Category Archives: Stem Cell Treatment


MS stem cell treatment hailed 'miraculous' as patients make dramatic recovery

Pioneering treatment has allowed wheelchair-bound patients to run again Patient given high dose of chemotherapy to wipe out faulty immune system Therapy then uses person's own stem cells to fight the devastating disease It may be the first ever treatment tosuccessfullyreverse symptoms of MS

By Fiona Macrae for the Daily Mail

Published: 13:27 EST, 1 March 2015 | Updated: 02:54 EST, 2 March 2015

11k shares

94

View comments

Britons left wheelchair-bound by multiple sclerosis can walk, run and even dance again after being given a pioneering stem cell treatment.

Doctors have described the recoveries as miraculous, while patients say they have been given their lives back.

The treatment uses a patients own stem cells the bodys master cells to fight the disease.

Recovery: MS sufferer Holly Drewerybecame wheelchair-bound after the birth of daughter Isla, but thanks tothe stem cell transplant shecan dance, run and chase after Isla in the park

Continue reading here:
MS stem cell treatment hailed 'miraculous' as patients make dramatic recovery

'Stem cell' test could identify most aggressive breast cancers

Testing breast cancer cells for how closely they resemble stem cells could identify women with the most aggressive disease, a new study suggests.

Researchers found that breast cancers with a similar pattern of gene activity to that of adult stem cells had a high chance of spreading to other parts of the body.

Assessing a breast cancer's pattern of activity in these stem cell genes has the potential to identify women who might need intensive treatment to prevent their disease recurring or spreading, the researchers said.

Adult stem cells are healthy cells within the body which have not specialised into any particular type, and so retain the ability to keep on dividing and replacing worn out cells in parts of the body such as the gut, skin or breast.

A research team from The Institute of Cancer Research, London, King's College London and Cardiff University's European Cancer Stem Cell Research Institute identified a set of 323 genes whose activity was turned up to high levels in normal breast stem cells in mice.

The study is published today (Wednesday) in the journal Breast Cancer Research, and was funded by a range of organisations including the Medical Research Council, The Institute of Cancer Research (ICR), Breakthrough Breast Cancer and Cancer Research UK.

The scientists cross-referenced their panel of normal stem cell genes against the genetic profiles of tumours from 579 women with triple-negative breast cancer - a form of the disease which is particularly difficult to treat.

They split the tumour samples into two categories based on their 'score' for the activity of the stem cell genes.

Women with triple-negative tumours in the highest-scoring category were much less likely to stay free of breast cancer than those with the lowest-scoring tumours. Women with tumours from the higher-scoring group had around a 10 per cent chance of avoiding relapse after 10 years, while women from the low-scoring group had a chance of around 60 per cent of avoiding relapse.

The results show that the cells of aggressive triple-negative breast cancers are particularly 'stem-cell-like', taking on properties of stem cells such as self-renewal to help them grow and spread. They also suggest that some of the 323 genes could be promising targets for potential cancer drugs.

See the rest here:
'Stem cell' test could identify most aggressive breast cancers

Infants with rare bone disease improve bone formation after cell transplantation

Severe hypophosphatasia generally fatal during infancy, bone marrow transplant along with mensenchymal stem cell transplants offers hope

Putnam Valley, NY. (Feb 9, 2015) - Recent research carried out by a team of researchers in Japan has investigated the use of bone marrow transplants (BMTs) to treat hypophosphatasia (HPP). In this study, the researchers carried out BMT for two infants with HPP in combination with allogenic (other-donated) mesenchymal stem cell transplants (MSCTs). The allogenic MSC donors were a parent of the infant.

The study will be published in a future issue of Cell Transplantation and is currently freely available on-line as an unedited early e-pub at: http://ingentaconnect.com/content/cog/ct/pre-prints/content-CT-1337_Taketani_et_al

"Hypophosphatasia" (HPP) is a rare and most often fatal genetic bone disease affecting infants that has no current treatment. The disease is caused by mutations in the ALPL gene, which encodes alkaline phosphatase (ALP). Patients with severe HPP develop bone impairment and have extremely low levels of ALP activity, an enzyme necessary for bone mineralization.

