Category Archives: Stem Cell Treatment


Blood-Forming Stem Cell Transplants – National Cancer …

What are bone marrow and hematopoietic stem cells?

Bone marrow is the soft, sponge-like material found inside bones. It contains immature cells known as hematopoietic or blood-forming stem cells. (Hematopoietic stem cells are different from embryonic stem cells. Embryonic stem cells can develop into every type of cell in the body.) Hematopoietic stem cells divide to form more blood-forming stem cells, or they mature into one of three types of blood cells: white blood cells, which fight infection; red blood cells, which carry oxygen; and platelets, which help the blood to clot. Most hematopoietic stem cells are found in the bone marrow, but some cells, called peripheral blood stem cells (PBSCs), are found in the bloodstream. Blood in the umbilical cord also contains hematopoietic stem cells. Cells from any of these sources can be used in transplants.

What are bone marrow transplantation and peripheral blood stem cell transplantation?

Bone marrow transplantation (BMT) and peripheral blood stem cell transplantation (PBSCT) are procedures that restore stem cells that have been destroyed by high doses of chemotherapy and/or radiation therapy. There are three types of transplants:

Why are BMT and PBSCT used in cancer treatment?

One reason BMT and PBSCT are used in cancer treatment is to make it possible for patients to receive very high doses of chemotherapy and/or radiation therapy. To understand more about why BMT and PBSCT are used, it is helpful to understand how chemotherapy and radiation therapy work.

Chemotherapy and radiation therapy generally affect cells that divide rapidly. They are used to treat cancer because cancer cells divide more often than most healthy cells. However, because bone marrow cells also divide frequently, high-dose treatments can severely damage or destroy the patients bone marrow. Without healthy bone marrow, the patient is no longer able to make the blood cells needed to carry oxygen, fight infection, and prevent bleeding. BMT and PBSCT replace stem cells destroyed by treatment. The healthy, transplanted stem cells can restore the bone marrows ability to produce the blood cells the patient needs.

In some types of leukemia, the graft-versus-tumor (GVT) effect that occurs after allogeneic BMT and PBSCT is crucial to the effectiveness of the treatment. GVT occurs when white blood cells from the donor (the graft) identify the cancer cells that remain in the patients body after the chemotherapy and/or radiation therapy (the tumor) as foreign and attack them. (A potential complication of allogeneic transplants called graft-versus-host disease is discussed in Questions 5 and 14.)

What types of cancer are treated with BMT and PBSCT?

BMT and PBSCT are most commonly used in the treatment of leukemia and lymphoma. They are most effective when the leukemia or lymphoma is in remission (the signs and symptoms of cancer have disappeared). BMT and PBSCT are also used to treat other cancers such as neuroblastoma (cancer that arises in immature nerve cells and affects mostly infants and children) and multiple myeloma. Researchers are evaluating BMT and PBSCT in clinical trials (research studies) for the treatment of various types of cancer.

More:
Blood-Forming Stem Cell Transplants - National Cancer ...

