafety of these allogeneic stem cells. Initial results also revealed a larger reduction of infarct size in a subgroup of patients.

Myocardial infarction caused by blockade of coronary arteries

TiGenix is well known forChondroCellect, which was the first cell therapyto reach the European market for the repair of knee cartilage.After the companyrecently withdrew its market authorization for this product, due to a lack of reimbursement, the biotech is focusing on another stem cell therapy, Cx601, in addition to AlloCSC-01. Under development for Crohns disease, Cx601 is currently awaitingEMA approval and is in phase III trials in the US.

For a late-stage clinical company, TiGenix has a low market cap of191M. Even so, the company seems to be doing well these days with the progress of Cx601 and AlloCSC-01.

If AlloCSC-01 obtains market approval, it could treat the more than 1.9 millionpeople affected by AMI, a major cause of heart failure. So far, most treatments are palliative or restore myocardial function by angioplasty and insertion of a stent to support the vascular lumen.

Stem cell therapy of the heart is definitely not a new topic, but many trials have been conducted using the patients own stem cells derived from the bone marrow. A recent meta-analysisof such trials has suggested that these therapies are safe, but do not enhance cardiac function. TiGenixs approach using allogeneic heart-derived stem cells may offer a new and promisingopportunity in thefield.

Images via shutterstock.com / Liya Graphics andVeronika Zakharova

Read the original here:
New Cardiac Stem Cell Therapy passes Phase I/II Trials - Labiotech.eu (blog)

‘Butterfly Boy’ steels himself for second stem-cell transplant – Ottawa Citizen

Jonathan Pitre with his Boston terrier, Gibson. Tina Boileau / -

Bracing for his second stem-cell transplant in seven months, Jonathan Pitre knows all too well the mountain in front of him, its hardships and precipices.

So hes doing what he always does when confronted with such a steep challenge. Its all about staying positive, I think, Pitre, 16, said in a telephone interview from Minneapolis.

Theres no checklist to prepare for his perilous journey, and no book that can calm all his misgivings.

Its mostly thinking about sticking together with the people you care about, your family, he said of his preparation. You have to stick to them very, very tightly and tell each other that, Its going to be OK and that were stronger than this. Were going through this together, not just alone.

Pitre will face the transplant alongside his mother, Tina Boileau, who will also be his stem-cell donor.

Boileau has taken a second leave of absence from her government job to be at her sons side for a treatment that could keep them in Minnesota for six months or more.

Later this month, Pitre will undergo a series of tests to ensure his heart, kidneys and other organs are healthy enough to withstand the rigours of the transplant. Hes still fighting the effects of a cold, but the blood infection that put him in hospital last month has been brought under control.

According to his current treatment schedule, Pitre will be admitted to the University of Minnesota Masonic Childrens Hospital on March 28. Then, in early April, hell begineight days of high-dose chemo followed by one day of full-body radiation before his stem-cell transplant.

The chemo and radiation are designed to destroy his immune system and prevent it from attacking the donor cells.

Pitre is the first Canadian to take part in the clinical trial operated by the University of Minnesotas Dr. Jakub Tolar, a pediatric transplant specialist who has adapted stem-cell therapy as a treatment for the most severe forms of epidermolysis bullosa (EB). Its the only facility in the world that offers the treatment for EB patients.

Pitre suffers from recessive dystrophic EB, a rare, painful and deadly form of the disease.

Last September, Pitre suffered nausea, raging fevers and exhaustion in the aftermath of his first transplant, which ultimately failed when his own stem cells recolonized his bone marrow.

Pitre said he knows what to expect this time, but that doesnt necessarily make it easier. I know a lot of it was unpleasant. I know its going to happen again, he said. So I know a lot of that unpleasantness is going to come.

The Russell teenager, however, said hes prepared to face that future considering the promise that the transplants holds for him.

I think of my family, I think of Gibson (his Boston terrier) and I think of all the good things that will come from this procedure, and after the procedure, how much more Im going to be able to enjoy life, how much more Im going to be able to enjoy time with my family, with Gibson.

Although the procedure comes with life-threatening complications, it has produced dramatic improvements in two-thirds of those EB patients who have survived the transplant: tougher skin, reduced blistering and better wound healing.