Although there are mild and more severe forms, severe hypophosphatasia prevents proper bone mineralization during perinatal development. When the disease develops perinatally, many infants are still-born, with little evidence of bone mineralization. HPP can also appear in later infancy, generally before an infant reaches the age of six months, with the result that most afflicted infants do not live past the age of six months. Milder forms of HPP can present in later youth or in adulthood.

"Mesenchymal stem cells (MSCs) reside in bone marrow and other tissues and have a self-renewal capacity so that after transplantation they can differentiate into various cell lineages, including bone and cartilage," said Dr. Takeshi Taketani of the Division of Blood Transfusion at Shimane University Hospital in Shimane, Japan. "We performed multiple infusions of MSCs for two infant patients with severe HPP who had already undergone BMT. The adverse events from the BMT were managed and there were no adverse events from the MSC infusions."

After each infant had undergone BMT, one infant received four MSCTs and a second infant received nine MSCTs. Previous research had revealed that MSCT without a prior BMT was ineffective.

The researchers reported that the two infants receiving both BMT and MSCTs improved not only in terms of bone mineralization, but also saw improvements in muscle mass, respiratory function and mental development. Both children continue to survive at age three.

"Our data suggest that allogenic MSCT combined with BMT might be one of the safer and more effective remedies for patients with severe HPP, although long-term effectiveness remains unknown and warrants further study," concluded the researchers. "We need to establish curative, MSC-based treatment strategies that can maintain the long-term survival and differentiation capabilities of transplanted allo-MSCs."

"This study highlights the promise of stem cells in presenting a new frontier for regenerative medicine, with an improvement of HPP-associated symptoms and survival following BMT and MSCT." said Dr. David Eve, Cell Transplantation associate editor, and Instructor of neurosurgery and brain repair at the University of South Florida School of Medicine. "In order to elucidate the mechanisms behind recovery and further extrapolate the study to all HPP patients, a larger cohort and more long term follow-up are needed."

The rest is here:
Infants with rare bone disease improve bone formation after cell transplantation

Gordie Howes Son Says Dads Recovery No Fluke, Excited For Future Of Stem Cell Treatment

By Ashley Dunkak @AshleyDunkak

CBS DETROIT Murray Howe, the head of the radiology department at ProMedica Toledo Hospital, understands the skepticism of those who question the stem cell treatment his father Gordie, also known as Mr. Hockey, received in December in Tijuana, Mexico.

Gordies health had been slowly declining even before the stroke he suffered in late October, and he was essentially bedridden when Murray and his brother Marty took him to Mexico to participate in a clinical trial. They did not have high hopes he was so far gone, Murray recalled but after each step of the two-part process, Gordie improved rapidly, once again able to walk and talk, repossessed of his wit and humor. Murray and his siblings were floored. So were the therapists who had been working with Gordie after his stroke.

Some physicians have scoffed at the idea of stem cells helping an individual who has had a stroke, but Murray a doctor himself says his fathers recovery after treatment opened his eyes to stem cells as a potential game-changer.

Speaking as a medical professional, its so frustrating when you cant really do anything for a patient, said Howe, the head of the radiology department at Toledo Hospital. You give them kind of a death sentence and you say, Well thats all you get. Theres nothing we can really offer. Its so sad. So now to be able to have on the brink of some huge hope for these patients is really, really exciting. As a medical professional, to me, theres never been anything more exciting in my entire career than this.

Murray does not blame people for being skeptical, and he agrees more research on the capabilities of stem cells is needed to show definitively what they can do. To say Murray is optimistic, however, would be a serious understatement.

