Category Archives: Stem Cell Treatment


Trinity Spine and Wellness Center Reviews – Stem Cell Treatment Tampa – Video


Trinity Spine and Wellness Center Reviews - Stem Cell Treatment Tampa
http://Trinity-Spine.com (727) 372-9922 Trinity Spine and Wellness Center Odessa review By Brian F. 5 Star Rating Dr. Hayes and his entire staff are awesome! I #39;ve had a couple of back surgeries...

By: Anderson Flanders

Read the original here:
Trinity Spine and Wellness Center Reviews - Stem Cell Treatment Tampa - Video

Stem cell implant shows promise for Parkinson's treatment

New York, April 4 (IANS): An implant of stem cells treated with an anti-cancer drug has been found to be effective against Parkinson's symptoms in mice.

The findings published in the journal Frontiers in Cellular Neuroscience could be an important step toward using the implantation of stem cell-generated neurons as a treatment for Parkinson's disease in humans.

Using a US Food and Drug Administration (FDA)-approved anti-cancer drug, the researchers were able to grow dopamine-producing neurons derived from embryonic stem cells that remained healthy and functional for as long as 15 months after implantation into mice, restoring motor function without forming tumours.

"This simple strategy of shortly exposing pluripotent stem cells to an anti-cancer drug turned the transplant safer, by eliminating the risk of tumour formation", said the leader of the study Stevens Rehen, professor at the Federal University of Rio de Janeiro (UFRJ) in Brazil.

Parkinson's, which affects as many as 10 million people in the world, is caused by a depletion of dopamine-producing neurons in the brain.

Several studies have indicated that the transplantation of embryonic stem cells improves motor functions in animal models. However, until now, the procedure was shown to be unsafe because of the risk of tumours upon transplantation.

To address this issue, the researchers for the first time pre-treated undifferentiated mouse embryonic stem cells with mitomycin C, a drug already prescribed to treat cancer.

The substance blocks the DNA replication and prevents the cells from multiplying out of control.

The researchers used mice modelled for Parkinson's. Unlike the control group, animals receiving the treated stem cells showed improvement in Parkinson's symptoms and survived until the end of the observation period of 12 weeks post-transplant with no tumours detected.

Four of these mice were monitored for as long as 15 months with no signs of pathology.

Read more:
Stem cell implant shows promise for Parkinson's treatment

Is a loophole in stem cell law helping new therapy to thrive, or allowing dubious science?

Life-changing results: Sandra Sharman is a private stem cell patient. Photo: Meredith O'Shea

Last week, Suzie Palmer, 44, travelled from her home in NSW to the Gold Coast for her second round of stem cell treatments for multiple sclerosis. OnTuesday morning,the wheelchair-bound poet underwent liposuction.

By 2.30pm, stem cells had been partially separated from her abdominal fat, suspended in plasma, and injected intravenously. Her doctor, Soraya Felix, is a cosmetic surgeon and molecular biologist with a sideline in regenerative medicine.

Palmer, a relentlessly upbeat and positive person, says the treatments have helped her cope better with heat, improved her mobility and flexibility and otherwise made her "feel like a normal human being". She has, she says, managed a few steps with a walker, still a long way from "running about, which is my dream".

Poster girl: Suzie Palmer is undergoing stem cell therapy for MS. Photo: Edwina Pickles

The rapidly growing stem cell industry is aglow with similarly positive testimonials, notably on behalf of practitioners who offer little documented scientific evidence of their success.

Advertisement

Suzie Palmer is literally the poster girl for stem cell tourism within Australia. You can find her smiling sweetly, along with Dr Felix, on the Facebook page of a group called the Adult Stem Cell Foundation. She is one of an unknown number of unwell Australians pinning their hopes on an unregulated industry that is now under review by the Therapeutic Goods Administration.

The TGA public consultation, which closed earlier this month, was prompted by long-standing concerns raised by Stem Cells Australia that a loophole in the regulations has allowed dozens of doctors across Australia to provide experimental treatments without the ethics committee oversight that registered clinical trials are subject to. These treatments invariably cost $10,000 and up. The loophole is this: while the use of donor stem cells in therapies is tightly regulated, the use of a patient's own stem cells is not.

