Category Archives: Stem Cell Treatment


Wheelchair Kamikaze: Stem Cell Treatments for Multiple …

As all patients with MS are aware, the currently available treatments do nothing to cure the disease or repair the damage that it does. At their best, todays crop of disease modifying drugs (DMDs) quiet the disease, thereby improving the quality of life for many of the patients taking them, especially those suffering from relapsing remitting multiple sclerosis. However, many of these drugs carry with them risky side effect profiles, and though the newest compounds represent advances over their predecessors, patients are crying out for revolution, not evolution.

Stem cells could represent the revolution patients so fervently desire. Because of their ability to transform into almost any type of cell in the human body, stem cells may hold the key to achieving one of the holy grails of modern medicine, the regeneration and repair of damaged tissues. For MS patients, this could potentially mean the reversal of disability, and with it the long dreamt of disposal of wheelchairs, walkers, and canes. We are still a long way from that lofty goal, however, but the first few steps along the path to that salvation are currently being taken.

Though stem cell research is advancing in laboratories worldwide, the science of using stem cells to treat diseases in humans is still in its infancy. Because multiple sclerosis is a neurodegenerative disease, and its most prominent feature is the damage the disease does to the central nervous system, it is hoped that stem cells may hold the key to reversing the carnage wrought by the disease by facilitating the repair of damaged nerve cells. Furthermore, research has provided hints that stem cells may modulate the abnormal immune response seen in MS patients, and some researchers are even using stem cells to completely reboot the human immune system, a process that in some cases appears to stop the disease dead in its tracks.

Its important to understand that there are two very different approaches to using stem cells in the treatment of multiple sclerosis. One approach hopes to use the cells to repair damaged nervous systems; the other uses stem cells to provide the patient with a brand-new immune system, one that theoretically will not turn against a patients own body. The latter approach is known as hematopoietic stem cell transplant, or HSCT, and has been used on patients in trial settings for almost two decades.

HSCT involves ablating (destroying) a patients existing immune system through the use of powerful chemotherapy drugs, and then intravenously infusing a patients own stem cells back into their body, a process depicted in the below diagram:

As you might imagine, using powerful chemotherapy drugs to destroy a patients immune system is not without its dangers, and early attempts at this therapy had mortality rates as high as 10%. As researchers perfected their methodology and began using less dangerous chemotherapy agents, though, the risks associated with HSCT dropped dramatically. Today, most patients undergoing HSCT are subjected to chemotherapy and immunosuppressive agents that do not completely destroy their bone marrow, and the safety profile of the procedure has improved impressively. The results achieved by this HSCT can be dramatic. In one study (click here) that looked at the long-term outcomes of HSCT, after 11 years 44% of patients who had started out with aggressive relapsing remitting disease were free from disability progression. By comparison, only 10% of those who did not display signs of active inflammation before HSCT remained stable.

One of the primary proponents of HSCT therapy for MS patients, Dr. Richard Burt of Northwestern University, stresses that the proper selection of patients is the key to the success of the treatment. In fact, the title of the paper he recently published (click here) includes the phrase if no inflammation, no response. Its the only therapy to date that has been shown to reverse neurologic deficits, said Dr. Burt, But you have to get the right group of patients. In a study published by Dr. Burt in 2009, 17 out of 21 relapsing remitting patients improved after HSCT, and after three years all patients were free from progression (click here). Dr. Burt is currently heading up the HALT-MS trial for HSCT (click here). There are several centers around the world offering HSCT therapy, and there is a Worldwide HSCT Facebook group (click here) that contains information on all of the legitimate HSCT facilities worldwide. The group is populated by many folks who have undergone HSCT therapy. Be aware that its a private group, and you must request membership before being given access to all of the available information.