Stem Cell Grants for Spina Bifida and Diabetic Wound Treatments

(SACRAMENTO, Calif.) - The state stem cell agency, California Institute for Regenerative Medicine (CIRM),awarded a pair of grants totaling more than $7 million to UC Davis School of Medicine researchers who are working to develop stem cell therapies for spina bifida and chronic diabetic wounds. The funding is part of what the agency considers "the most promising" research leading up to human clinical trials using stem cells to treat disease and injury. Diana Farmer, professor and chair of surgery at UC Davis Medical Center, is developing a placental stem cell therapy for spina bifida, the common and devastating birth defect that causes lifelong paralysis as well as bladder and bowel incontinence. She and her team are working on a unique treatment that can be applied in utero - before a baby is born -- in order to reverse spinal cord damage. Roslyn Rivkah Isseroff, a UC Davis professor of dermatology, and Jan Nolta, professor of internal medicine and director of the university's Stem Cell Program, are developing a wound dressing containing stem cells that could be applied to chronic wounds and be a catalyst for rapid healing. This is Isseroff's second CIRM grant, and it will help move her research closer to having a product approved by the U.S. Food and Drug Administration that specifically targets diabetic foot ulcers, a condition affecting more than 6 million people in the country. The CIRM board, which met in Berkeley today, has high hopes for these types of research that the agency funded in this latest round of stem cell grants. "This investment will let us further test the early promise shown by these projects," said Jonathan Thomas, chair of CIRM's governing board. "Preclinical work is vital in examining the feasibility, potential effectiveness and safety of a therapy before we try it on people. These projects all showed compelling evidence that they could be tremendously beneficial to patients. We want to help them build on that earlier research and move the projects to the next level." The CIRM grants are designed to enable the UC Davis research teams to transition from preclinical research to preclinical development over the next 30 months to be able to meet the FDA's rigorous safety and efficacy standards for Investigative New Drugs. As the former surgeon-in-chief at UCSF Benioff Children's Hospital, Farmer helped pioneer fetal surgery techniques for treating spina bifida before birth. The condition, also known as myelomeningocele, is one of the most common and devastating birth defects worldwide, causing lifelong paralysis as well as bowel and bladder incontinence in newborns. Farmer has been investigating different stem cell types and the best way to deliver stem cell-based treatments in the womb for the past six years. She and her research colleagues recently discovered a placental therapy using stem cells that cures spina bifida in animal models. That discovery requires additional testing and FDA approval before the therapy can be used in humans. With the CIRM funding, Farmer and her team plan to optimize their stem cell product, validate its effectiveness, determine the optimal dose and confirm its preliminary safety in preparation for human clinical trials. Isseroff, who also serves as chief of dermatology and director of wound healing services for the VA Northern California Health Care System, has long been frustrated by the challenges of treating the chronic, non-healing wounds of diabetics. In 2010, she and Nolta received a CIRM grant to begin developing a bioengineered product for treating chronic diabetic wounds. Foot ulcers, in particular, affect about 25 percent of all diabetic patients and are responsible for most lower-limb amputations. Isseroff and her research team created a treatment using stem cells derived from bone marrow (mesenchymal stem cells) along with a FDA-approved scaffold to help regenerate dermal tissue and restart the healing process. Their studies found the technique to be highly effective for healing wounds in animal models. With this latest CIRM grant, Isseroff's team will refine their therapeutic technique by determining the safest dosage for regenerating tissue and testing their product in skin-wound models that closely resemble those in diabetic humans. Nolta also plans to create a Master Cell Bank of pure and effective human mesenchymal stem cells, and establish standard operating procedures for use in diabetic wound repair. The results of their efforts will enable UC Davis to move closer to FDA approval for human clinical trials in the next two and a half years. "These amazing research efforts are giant steps forward in turning stem cells into cures," said Nolta, who also directs the UC Davis Institute for Regenerative Cures in Sacramento. "This preclinical research is the most crucial, and often the toughest, stage before we move scientific discoveries from the laboratory bench to the patient's bedside. We are now poised as never before to make a big difference in the lives of people with spina bifida and non-healing diabetic wounds." For more information, visit UC Davis School of Medicine at http://medschool.ucdavis.edu.

More:
Stem Cell Grants for Spina Bifida and Diabetic Wound Treatments

The Irvine Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in Costa Mesa and Sherman Oaks …

Costa Mesa and Sherman Oaks, California (PRWEB) March 31, 2015

The Irvine Stem Cell Treatment Center announces a series of free public seminars on the use of adult stem cells for various degenerative and inflammatory conditions. They will be provided by Dr. Thomas A. Gionis, Surgeon-in-Chief.

The seminars will be held on Wednesday, April 8, 2015, at 11:00 am, 1:00 pm and 3:00 pm at Ayres Hotel & Suites Costa Mesa/Newport Beach, 325 Bristol Street, Costa Mesa, CA 92626; and Wednesday, April 22, 2015, at 11:00 am, 1:00 pm and 3:00 pm at Hampton Inn, 5638 Sepulveda Blvd., Sherman Oaks, CA 91411. Please RSVP at (949) 679-3889.