Theres quite a few individuals out there who are calling themselves stem cell experts or this or that, kind of saying that theres no data to support that stem cells work on ischemic strokes, but thats really not true at all, Murray said. Theres at least 50 clinical studies that are going on across the world that are demonstrating its safety and working on demonstrating its efficacy, and the preliminary results on the ones that Ive seen are tremendous, so the data is clearly there. I think that people across the world in the next couple years are going to be as blown away as I was with our father when they see the power of stem cells and what they do for patients with not just stroke but with dementia and traumatic brain injuries and spinal cord injuries.

My dads case is by no means the only one, Murray continued. Hes kind of like in the middle. Theres examples of patients that have had a far greater result. Im so thrilled for my dad, but by no means was my dad a fluke or a random event. The studies are ongoing, and I think the point of any of the, I guess, naysayers is that Gordie Howe may be anecdotal and we need more research, and I totally agree with that. In fact, based on what weve seen with my father, I would say that we as a country and as a world should make a concerted effort to put as much time and energy as we can into investigating the power of stem cells because I really think that based on what Im seeing this is going to be a game-changer for medicine and a game-changer for quality of life for so many people that have non-option diseases like stroke or dementia.

Heading to Tijuana for treatment was a last-ditch effort to save Gordie, but it was not one the family undertook on a whim, Murray said.

Im well aware of hucksters and con games and this type of thing, and our family has never been about traveling the world to find the miracle cure, Murray said. Im a very mainstream physician. Ive always relied heavily on data and on long-term studies to prove the safety and efficacy of any treatment. For our father, we just our goal has always just been quality of life and comfort. When my mom was sick with her dementia that was our only priority was just keep her comfortable, keep her healthy, as healthy as possible, and keep her safe, and that was it. We had a number of people contact us saying, You know, we could help your mom with this pill and that pill, and I looked at everything that anybody presented to us, but to me there was nothing that showed any data that would made me want to experiment, if you will, with my mom.

See the original post:
Gordie Howes Son Says Dads Recovery No Fluke, Excited For Future Of Stem Cell Treatment

Stem cell research for medical purposes is okay, says Jakim

Stem cell research for medical purposes is okay, says Jakim

Kuala Lumpur: Despite numerous religious debates on therapeutic cloning and stem cell research, the Malaysian Department of Islamic Development (Jakim) on Thursday stated that when it was done for medical purposes, this form of treatment was actually encouraged.

A press statement issued by Jakim Thursday said following the 67th National Council Fatwa meeting on Feb 22, it was decided that medical treatment which replaces and recreates damaged cells and organs was encouraged as these were meant for the well-being of the people.

"It is encouraged to use frozen or leftover embryos from in-vitro fertilisation (IVF) for research purposes, with the condition that the couple's consent is obtained before the embryos reach a blastocyst stage.

"The main purpose of the therapeutic cloning is to save a human life; it produces non-foetal stem cells.

"For Somatic Cell Nuclear Transfer, the stem cells are taken from the embryo to obtain tissues or organs meant to treat the patients that provide DNA."

The statement added that research carried out on embryos must be done before it reaches a stage where the foetus is attached to the uterus wall as at any point prior to that, the embryo can feel no pain.

"This is similar to the fatwa issued by Singapore's Islamic Council which stated that any cloning process done to produce spare organs for medical or research purposes is encouraged. The field is still in the research phase, but may be realised in future as it would greatly benefit those who suffer from heart or kidney problems.

"These methods are meant for the well-being of the people."

Meanwhile, the Government, through the Malaysian Islamic Development Department (Jakim), has allocated RM468 million this year to pay for the allowances of religious teachers, imams and district mosque administration coordinators throughout the country.

More:
Stem cell research for medical purposes is okay, says Jakim

Ciplas Stempeutics gets US patent for stemcell product

Drug used to treat limb disorder

Mumbai, March 4:

Stempeutics Research has received a process patent from the United States Patent and Trademarks Office for its novel stem cell-based drug Stempeucel.