While HSCT holds much promise for putting the brakes on very aggressive relapsing remitting multiple sclerosis, it unfortunately has little to offer those with progressive disease, and does nothing to directly repair the damage done to the central nervous system by MS. Fortunately, another form of stem cell therapy proposes to do just that. Researchers in two centers in the US have received FDA approval to use bone marrow derived mesenchymal stem cells (MSCs) to repair nervous system damage, thereby possibly reversing the effects of the disease. There are additional trials using MSCs to treat MS underway internationally. Mesenchymal stem cells have the ability to transform (differentiate) into many different cell types, and could prove to be the building blocks necessary for repairing damage to the central nervous system as well as other organs and tissues. Experiments using MSCs to treat animal models of MS have been very encouraging (click here), demonstrating the cells abilities to modulate the immune system and spur the repair of damaged nervous system tissues. It remains to be seen whether the same effects can be achieved when using the cells to treat human beings.

The two FDA approved studies both use MSCs harvested from a patients own bone marrow, but employ them in very different ways. One study, currently underway at the Cleveland Clinic (click here), infuses mesenchymal stem cells intravenously into the patient, in the expectation that the cells will modulate the immune system and also initiate the regeneration of damaged tissues in the central nervous system. This study, which will eventually use MSCs to treat 24 patients, is proceeding slowly, but as the above linked to article details, one of the first patients treated is already reporting encouraging results.

The second FDA approved trial, to be conducted by the Tisch MS Research Center of New York (which just so happens to be my MS clinic), will use mesenchymal stem cells that have been transformed through a proprietary laboratory process into neural progenitor (NP) cells, injected directly into the spinal fluid (intrathecally)) of the patient (click here). Neural progenitor cells are a specialized type of stem cell specific to the nervous system that have the ability to transform into the various types of tissues damaged and destroyed by the MS disease process. Researchers at the Tisch Center have developed a way to get mesenchymal stem cells to differentiate into neural progenitor cells, and hope that by injecting these cells directly into the spinal fluid the NP cells will directly target the regenerative mechanisms of the central nervous system (click here). The stem cells themselves may act to repair damaged tissues, but theyve also been shown to have the ability to recruit existing stem cells within the brain and spinal cord to jumpstart the bodys own repair mechanisms.

Read more here:
Wheelchair Kamikaze: Stem Cell Treatments for Multiple ...

UCLA Research Shows Promising Method For Correcting Genetic Code To Treat Sickle Cell Disease

Posted: Thursday, March 12, 2015 7:08 PM

UCLA stem-cell researchers have shown that a novel stem-cell gene therapy method could one day provide a one-time, lasting treatment for the most common inherited blood disorder in the U.S. sickle cell disease. Publishedin the journal Blood, the study outlines a method that corrects the mutated gene that causes sickle cell disease and shows, for the first time, the gene correction method leads to the production of normal red blood cells. The study was directed by renowned stem cell researcher and UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research member, Dr. Donald Kohn.

People with sickle cell disease are born with a mutation in their beta-globin gene, which is responsible for delivering oxygen to the body through blood circulation. The mutation causes blood stem cellswhich are made in the bone marrowto produce distorted and rigid red blood cells that resemble a crescent or sickle shape. Consequently, the abnormally shaped red blood cells do not move smoothly through blood vessels, resulting in insufficient oxygen supply to vital organs. Anyone can be born with sickle cell disease, but it occurs more frequently in African Americans and Hispanic Americans.

The stem-cell gene therapy method described in the study seeks to directly correct the mutation in the beta-globin gene so bone marrow stem cells then produce normal, circular-shaped blood cells that do not sickle. The fascinating gene correction technique used specially engineered enzymes, called zinc-finger nucleases, tocut out the mutated genetic code and replace it with a corrected version that repairs the beta-globin mutation.

For the study, bone marrow stem cells donated by people with the sickle cell gene mutation were treated in the laboratory with the zinc-finger nucleases enzyme cutting method.Kohn and his team then demonstrated in mouse models that thecorrected bone-marrow stem cells have the capability to replicate successfully. The research showed that the method holds the potential to permanently treat the disease if a higher level of correction is achieved.

This is a very exciting result,said Dr. Kohn, professor of pediatrics atUCLAs David Geffen School of Medicine, professor of microbiology, immunology and molecular genetics in Life Sciences at UCLA, member of the UCLA Childrens Discovery and Innovation Institute at Mattel Childrens Hospital and senior author on the study. It suggests the future direction for treating genetic diseases will be by correcting the specific mutation in a patients genetic code. Since sickle cell disease was the first human genetic disease where we understood the fundamental gene defect,and since everyone with sickle cell has the exact same mutation in the beta-globin gene, it is a great target for this gene correction method.