The Irvine Stem Cell Treatment Center (Irvine and Westlake), along with sister affiliates, the Miami Stem Cell Treatment Center (Miami; Boca Raton; Orlando; The Villages; Sarasota, Florida) and the Manhattan Regenerative Medicine Medical Group (Manhattan, New York), abide by approved investigational protocols using adult adipose derived stem cells (ADSCs) which can be deployed to improve patients quality of life for a number of chronic, degenerative and inflammatory conditions and diseases. ADSCs are taken from the patients own adipose (fat) tissue (found within a cellular mixture called stromal vascular fraction (SVF)). ADSCs are exceptionally abundant in adipose tissue. The adipose tissue is obtained from the patient during a 15 minute mini-liposuction performed under local anesthesia in the doctors office. SVF is a protein-rich solution containing mononuclear cell lines (predominantly adult autologous mesenchymal stem cells), macrophage cells, endothelial cells, red blood cells, and important Growth Factors that facilitate the stem cell process and promote their activity.

ADSCs are the bodys natural healing cells - they are recruited by chemical signals emitted by damaged tissues to repair and regenerate the bodys injured cells. The Irvine Stem Cell Treatment Center only uses Adult Autologous Stem Cells from a persons own fat No embryonic stem cells are used; and No bone marrow stem cells are used. Current areas of study include: Emphysema, COPD, Asthma, Heart Failure, Heart Attack, Parkinsons Disease, Stroke, Traumatic Brain Injury, Lou Gehrigs Disease, Multiple Sclerosis, Lupus, Rheumatoid Arthritis, Crohns Disease, Muscular Dystrophy, Inflammatory Myopathies, and Degenerative Orthopedic Joint Conditions (Knee, Shoulder, Hip, Spine). For more information, or if someone thinks they may be a candidate for one of the adult stem cell protocols offered by the Irvine Stem Cell Treatment Center, they may contact Dr. Gionis directly at (949) 679-3889, or see a complete list of the Centers study areas at: http://www.IrvineStemCellsUSA.com.

Also, you can listen and call into our new radio show, The Stem Cell Show, hosted by Dr. Gionis on TalkRadio 790 AM KABC, Sundays @ 4pm PST, or worldwide on KABC.com ("Listen Live" at 4pm PST) or the KABC app available on the App Store or Google Play.

About the Irvine Stem Cell Treatment Center: The Irvine Stem Cell Treatment Center, along with sister affiliates, the Miami Stem Cell Treatment Center and the Manhattan Regenerative Medicine Medical Group, is an affiliate of the California Stem Cell Treatment Center / Cell Surgical Network (CSN); we are located in Irvine and Westlake, California. We provide care for people suffering from diseases that may be alleviated by access to adult stem cell based regenerative treatment. We utilize a fat transfer surgical technology to isolate and implant the patients own stem cells from a small quantity of fat harvested by a mini-liposuction on the same day. The investigational protocols utilized by the Irvine Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Health, Office of Human Research Protection (OHRP); and our studies are registered with Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information, visit our websites: http://www.IrvineStemCellsUSA.com, http://www.MiamiStemCellsUSA.com, or http://www.NYStemCellsUSA.com; http://www.TheStemCellShow.com.

See the original post:
The Irvine Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in Costa Mesa and Sherman Oaks ...

Arizona Pain Stem Cell Institute Now Offering Stem Cell Therapy to Help Patients Avoid Hip and Knee Replacement

Phoenix, Arizona (PRWEB) March 30, 2015

Arizona Pain Specialists, are now offering stem cell therapy to help patients avoid hip and knee replacement. The outpatient treatments at Arizona Pain Stem Cell Institute have been exceptionally effective and are administered by Board Certified pain doctors at ten locations Valleywide. Call (602) 507-6550 for more information and scheduling.

Over the past few years, stem cell therapy for hip and knee arthritis has become mainstream. The treatment involves either bone marrow derived or amniotic derived stem cells, neither of which involve fetal tissue. The previous ethical concerns over fetal tissue and embryonic stem cells are not an issue with these treatments, as neither are involved.

The stem cell procedures are outpatient and exceptionally low risk. The stem cells, growth factors, and additional proteins in the treatments are essential for the regeneration and repair of damaged soft tissues such as tendons, ligaments and arthritic cartilage.

Although hip and knee replacement have shown exceptionally good resuts, they are not risk free procedures. They are also not meant to last forever and should be avoided until absolutely necessary.

The procedures are available throughout the Valley with Arizona Pain Specialists highly skilled, Board Certified pain management doctors in Phoenix, Scottsdale, Mesa, East Valley and West Valley. Simply call (602) 507-6550. Research studies are available as well.