The company is part of the Manipal Education and Medical Group and drugmaker Cipla entered into a joint alliance with it in 2009.

The drug will initially be used for the treatment of Critical Limb Ischemia (CLI), the companies said in a joint note, adding that the treatment option directly addresses the root cause of the disease, unlike others that treat the symptoms and not the disease.

CLI is a progressive form of peripheral arterial disease that blocks arteries in the lower extremities of the body, resulting in reduced blood flow.

It is a debilitating disease which affects patients with severe pain in the feet or toes, besides the development of sores and wounds, the note said.

If left untreated, patients may have to undergo amputation of the affected limb, it added.

Stempeutics has also submitted its applications to the regulatory Drug Controller General of India (DCGI) to obtain marketing authorisation for Stempeucel.

The availability of the product in the local market is subject to DCGI approvals.

Follow this link:
Ciplas Stempeutics gets US patent for stemcell product

Riordan-McKenna Institute of Regenerative Orthopedics and Stem Cell Therapy Announces Open House in Southlake, Texas …

Southlake, Texas (PRWEB) March 05, 2015

RMI specializes in Stemnexa non-surgical treatment of acute and chronic orthopedic conditions such as meniscal tears, ACL injuries, rotator cuff injuries, runners knee, tennis elbow, and joint pain due to degenerative conditions like osteoarthritis. Stemnexa may also be administered during orthopedic surgeries to promote better post-surgical outcomes.

Stemnexa combines the latest, patented scientific advances in nearly pain-free bone marrow harvesting with two complimentary cellular technologies: Bone Marrow Aspirate Concentrate (BMAC) and *AlphaGEMS amniotic tissue product.

BMAC contains a patients own mesenchymal stem cells (MSC,) hematopoietic stem cells (CD34+), growth factors and other progenitor cells. AlphaGEMS is composed of collagens and other structural proteins, which provide a biologic matrix that supports angiogenesis, tissue growth and new collagen during tissue regeneration and repair.

*AlphaGEMS product is harvested from donated amniotic sac tissue after normal healthy births. For more information about AlphaGEMS, please visit: http://www.rmiclinic.com/non-surgical-stem-cell-injections-joint-pain/stemnexa-protocol/

Find out more about RMI in the February edition of Society Life Magazine.

Riordan-McKenna Institute

Home

801 E. Southlake Blvd. Southlake, Texas 76092

Tel: (817) 776-8155 Toll Free: (877) 899-7836 Fax: (817) 776-8154

Originally posted here:
Riordan-McKenna Institute of Regenerative Orthopedics and Stem Cell Therapy Announces Open House in Southlake, Texas ...

Behind the scenes of the world's first commercial stem-cell therapy

Contrasto/eyevine

Biologist Graziella Pellegrini has worked on stem-cell therapy at four different Italian institutions, including a hospital run by priests.

Last month saw a major landmark for regenerative medicine: the first time that a stem-cell therapy beside the use of cells extracted from bone marrow or umbilical cord blood had been cleared for sale by any regulatory agency in the world. The European Commission approved Holoclar for use in cases of blindness caused by burning. The achievement is all the more remarkable because Holoclar was developed by a small laboratory in Italy, a country better known for its lack of support for life sciences and for its recent tolerance of an unproven stem-cell concoction, marketed by the Stamina Foundation, that claimed to be a panacea for many diseases. Nature talked to Graziella Pellegrini from the University of Modena about how she and her colleagues overcame the many obstacles to take the therapy from bench to bedside.

The surface of the cornea the transparent tissue that sits in front of the iris is constantly renewed in a healthy eye, to keep it smooth and clear. New corneal cells are generated from a niche of stem cells in the limbus, an area between the cornea and the white of the eye. But if the limbus is destroyed by burning, then the white of the eye grows over the cornea and becomes criss-crossed with blood vessels. This causes chronic pain and inflammation, as well as blindness.