To make the cut in the genetic code, Dr. Kohn and his team used zinc-finger nucleases engineered by Sangamo BioSciences, Inc., in Richmond. The enzymes can be designed to recognize a specific and targeted point in the genetic code. For the study, scientists at Sangamo BioSciences engineered the enzymes to create a cut at the site of the mutated genetic code that causes sickle cell disease. This break triggered a natural process of repair in the cell and at the same time, a molecule containing the correct genetic code was inserted to replace the mutated code.

The next steps in this research will involve improving the efficiency of the mutation correction process and performing pre-clinical studies to demonstrate that the method is effective and safe enough to move to clinical trials.

Symptoms of sickle cell disease usually begin in early childhood and include a low number of red blood cells (anemia), repeated infections and periodic episodes of pain. People with sickle cell disease typically have a shortened lifespan of just 36-40 years of age. The disease impacts more than 250,000 new patients worldwide each year. The only cure currently available for sickle cell disease is a transplant of bone marrow stem cells from a matched sibling, but matches are rare or can result in rejection of the transplanted cells.

This is a promising first step in showing that gene correction has the potential to help patients with sickle cell disease, said Megan Hoban, a senior graduate student in microbiology, immunology and molecular genetics and first author on the study. The study data provide the foundational evidence that the method is viable.

Read this article:
UCLA Research Shows Promising Method For Correcting Genetic Code To Treat Sickle Cell Disease

Neuralstem announces topline results of Phase II ALS trial

GERMANTOWN, MD, March 12, 2015 -- Neuralstem, Inc. (NYSE MKT: CUR) announced top line data from the Phase II trial of NSI-566 spinal cord-derived neural stem cells under development for the treatment of amyotrophic lateral sclerosis (ALS). The study met primary safety endpoints. The maximum tolerated dose of 16 million transplanted cells and the surgery was well tolerated.

Secondary efficacy endpoints at nine months post-surgery indicate a 47% response rate to the stem cell treatment, as measured by either near-zero slope of decline or positive slope of ALSFRS score in seven out of 15 patients and by either a near-zero decline, or positive strengthening, of grip strength in seven out of 15 patients. Grip strength is an indicator of direct muscle strength of the lower arm. ALSFRS is a standard clinical test used to evaluate the functional status of ALS patients. The average ALSFRS score for responders at 9 months after treatment was 37. Non-responders scored an average of 14. These scores represent 93%, versus 35%, of the baseline score retained, respectively, by the responders versus non-responders at 9 months, which is a statistically significant difference. As measured by an average slope of decline of ALSFRS, responders' disease progression was -0.007 point per day, while non-responders' disease progression was -0.1 per day, which was again statistically significant. Lung function as measured by Seated Vital Capacity shows that responder patients remained within 94% of their starting scores, versus 71% for non-responder patients. The trial met its primary safety endpoints. Both the surgery and cells were well-tolerated, with one patient experiencing a surgical serious adverse event.

"In this study, cervical intervention was both safe and well-tolerated with up to 8 million cells in 20 bilateral injections," said Karl Johe, PhD, Neuralstem Chief Scientific Officer. "The study also demonstrated biological activity of the cells and stabilization of disease progression in a subset of patients. As in the first trial, there were both responders and non-responders within the same cohort, from patients whose general pre-surgical presentation is fairly similar. However, we believe that through the individual muscle group measurements, we may now be able to differentiate the responders from the non-responders.

"Our therapy involves transplanting NSI-566 cells directly into specific segments of the cord where the cells integrate into the host motor neurons. The cells surround, protect and nurture the patient's remaining motor neurons in those various cord segments. The approximate strength of those remaining motor neuron pools can be measured indirectly through muscle testing of the appropriate areas, such as in the grip strength tests. We believe these types of endpoints, measuring muscle strength, will allow us to effectively predict patients that will respond to treatment, adding a sensitive measure of the therapeutic effects after treatment. Testing this hypothesis will be one of the primary goals of our next trial." The full data is being compiled into a manuscript for publication.