See the article here:
Arizona Pain Stem Cell Institute Now Offering Stem Cell Therapy to Help Patients Avoid Hip and Knee Replacement

Research develops mini-lung structures

Stem cell research has long been seen as a new frontier for disease therapeutics. By coaxing stem cells to form 3D miniature lung structures, University researchers are helping explain why.

In a collaborative study, University researchers devised a system to generate self-organizing human lung organoids, or artificially-grown organisms. These organoids are 3D models that can be used to better understand lung diseases.

Jason Spence, the assistant professor of internal medicine and cell and developmental biology, who was a senior author of the study, said one of the key implications of these lungs is the controlled environment they offer for future research.

These mini lungs will allow us to study diseases in a controlled environment and to develop and test new drugs, he said.

Specifically, Spence said, scientists will be able to take skin samples from patients with a particular form of a lung disease, reprogram the cells into stem cells and then generate lung tissue for further study. He said by analyzing the disease in a controlled environment, researchers can gain insight into the progression of various diseases and then tailor drugs for treatment.

Rackham student Briana Dye was also a lead author of the study. She said the team manipulated numerous signaling pathways involved with cell growth and organ formation to make the miniature lungs.

First, Dye said the scientists used proteins called growth factors to differentiate embryonic stem cells into endoderm, the germ layer that gives rise to the lungs. Different growth factors were then used to cause the endoderm to become lung tissue.

We add specific growth factors, proteins that turn on pathways in the cells, that will then cause them to lift off the monolayer so that we have this 3D spherical tissue, she said.

Previous research has used stem cells in a similar manner to generate brain, intestine, stomach and liver tissue. Dye said one of the advantages of stem cell research is its direct path to studying human tissue.

We have worked with many animal models in the past, Dye said. Animal models present obstacles because they dont exactly behave the way human tissue and cells do. This is why stem cells are so promising.

Original post:
Research develops mini-lung structures

Stem-cell therapy for dogs draws support, detractors

Deltona retiree Paul Jaynes was heartbroken when his 9-year-old Labrador, Cookie, suddenly stopped walking last year. The once-athletic dog struggled to stand and, if she moved at all, collapsed after a few steps.

He carried his 90-pound companion to his truck, drove her to the vet and braced himself for the bad news. Surely she couldn't live like this.

Instead, his veterinarian told him about a newly available procedure involving stem cells. In a single day, the vet said, they could remove the cells from Cookie's fatty tissues, process them and re-inject them into her joints. She could go home immediately.

"It was very dramatic," Jaynes says. "The day after surgery, she was standing. She was hesitant, but she was standing and walking a little. I thought: 'Are you kidding me?' Within a week, she was almost back to her old self."

That was last September, and six months later Cookie is still going strong, Jaynes says. While he has no doubts about the treatment, though, some veterinarians worry that marketing of stem-cell therapy for animals has gotten ahead of the scientific research needed to validate its use.

The results, while sometimes promising, are not universal.

"Most of what you hear is anecdotal 'Oh, I tried this, and it helped my dog,'" says Dr. Jeffrey Peck, a veterinary surgeon at Affiliated Veterinary Specialists, based in Maitland. "This has grown in its marketing exponentially greater than it has grown in evidence."

Much of his practice is in orthopedics typically, dogs with hip dysplasia or arthritis. He tried using stem-cell therapy with his patients in 2008 but dropped it after a dozen cases in which he saw no improvement.

"I don't refuse to do it if a client really wants to try, but I give them my disclaimer," he says. "I tell them: 'I don't think I'm going to hurt anything. But I doubt I'm going to help anything either.'"

At $1,400 to $3,000 for the procedure, most pet owners opt out, he says.

View original post here:
Stem-cell therapy for dogs draws support, detractors

Stem Cell Treatment Programme TV Show Ad Film From Vibes By Krishna Ksihore Brand House Hyderabad – Video


Stem Cell Treatment Programme TV Show Ad Film From Vibes By Krishna Ksihore Brand House Hyderabad
Ad Film Making Hyderabad, Ad Film Makers, Ad Film Production House in Hyderabad, Visakapatnam, Vijayawada, Andhra Pradesh, Telengana, Chennai, Bangalore, Tv Commercial Ads, Corporate ...