Link:
'Butterfly Boy' steels himself for second stem-cell transplant - Ottawa Citizen

Stem cell therapy for the treatment of Peyronie’s disease. – UroToday – UroToday

Like other fibrotic diseases, the cause of Peyronie's disease (PD) is still obscure. Since there is now increasing evidence for the role of Mesenchymal Stem Cells (MSCs) as potential treatment to fibrosis, it is crucial to determine their possible efficacy in the treatment of PD. Areas covered: In this review, the authors summarize the emerging data and published studies regarding the use of SCs for the treatment of PD. The authors provide particular focus on the three-first experimental studies for the use of SCs in rat models as well as the sole two studies undertaken in humans. Expert opinion: It seems evident in experimental settings that SCs in general (Adipose Derived SCs in particular) provide a feasible, safe and effective therapy for PD. The potential limits of the rat models used initially have been somewhat overcome with the inception of studies in men. However, further prospective studies are needed in humans to further elucidate the therapeutic potential of stem cell therapy in PD.

Expert opinion on biological therapy. 2017 Feb 28 [Epub]

Athanasios Dellis, Athanasios Papatsoris

a University Department of Urology , Sismanoglio General Hospital , Athens , Greece.

PubMed http://www.ncbi.nlm.nih.gov/pubmed/28274142

More here:
Stem cell therapy for the treatment of Peyronie's disease. - UroToday - UroToday

Stem cell treatment suppresses multiple sclerosis in the long term – Nature.com

Stem cell treatment suppresses multiple sclerosis in the long term
Nature.com
Patients with aggressive multiple sclerosis (MS) can gain long-term benefit from immunoablation followed by autologous haematopoietic stem cell transplantation (I/AHSCT), according to a new study. The evidence from the largest long-term study of the ...

Originally posted here:
Stem cell treatment suppresses multiple sclerosis in the long term - Nature.com

Stem Cell Therapy Market by Type, Therapeutic Application, Cell Source – Global Forecasts to 2021 – PR Newswire (press release)

NEW YORK, March 7, 2017 /PRNewswire/ -- l stem cell therapy market is estimated to grow at a CAGR of 11.0% during 2016 to 2021 to reach USD 145.8 million by 2021. Growth in the global stem cell therapy market is driven by factors such as the growing awareness of the therapeutic potency of stem cells in effective disease management, development of advanced genome-based cell analysis techniques, increasing public-private investments for development of stem cell therapies, identification of new stem cell lines, and developments in infrastructure related to stem cell banking and processing. In addition, countries such as Japan, South Korea, and China are offering new growth opportunities for players operating in this market. The North American region is expected to command the largest share in the stem cell therapy market in 2016.

Read the full report: http://www.reportlinker.com/p04759526-summary/view-report.html

Based on the type of therapy, the allogeneic stem cell therapy segment is estimated to command the larger share of the global stem cell therapy market in 2016. This growth can be attributed to the growing availability of allogeneic stem cell therapy products, wider therapeutic applications of allogeneic stem cells, easier production scale-up due to easy availability of sources of stem cells, and growing number of clinical trials of allogeneic stem cell therapies as compared to autologous stem cell therapies.

The stem cell therapy market is niche industry with a growing number of global and local companies involved in the development and commercialization of stem cell therapy products. Osiris Therapeutics, Inc. (U.S.), MEDIPOST Co., Ltd. (South Korea), Anterogen Co., Ltd. (South Korea), and Pharmicell Co., Ltd. (South Korea) were the leading players in the global stem cell therapy market in 2015. New product launches and approvals; expansions; and partnerships and agreements are the major strategies adopted by most of the market players to achieve growth in the stem cell therapy market during 20132016.

Research Coverage This report studies stem cell therapy market based on type of therapy (allogeneic and autologous). These stem cell therapies are used for the treatment of various diseases (including musculoskeletal disorders, wound healing, CVDs, and GI diseases, among others). The report also studies, the factors (such as drivers, restraints, opportunities, and challenges) which affect the market growth in a positive and negative manner. It analyzes opportunities and challenges in the market for stakeholders and provides details of the competitive landscape for market leaders. The report forecasts the revenue of the market segments with respect to four main regions, namely, North America, Europe, Asia-Pacific, and the Rest of the World. The stem cell therapy market report strategically profiles the key players who are involved in the manufacturing and commercialization of stem cell therapy products and comprehensively analyze their market ranking and core competencies. The report tracks and analyzes competitive developments such as new product launches and enhancements; expansions; and partnerships and agreements in the stem cell therapy market.

Reasons to Buy the Report:

From an insight perspective, this research report focuses on various levels of analysismarket share analysis of the top players and company profiles, which together comprise and discuss basic views on the competitive landscape; emerging and high-growth segments of the stem cell therapy market; and high-growth regions and their respective drivers, restraints, challenges, and opportunities.