"We believe the top-line data are encouraging," said Eva Feldman MD, PhD, Director of the A. Alfred Taubman Medical Research Institute and Director of Research of the ALS Clinic at the University of Michigan Health System, and an unpaid consultant to Neuralstem. "We were able to dose up to 16 million cells in 40 injections, which we believe to be the maximum tolerated dose. As in the first trial, the top-line data show disease stabilization in a subgroup of patients. Perhaps equally as important, we believe the top-line data may support a method of differentiating responders from non-responders, which we believe will support our efforts as we move into the next, larger controlled trial expected to begin this summer."

"The top-line data look very positive and encouraging. If this proportion of patients doing well after treatment can be corroborated in future therapeutic trials, it will be better than any response seen in any previous ALS trials," said site principal investigator, Jonathan D. Glass, MD, Director of the Emory ALS Center. "Elucidating which factors define a patient who may have a therapeutic response to the stem cell treatment will be the next key challenge. We are hopeful that a set of predictive algorithms can be established to help pre-select the responders in our future trials."

"We were very excited to participate as a site in this clinical trial," said Merit Cudkowicz, MD, Chief of Neurology, Massachusetts General Hospital and Co-Chair of the Northeast ALS Consortium (NEALS). "We are hopeful with respect to the top-line results and we need to move swiftly and safely forward to confirm the responder effect and identify people who might benefit from this treatment approach."

The open-label, dose-escalating trial treated 15 ambulatory patients, divided into 5 dosing cohorts, at three centers, Emory University Hospital in Atlanta, Georgia, the ALS Clinic at the University of Michigan Health System, in Ann Arbor, Michigan, and Massachusetts General Hospital in Boston, Massachusetts, and under the direction of principal investigator (PI), Eva Feldman, MD, PhD, Director of the A. Alfred Taubman Medical Research Institute and Director of Research of the ALS Clinic at the University of Michigan Health System. Dosing increased from 1 million to 8 million cells in the cervical region of the spinal cord. The final trial cohort also received an additional 8 million cells in the lumbar region of the spinal cord.

The company anticipates commencing a later-stage, multicenter trial of NSI-566 for treatment of ALS in 2015. Neuralstem has received orphan designation by the FDA for NSI-566 in ALS.

###

Read more from the original source:
Neuralstem announces topline results of Phase II ALS trial

The Miami Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in Orlando, Florida

Orlando, Florida (PRWEB) March 12, 2015

The Miami Stem Cell Treatment Center announces a series of free public seminars on the use of adult stem cells for various degenerative and inflammatory conditions. They will be provided by Dr. Thomas A. Gionis, Surgeon-in-Chief and Dr. Nia Smyrniotis, Medical Director and Surgeon.

The seminars will be held on Tuesday, March 17, 2015, at 12:30 pm, 2:30 pm and 4:30 pm at Seasons 52, 7700 Sand Lake Road, Orlando, FL 32819. Please RSVP at (561) 331-2999.

The Miami Stem Cell Treatment Center (Miami; Boca Raton; Orlando; The Villages, FL), along with sister affiliates, the Irvine Stem Cell Treatment Center (Irvine; Westlake Villages, CA) and the Manhattan Regenerative Medicine Medical Group (Manhattan, NY), abide by approved investigational protocols using adult adipose derived stem cells (ADSCs) which can be deployed to improve patients quality of life for a number of chronic, degenerative and inflammatory conditions and diseases. ADSCs are taken from the patients own adipose (fat) tissue (found within a cellular mixture called stromal vascular fraction (SVF)). ADSCs are exceptionally abundant in adipose tissue. The adipose tissue is obtained from the patient during a 15 minute mini-liposuction performed under local anesthesia in the doctors office. SVF is a protein-rich solution containing mononuclear cell lines (predominantly adult autologous mesenchymal stem cells), macrophage cells, endothelial cells, red blood cells, and important Growth Factors that facilitate the stem cell process and promote their activity.