Professor Martin Pera is the program leader of Stem Cells Australia, which is administered by the University of Melbourne and includes scientists from Monash University, the Walter and Eliza Hall Institute for Medical Research, the Florey Institute and the CSIRO, among others. They are engaged in a seven-year Australian Research Council project to answer the big questions about stem cells and the potential for reliable therapies.

Here is the original post:
Is a loophole in stem cell law helping new therapy to thrive, or allowing dubious science?

Possible progress against Parkinson's and good news for stem cell therapies

Brazilian researchers at D'OR Institute for Research and Education (IDOR) and Federal University of Rio de Janeiro (UFRJ) have taken what they describe as an important step toward using the implantation of stem cell-generated neurons as a treatment for Parkinson's disease. Using an FDA approved substance for treating stomach cancer, Rehen and colleagues were able to grow dopamine-producing neurons derived from embryonic stem cells that remained healthy and functional for as long as 15 months after implantation into mice, restoring motor function without forming tumors.

Parkinson's, which affect as many 10 million people in the world, is caused by a depletion of dopamine-producing neurons in the brain. Current treatments include medications and electrical implants in the brain which causes severe adverse effects over time and fail to prevent disease progression. Several studies have indicated that the transplantation of embryonic stem cells improves motor functions in animal models. However, until now, the procedure has shown to be unsafe, because of the risk of tumors upon transplantation.

To address this issue, the researchers tested for the first time to pre-treat undifferentiated mouse embryonic stem cells with mitomycin C, a drug already prescribed to treat cancer. The substance blocks the DNA replication and prevents the cells to multiply out of control.

The researchers used mice modeled for Parkinson's. The animals were separated in three groups. The first one, the control group, did not receive the stem cell implant. The second one, received the implant of stem cells which were not treated with mitomycin C and the third one received the mitomycin C treated cells.

After the injection of 50,000 untreated stem cells, the animals of the second group showed improvement in motor functions but all of them died between 3 and 7 weeks later. These animals also developed intracerebral tumors. In contrast, animals receiving the treated stem cells showed improvement of Parkinson's symptoms and survived until the end of the observation period of 12 weeks post-transplant with no tumors detected. Four of these mice were monitored for as long as 15 months with no signs of pathology.

Furthermore, the scientists have also shown that treating the stem cells with mitomycin C induced a four-fold increase in the release of dopamine after in vitro differentiation.

"This simple strategy of shortly exposing pluripotent stem cells to an anti-cancer drug turned the transplant safer, by eliminating the risk of tumor formation," says the leader of the study Stevens Rehen, Professor at UFRJ and researcher at IDOR.

The discovery, reported on April in the journal Frontiers in Cellular Neuroscience, could pave the way for researchers and physicians to propose a clinical trial using pluripotent stem cells treated with mitomycin C prior to transplant to treat Parkinson's patients and also other neurodegenerative conditions.

"Our technique with mitomycin C may speed the proposal of clinical trials with pluripotent cells to several human diseases," says Rehen. "It is the first step to make this kind of treatment with stem cells possible."

Story Source:

See original here:
Possible progress against Parkinson's and good news for stem cell therapies

UCSDs Stem Cell Break Through Could Lead to Treatment for Type-1 Diabetes

A UC San Diego student examines a bacteria culture. Photo courtesy UCSD

Researchers at the UC San Diego School of Medicine announced Thursdaytheyve discovered why its so hard to use stem cells to make liver and pancreatic cells, and their findings could lead to new treatments for diseases such astype-1 diabetes.

It turns out that the chromosomes in laboratory stem cells open slowly over time, in the same sequence that occurs during embryonic development. It isnt until certain chromosomal regions have reached the open state that they are able to respond to added growth factors and become liver or pancreatic cells, the researchers said.