The report will enrich both established firms as well as new entrants/smaller firms to gauge the pulse of the market, which in turn will help firms in garnering a greater market share. Firms purchasing the report could use any one or a combination of the below-mentioned five strategies (market penetration, product development/innovation, market development, market diversification, and competitive assessment) for strengthening their market shares.

The report provides insights on the following pointers:

- Market Penetration: Comprehensive information on products offered by the top 10 players in the stem cell therapy market. The report analyzes the stem cell therapy market by type, therapeutic application, cell source, and region

- Product Development/Innovation: Detailed insights on research and development activities, developmental product pipeline, and new product launches in the stem cell therapy market

- Market Development: Comprehensive information about the lucrative emerging markets. The report analyzes the markets for various stem cell therapy products across four geographies (North America, Europe, Asia-Pacific, and the Rest of the World)

- Competitive Assessment: Assessment of market shares, strategies, products, distribution networks, and manufacturing capabilities of the leading players in the stem cell therapy market

Read the full report: http://www.reportlinker.com/p04759526-summary/view-report.html

About Reportlinker ReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

http://www.reportlinker.com

__________________________ Contact Clare: clare@reportlinker.com US: (339)-368-6001 Intl: +1 339-368-6001

To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/stem-cell-therapy-market-by-type-therapeutic-application-cell-source---global-forecasts-to-2021-300419663.html

SOURCE Reportlinker

http://www.reportlinker.com

Read the original here:
Stem Cell Therapy Market by Type, Therapeutic Application, Cell Source - Global Forecasts to 2021 - PR Newswire (press release)

CMBG Receives US$2.29 Million Grant For Stem Cell Therapy – Asian Scientist Magazine

Chinas Cellular Biomedicine Group has received US$2.29 million to support pre-clinical studies of stem cell therapy for knee osteoarthritis.

Asian Scientist Newsroom | March 9, 2017 | Pharma

AsianScientist (Mar. 9, 2017) - Cellular Biomedicine Group Inc., a clinical-stage biopharmaceutical firm engaged in the development of effective immunotherapies for cancer and stem cell therapies for degenerative diseases, has been awarded US$2.29 million by the governing Board of the California Institute for Regenerative Medicine (CIRM) to support pre-clinical studies of AlloJoin, CBMGs Off-the-Shelf allogeneic human adipose-derived mesenchymal stem cells for the treatment of knee osteoarthritis in the United States.

While CBMG recently commenced two Phase I human clinical trials in China using CAR-T to treat relapsed/refractory CD19+ B-cell acute lymphoblastic leukemia (ALL) and refractory diffuse large B-cell lymphoma (DLBCL) as well as an ongoing Phase I trial in China for AlloJoin in knee osteoarthritis, this latest announcement represents CBMGs initial entrance into the United States for its off-the-shelf allogeneic stem cell candidate AlloJoin.

The US$2.29 million was granted under the CIRM 2.0 program, a comprehensive collaborative initiative designed to accelerate the development of stem cell-based treatments for people with unmet medical needs. After the award, CIRM will be a more active partner with its recipients to further increase the likelihood of clinical success and help advance a pre-clinical applicants research along a funding pipeline towards clinical trials.

CBMGs knee osteoarthritis pre-clinical program is considered late-stage, and therefore it meets CIRM 2.0s intent to accelerate support for clinical stage development for identified candidates of stem cell treatments that demonstrate scientific excellence.

We are deeply appreciative to CIRM for their support and validation of the therapeutic potential of our knee osteoarthritis therapy, said Mr. Tony (Bizuo) Liu, Chief Executive Officer of CBMG. The CIRM grant is the first step in bringing our allogeneic human adipose-derived mesenchymal stem cell treatment for knee osteoarthritis (AlloJoin) to the U.S. market.

In order to demonstrate comparability with cell banks previously produced in China for our U.S. IND filing, we are addressing the pre-clinical answers required for the FDA. With the funds provided by CIRM, we will replicate and validate the manufacturing process and control system at the cGMP facility located at Childrens Hospital Los Angeles to support the filing of an IND with the FDA.

CBMG recently announced promising interim three-month safety data from its Phase I clinical trial in China for AlloJoin, its off-the-shelf allogeneic stem cell therapy for knee osteoarthritis. The trial is on schedule to be completed by the third quarter of 2017.

Source: Cellular Biomedicine Group Inc; Photo: Shutterstock. Disclaimer: This article does not necessarily reflect the views of AsianScientist or its staff.

See the rest here:
CMBG Receives US$2.29 Million Grant For Stem Cell Therapy - Asian Scientist Magazine