ADSCs are the body's natural healing cells - they are recruited by chemical signals emitted by damaged tissues to repair and regenerate the bodys injured cells. The Miami Stem Cell Treatment Center only uses Adult Autologous Stem Cells from a persons own fat No embryonic stem cells are used; and No bone marrow stem cells are used. Current areas of study include: Emphysema, COPD, Asthma, Heart Failure, Heart Attack, Parkinsons Disease, Stroke, Traumatic Brain Injury, Lou Gehrigs Disease, Multiple Sclerosis, Lupus, Rheumatoid Arthritis, Crohns Disease, Muscular Dystrophy, Inflammatory Myopathies, and degenerative orthopedic joint conditions (Knee, Shoulder, Hip, Spine). For more information, or if someone thinks they may be a candidate for one of the adult stem cell protocols offered by the Miami Stem Cell Treatment Center, they may contact Dr. Gionis or Dr. Smyrniotis directly at (561) 331-2999, or see a complete list of the Centers study areas at: http://www.MiamiStemCellsUSA.com.

About the Miami Stem Cell Treatment Center: The Miami Stem Cell Treatment Center, along with sister affiliates, the Irvine Stem Cell Treatment Center and the Manhattan Regenerative Medicine Medical Group, is an affiliate of the California Stem Cell Treatment Center / Cell Surgical Network (CSN); we are located in Boca Raton, Orlando, Miami and The Villages, Florida. We provide care for people suffering from diseases that may be alleviated by access to adult stem cell based regenerative treatment. We utilize a fat transfer surgical technology to isolate and implant the patients own stem cells from a small quantity of fat harvested by a mini-liposuction on the same day. The investigational protocols utilized by the Miami Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Health, Office of Human Research Protection (OHRP); and our studies are registered with Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information, visit our websites: http://www.MiamiStemCellsUSA.com, http://www.IrvineStemCellsUSA.com , or http://www.NYStemCellsUSA.com.

Go here to read the rest:
The Miami Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in Orlando, Florida

Stem cells in the brain: Limited self-renewal

The generation of neurons (neurogenesis) in humans is predominantly limited to development; in the adult stage it takes place in only a few regions of the brain. These regions contain neural stem cells that generate neurons in a process with various intermediary stages.

Stem cell renewal is limited - total number drops

Until now it was thought that maintaining the stem cell pool was based on the self-renewal of individual stem cells. The team of scientists headed by Dr. Jovica Ninkovic and Professor Dr. Magdalena Gtz were able to refute this: Both the self-renewal rate and the diversity of neurons formed from the stem cells are limited, and the number of stem cells decreases with age.

"Our findings explain why neurogenesis declines in later years, as there are fewer and fewer neural stem cells. At the same time, we gained new knowledge on basic mechanisms of neurogenesis that until now were not understood," says first author Dr. Filippo Calzolari.

Therapeutic approaches must focus on stem cells themselves

Approaches to new therapies for brain diseases, such as stroke or dementia, for example, particularly concentrate on replacing lost neurons by stimulating the generation of new cells from stem cells. "In light of the fact that the stem cell supply is limited, we must now also look for ways to promote the self-renewal rate of the stem cells themselves and maintain the supply for a longer time," emphasizes Gtz, Director of the Institute for Stem Cell Research at the Helmholtz Zentrum Mnchen and Chair of the Institute of Physiological Genomics at LMU.

###

Original publication:

Calzolari, F. et al. (2015). Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nature Neuroscience, doi: 10.1038/nn.3963

Link to publication: http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.3963.html

See original here:
Stem cells in the brain: Limited self-renewal

Stem Cell Clones Could Yield New Drug Treatment for Deadly Blood Disease

Durham, NC (PRWEB) March 11, 2015

Scientists report in the current issue of STEM CELLS Translational Medicine that they have been able to clone a line of defective stem cells behind a rare, but devastating disease called Fanconi Anemia (FA). Their achievement opens the door to drug screening and the potential for a new, safe treatment for this often fatal disease.

FA is a hereditary blood disorder that leads to bone marrow failure (FA-BMF) and cancer. Patients who suffer from FA have a life expectancy of 33 years. Currently, a bone marrow transplant offers the only possibility for a cure. However, this treatment has many risks associated with it, especially for FA patients due to their extreme sensitivity to radiation and chemotherapy.