Our ability to generate liver and pancreatic cells from stem cells has fallen behind the advances weve made for other cell types, said Dr. Maike Sander, a professor of pediatrics and cellular and molecular medicine, and director of the Pediatric Diabetes Research Center at UCSD.

So we havent yet been able to do things like test new drugs on stem cell-derived liver and pancreatic cells, Sander said. What we have learned is that if we want to make specific cells from stem cells, we need ways to predict how those cells and their chromosomes will respond to the growth factors.

Researchers have focused on stem cells for treating disease because they can be altered into hundreds of types of cells.

According to UCSD, it sometimes takes up to seven carefully orchestrated steps of adding certain growth factors at specific times to coax stem cells into the desired cell type.

Sander said the study found that the chromosomal regions that need to open before a stem cell can fully differentiate are linked to regions where there are variations in certain disease states. That means if a genetic variation in someones chromosomal region doesnt open at the right time, they could be more susceptible to a disease affecting that cell type.

Herteam is now working to further investigate what role, if any, the chromosomal regions and their variations play in diabetes.

Researchers with the University of Pennsylvania, Penn State University and Ludwig Institute for Cancer Research assisted with the study, funded by the National Institutes of Health, California Institute for Regenerative Medicine, the Helmsley Charitable Trust and Juvenile Diabetes Research Foundation.

Read more from the original source:
UCSDs Stem Cell Break Through Could Lead to Treatment for Type-1 Diabetes

Kentucky Fan Gets Life-Saving Stem Cell Donation From Univ. of Wisconsin Student

This Saturday when the University of Kentucky basketball team faces off with the University of Wisconsin in the NCAA tournament semi-finals, die-hard Kentucky fan Scott Logdon may think twice about rooting against the Wisconsin Badgers.

Nearly two years ago, Logdon was given a life-saving donation of stem cells that helped combat his acute myeloid leukemia. The donor of those cells turned out to be 22-year-old Chris Wirz, a student at the University of Wisconsin.

Logdon, 44, learned the identity of his donor last April, more than a year after the stem cell treatment and just days after the University of Kentucky squeaked past the University of Wisconsin at the NCAA semi-finals with a score of 74 to 73.

Logdon remembers feeling mixed emotions when the Kentucky wildcats won. Later, when he found out about his donor, he joked, That must have been the Badger blood in me.

Courtesy Angela Logdon

PHOTO: Chris Wirz gave life saving stem cells to Scott Logdon, who was suffering from leukemia.

Logdons ordeal started in the fall of 2012, when he was diagnosed with acute myeloid leukemia after mistaking early symptoms for strep throat. Logdon said his doctors told him chemotherapy could only keep the cancer at bay. A full stem cell transplant would be needed to cure him of the deadly disease.

Logdons doctors hoped one of his two siblings might be a match, but neither was able to donate. Longons family and community rallied in the small town of Saldasia, Kentucky, and registered over 120 people who would be willing to donate stem cells or bone marrow.

But no one who registered was a good match for Logdon.

[The doctors] went to the national bone marrow registry to try and find the match, the father of four said. I had to go back to the hospital every 30 days [for] maintenance chemo; it was a very long wait.

See the original post:
Kentucky Fan Gets Life-Saving Stem Cell Donation From Univ. of Wisconsin Student

New UC San Diego Findings Could Lead To Diabetes Treatment

Researchers at the UC San Diego School of Medicine announced today they've discovered why it's so hard to use stem cells to make liver and pancreatic cells, and their findings could lead to new treatments for diseases like type 1 diabetes.

It turns out that the chromosomes in laboratory stem cells open slowly over time, in the same sequence that occurs during embryonic development. It isn't until certain chromosomal regions have reached the open state that they are able to respond to added growth factors and become liver or pancreatic cells, the researchers said.

"Our ability to generate liver and pancreatic cells from stem cells has fallen behind the advances we've made for other cell types," said Dr. Maike Sander, a professor of pediatrics and cellular and molecular medicine, and director of the Pediatric Diabetes Research Center at UCSD.