I had seen patients who had starting seeing again after 20 years of blindness: how could I stop?

Holoclar treatment can help to reverse these symptoms by adding new stem cells to seed the regrowth of a transparent cornea. But there must be enough surviving limbus in one eye to allow 1 or 2 square millimetres of tissue to be extracted. This tissue is then cultivated on a support made from modified human fibrin (a biodegradable blood protein) under stringent clinical conditions until at least 3,000 stem cells have been generated. The culture, still on its fibrin scaffold, is transplanted into the injured eye, which has been scraped clear of the invading white, and from there stem cells seed the regrowth of a transparent cornea, free of blood vessels, within a year.

Only around 1,000 people annually in the whole of Europe will be eligible: burns victims who have become blind but whose eyes have not been too extensively destroyed.

It is always very hard to find research money in Italy. We had to uproot many times. I first started working on the concept of the therapy, with my colleague Michele De Luca, in 1990 when we were post-docs at the University of Genova studying the fundamental biology of epithelial cells the cells that form the sheets lining organs, and also the skin. In 1996, we moved to Rome to the Institute Dermopatico Immaculate, a hospital run by priests who were highly committed to research and who offered us wonderful facilities and access to patients. But in the end they did not want to support our eye work through to the clinic. So in 2002, we moved to the Veneto Eye Bank Foundation in Venice, which had an epithelial stem-cell laboratory. Then in 2008 we moved again, to the Centre for Regenerative Medicine Stefano Ferrari, which had been newly created at the University of Modena specifically to incubate such types of advanced therapy.

Italy is not supportive of biomedical research. Things might have been easier if we had not had to struggle so much. But I am Italian, and the best way to stimulate me to find a solution is to tell me I cant do something. And despite the problems, research into advanced therapies does have a history here. One of the worlds first gene-therapy trials on children with an immunodeficiency disorder was carried out in Milan.

We published the results of our first two patients both successes in 19971. That was proof of principle that the therapy could work. Our major clinical paper, on 112 patients, was published in 20102. Around 77% of the transplants were fully successful, and a further 13% partially successful.

See the original post here:
Behind the scenes of the world's first commercial stem-cell therapy

Howe's recovery shows stem-cell advances

Published: Sunday, 3/1/2015 - Updated: 50 seconds ago

BY MARLENEHARRIS-TAYLOR BLADE STAFF WRITER

Hockey legend Gordie Howes star power is raising awareness in the United States and Canada about advances in stem-cell therapies as he continues what is being called a miraculous recovery from a massive stroke.

Those closest to him, including his son, Toledo radiologist Dr. Murray Howe, are convinced the former Detroit Red Wings player would have died if he had not traveled to a medical clinic in Tijuana, Mexico, for an experimental stem-cell treatment not yet available in the United States.

After a debilitating stroke on Oct. 26, Mr. Howe, 86, had a few weeks of slight recovery, but then his health went downhill quickly, said Dr. Howe, director of sports medicine imaging for ProMedica Toledo Hospital. The family had started preparing for his funeral. But that all turned around after he had the adult stem-cell treatment on Dec. 8.

If you saw him now, you wouldnt know he had a stroke, Dr. Howe said.

Its been wonderful. Every day I would say hes a little bit better, and there are little hints of improvement. Certainly in the first month, every day his strength, coordination, and balance were better. He has been eating like a horse. He had lost 20 pounds, and now he has gained back 25 pounds, so he is pretty close to his playing weight now, Dr. Howe said.

Amazing results

In describing his fathers treatment and recovery in the last three months, Dr. Howe does not hesitate to use words such as unbelievable, astonishing, and amazing.

Eight hours after Mr. Howe received what is called a lumbar puncture, where stem cells were injected in the spinal fluid of his lower back by an anesthesiologist, he went from being bedridden and only mumbling short sentences to speaking clearly and walking with assistance, Dr. Howe said.

Read the rest here:
Howe's recovery shows stem-cell advances