Although various consequences in hematopoietic stem cells (the cells that give rise to all the other blood cells) have been attributed to FA-BMF, its cause is still unknown, said Megumu K. Saito, M.D., Ph.D., of Kyoto Universitys Center for iPS Cell and Application, and a lead investigator on the study. His laboratory specializes in studying the kinds of pediatric diseases in which a thorough analysis using mouse models or cultured cell lines is not feasible, so they apply disease-specific induced pluripotent stem cells (iPSCs) instead.

To address the FA issue, he explained, our team (including colleagues from Tokai University School of Medicine) established iPSCs from two FA patients who have the FANCA gene mutation that is typical in FA. We were then able to obtain fetal type immature blood cells from these iPSCs.

When observing the iPSCs, the researchers found that the characteristics of immature blood cells from FA-iPSCs were different from control cells. The FA-iPSCs showed an increased DNA double-strand break rate, as well as a sharp reduction of hematopoietic stem cells compared to the control group of non-FA iPSCs.

These data indicate that the hematopoietic consequences in FA patients originate from the earliest hematopoietic stage and highlight the potential usefulness of iPSC technology for explaining how FA-BMF occurs, said Dr. Saito. Since conducting a comprehensive analysis of patient-derived affected stem cells is not feasible without iPSC technology, the technology provides an unprecedented opportunity to gain further insight into this disease.

This work shows promise for identifying the initial pathological event that causes the disease, which would be a first step in working toward a cure, said Anthony Atala, M.D., Editor-in-Chief of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine.

###

The full article, Pluripotent cell models of Fanconi anemia identify the early pathological defect in human hemoangiogenic progenitors, can be accessed at http://www.stemcellstm.com.

Link:
Stem Cell Clones Could Yield New Drug Treatment for Deadly Blood Disease

Media portray unrealistic timelines for stem cell therapies

A new study by University of Alberta law researchers reveals sometimes overly optimistic news coverage of clinical translation of stem cell therapies--and as spokespeople, scientists need to be mindful of harnessing public expectations.

"As the dominant voice in respect to timelines for stem cell therapies, the scientists quoted in these stories need to be more aware of the importance of communicating realistic timelines to the press," said researcher Kalina Kamenova, who co-authored the study with professor Timothy Caulfield in the University of Alberta's Health Law Institute, based in the Faculty of Law.

Their analysis of media coverage showed that most news reports were highly optimistic about the future of stem cell therapies and forecasted unrealistic timelines for clinical use. The study, published in the latest issue of Science Translational Medicine, examined 307 news reports covering translational stem cell research in major daily newspapers in Canada, the United States and the United Kingdom between 2010 and 2013.

While the field of stem cell research holds tremendous promise, "it has also been surrounded by tremendous hype, and we wanted to quantify that in some degree," Caulfield said. "Pop culture representations have an impact on how the public perceives the readiness of stem cell research, and that in turn feeds into stem cell tourism, marketing of unproven therapies and even the public's trust in research. We wanted to provide findings that would help inform the issue."

Their study found that 69 per cent of all news stories citing timelines predicted that therapies would be available within five to 10 years or even sooner. At the same time, the press overlooked challenges and failures in therapy translation, such as the discontinuation of the first FDA-approved clinical trial of an embryonic stem cell-derived therapy for spinal cord injuries in 2011. The biotech company conducting the trial was a leader in embryonic stem cell therapies and its decision to stop its work on stem cells was considered a significant setback for the field.

As well, ethical concerns about the use of human embryonic stem cells were displaced from the forefront of news coverage, while the clinical translation of stem cell therapies and new discoveries, such as hockey star Gordie Howe's recent treatment, grabbed the headlines instead.

"Our findings showed that many scientists have often provided either by implication or direct quotes, authoritative statements regarding unrealistic timelines for stem cell therapies and media hype can foster unrealistic public expectations about clinical translation and increased patient demand for unproven stem cell therapies," Caulfield noted.