By: Brand House AdFilms

Read more:
Stem Cell Treatment Programme TV Show Ad Film From Vibes By Krishna Ksihore Brand House Hyderabad - Video

No stem cell treatment for public servant's dodgy knee

A federal public servant has lost a legal bid to have taxpayers pay for experimental stem cell treatment on his dodgy knees.

The Administrative Appeals Tribunal has knocked back an appeal by Customs officer Vic Kaplicas to force insurer Comcare to pay $13,400 for the new treatment, instead saying he could have a tried-and-tested double knee replacement.

But the 49-year-old border official says he worries he cannot pass his department's fitness tests if he undergoes the knee replacements, which will leave him unable to run.

Advertisement

The former triathlete, who had to give up his sport because of his bad knees, said he was keen to avoid the "radical but effective" replacements for as long as possible.

Mr Kaplicas hurt his left knee working at Sydney's Mascot Airport in 2000, then injured his right knee 10 years later at Kingsford-Smith.

He managed the pain in his knees, which have since developed osteoarthritis, for years using over-the-counter painkillers, physio, exercises and injections but Mr Kaplicas' doctors say a more permanent solution is now needed.

In June 2012, Sydney knee specialist Sam Sorrenti asked Comcare to pay for bilateral knee stem cell assisted arthroscopic surgery for Mr Kaplicas.

The cost of the procedure was estimated at $13,464.00 for arthroscopy, stem cell harvesting and injection, and a "HiQCell procedure".

Dr Sorrenti said the knee replacements were not a good idea for a man of Mr Kaplicas' age, arguing the new knees would last 15 years at best, were intended for older people who are less concerned with physical activity, and left no further options.

Read the original post:
No stem cell treatment for public servant's dodgy knee

UCI team gets $5 million to create stem cell treatment for Huntington's disease

Irvine, Calif., March 26, 2015 -- Leslie Thompson of the Sue & Bill Gross Stem Cell Research Center at UC Irvine has been awarded $5 million by the California Institute for Regenerative Medicine to continue her CIRM-funded effort to develop stem cell treatments for Huntington's disease.

The grant supports her next step: identifying and testing stem cell-based treatments for HD, an inherited, incurable and fatal neurodegenerative disorder. In this project, Thompson and her colleagues will establish an HD therapy employing human embryonic stem cells that can be evaluated in clinical trials.

Over the past seven years, Thompson, a UCI professor of psychiatry & human behavior and neurobiology & behavior, and her team have used CIRM funding to produce stem cell lines "reprogrammed" from the skin cells of individuals carrying the Huntington's genetic mutation in order to study the disease. In addition, they conducted basic and early-stage transitional studies to develop a stem cell-based technique to treat areas of the brain susceptible to HD.

"These stem cells offer a possible long-term treatment approach that could relieve the tremendous suffering experienced by HD patients and their families," said Thompson, who's also affiliated with UCI's Institute for Memory Impairments and Neurological Disorders (UCI MIND). "We appreciate CIRM and the millions of people in the state of California for generously supporting breakthrough stem cell research."

With this award, CIRM has granted Thompson $10.3 million for her HD work. Overall, UCI has received $105 million from the state-funded agency.

Thompson said that her group has identified a highly promising neural stem cell line that shows disease-modifying activity in HD mice. These neural stem cells were grown from human embryonic stem cells at UC Davis. The researchers also will conduct essential preclinical efficacy and safety studies in HD mice with these cells.

Over the span of the 2-year grant, Thompson said, the goal is to finalize work that will lead to a pre-investigational-new-drug meeting with the Food & Drug Administration and a path forward for clinical trials with the neural stem cells.

"This investment will let us further test the early promise shown by these projects," said Jonathan Thomas, chair of the CIRM governing board. "Preclinical work is vital in examining the feasibility, potential effectiveness and safety of a therapy before we try it on people. These projects all showed compelling evidence that they could be tremendously beneficial to patients. We want to help them build on that earlier research and move the projects to the next level."

HD is a devastating degenerative brain disorder with no disease-modifying treatment or cure. Current approaches only address certain symptoms of HD and do not change its course.

###

Follow this link:
UCI team gets $5 million to create stem cell treatment for Huntington's disease