"So we haven't yet been able to do things like test new drugs on stem cell-derived liver and pancreatic cells," Sander said. "What we have learned is that if we want to make specific cells from stem cells, we need ways to predict how those cells and their chromosomes will respond to the growth factors."

Researchers have focused on stem cells for treating disease because they can be altered into hundreds of types of cells.

According to UCSD, it sometimes takes up to seven carefully orchestrated steps of adding certain growth factors at specific times to coax stem cells into the desired cell type.

Sander said the study found that the chromosomal regions that need to open before a stem cell can fully differentiate are linked to regions where there are variations in certain disease states. That means if a genetic variation in someone's chromosomal region doesn't open at the right time, they could be more susceptible to a disease affecting that cell type.

His team is now working to further investigate what role, if any, the chromosomal regions and their variations play in diabetes.

Researchers with the University of Pennsylvania, Penn State University and Ludwig Institute for Cancer Research assisted with the study, funded by the National Institutes of Health, California Institute for Regenerative Medicine, the Helmsley Charitable Trust and Juvenile Diabetes Research Foundation.

Read the original:
New UC San Diego Findings Could Lead To Diabetes Treatment

Blood-Forming Stem Cell Transplants – National Cancer …

What are bone marrow and hematopoietic stem cells?

Bone marrow is the soft, sponge-like material found inside bones. It contains immature cells known as hematopoietic or blood-forming stem cells. (Hematopoietic stem cells are different from embryonic stem cells. Embryonic stem cells can develop into every type of cell in the body.) Hematopoietic stem cells divide to form more blood-forming stem cells, or they mature into one of three types of blood cells: white blood cells, which fight infection; red blood cells, which carry oxygen; and platelets, which help the blood to clot. Most hematopoietic stem cells are found in the bone marrow, but some cells, called peripheral blood stem cells (PBSCs), are found in the bloodstream. Blood in the umbilical cord also contains hematopoietic stem cells. Cells from any of these sources can be used in transplants.

What are bone marrow transplantation and peripheral blood stem cell transplantation?

Bone marrow transplantation (BMT) and peripheral blood stem cell transplantation (PBSCT) are procedures that restore stem cells that have been destroyed by high doses of chemotherapy and/or radiation therapy. There are three types of transplants:

Why are BMT and PBSCT used in cancer treatment?

One reason BMT and PBSCT are used in cancer treatment is to make it possible for patients to receive very high doses of chemotherapy and/or radiation therapy. To understand more about why BMT and PBSCT are used, it is helpful to understand how chemotherapy and radiation therapy work.

Chemotherapy and radiation therapy generally affect cells that divide rapidly. They are used to treat cancer because cancer cells divide more often than most healthy cells. However, because bone marrow cells also divide frequently, high-dose treatments can severely damage or destroy the patients bone marrow. Without healthy bone marrow, the patient is no longer able to make the blood cells needed to carry oxygen, fight infection, and prevent bleeding. BMT and PBSCT replace stem cells destroyed by treatment. The healthy, transplanted stem cells can restore the bone marrows ability to produce the blood cells the patient needs.

In some types of leukemia, the graft-versus-tumor (GVT) effect that occurs after allogeneic BMT and PBSCT is crucial to the effectiveness of the treatment. GVT occurs when white blood cells from the donor (the graft) identify the cancer cells that remain in the patients body after the chemotherapy and/or radiation therapy (the tumor) as foreign and attack them. (A potential complication of allogeneic transplants called graft-versus-host disease is discussed in Questions 5 and 14.)

What types of cancer are treated with BMT and PBSCT?

BMT and PBSCT are most commonly used in the treatment of leukemia and lymphoma. They are most effective when the leukemia or lymphoma is in remission (the signs and symptoms of cancer have disappeared). BMT and PBSCT are also used to treat other cancers such as neuroblastoma (cancer that arises in immature nerve cells and affects mostly infants and children) and multiple myeloma. Researchers are evaluating BMT and PBSCT in clinical trials (research studies) for the treatment of various types of cancer.

More:
Blood-Forming Stem Cell Transplants - National Cancer ...