While stem cell therapy research is progressing and has seen a dramatic increase in the past decade of clinical trials for treatments, the vast majority of these studies are still in the safety-testing stage and involve a limited number of participants, Kamenova noted.

"The approval process for new treatments is long and complicated, and only a few of all drugs that enter pre-clinical testing are approved for human clinical trials. It takes on average 12 years to get a new drug from the lab to the market, and additional 11 to 14 years of post-market surveillance," she added.

The science world is under pressure to come up with cures for what ails us, but "care needs to be taken by the media and the research community so that advances in research and therapy are portrayed in a realistic manner," Caulfield said.

Go here to read the rest:
Media portray unrealistic timelines for stem cell therapies

Girl meets Austrian stem cell donor who helped her beat cancer

Sabrina Chahir was waiting to meet the man who helped send her cancer into remission.

The 8-year-old from Mount Prospect, who likes art and takes piano lessons, knew he had flown across an ocean to see her, nearly four years after he donated his stem cells to help rid her blood of cancer that could have taken her life.

Thursday evening, Sabrina and Maximilian Eule, 30, had their first face-to-face meeting at a celebration in Schaumburg with Sabrina's friends and family.

The two had emailed and video-chatted. But Sabrina's mother, Natalia Wehr, said it was important to her to meet Eule in person.

"It's your daughter, and this person we don't know did something so wonderful," Wehr said. "You need to know who that is."

Sabrina was diagnosed with acute lymphoblastic leukemia, one of the most common types of cancer in children, when she was 2 1/2. The cancer cells were in more than 80 percent of her blood.

The girl's cancer had gone into remission before, but she soon relapsed. After rounds of treatment and infections that caused Sabrina to go blind temporarily, doctors at Lurie Children's Hospital of Chicago told Sabrina's family she would need a stem cell transplant.

"It was the most painful thing you can imagine," Wehr said. "Not knowing if your child is going to live or not. It's the worst feeling in the world."

Ten to 15 percent of children diagnosed with this type of leukemia need a stem cell transplant, but the treatment is more common for other types of cancer, said Dr. Reggie Duerst, one of Sabrina's doctors and director of the stem cell transplant program at Lurie.

And while doctors said the best donor matches are often people of similar racial and ethnic backgrounds Sabrina is Hispanic and Arab her match, located through a computer database, turned out to be a German man who lives in Austria.

See the article here:
Girl meets Austrian stem cell donor who helped her beat cancer

'Miraculous' stem-cell treatment reverses symptoms of multiple sclerosis

A new stem-cell treatment that reboots the entire immune system is enabling multiple sclerosis sufferers to walk, run and even dance again, in results branded "miraculous" by doctors.

Patients who have been wheelchair-bound for 10 years have regained the use of their legs in the ground-breaking therapy, while others who were blind can now see again. The treatment is the first to reverse the symptoms of MS, which is incurable, and affects about 100,000 people in Britain.

The two dozen patients who are taking part in the trials at the Royal Hallamshire Hospital, Sheffield, and Kings College Hospital, London, have effectively had their immune systems "rebooted". Although it is unclear what causes MS, some doctors believe it is the immune system itself that attacks the brain and spinal cord, leading to inflammation pain, disability and, in severe cases, death.

In the new treatment, specialists use a high dose of chemotherapy to knock out the immune system before rebuilding it with stem cells taken from the patient's own blood.

Advertisement

"Since we started treating patients three years ago, some of the results we have seen have been miraculous," Prof Basil Sharrack, a consultant neurologist at Sheffield Teaching Hospitals NHS Foundation Trust, said.

"This is not a word I would use lightly, but we have seen profound neurological improvements."

Holly Drewry, 25, of Sheffield, was wheelchair bound after the birth of her daughter, Isla, two years ago. She claims the new treatment has transformed her life.

"It worked wonders," she said. "I remember being in the hospital ... after three weeks, I called my mum and said: 'I can stand'. We were all crying. I can run a little bit, I can dance. I love dancing, it is silly but I do."

However, specialists warn that patients need to be fit to benefit from the new treatment.

Continued here:
'Miraculous' stem-cell treatment reverses symptoms of multiple sclerosis