Category Archives: Stem Cell Treatment


TiGenix: TiGenix and Lonza sign agreement for the manufacture of stem cell-based treatment of complex perianal …

PRESS RELEASE

TiGenix and Lonza sign agreement for the manufacture of stem cell-based treatment of complex perianal fistulas in Crohn's disease

TiGenix's Cx601 product is currently in Phase 3 in Europe for the treatment of complex perianal fistulas in Crohn's disease

Lonza to manufacture Cx601 product for TiGenix's Phase 3 trial in the US at Lonza's Walkersville, Maryland (US) facility

Basel, Switzerland, and Leuven, Belgium, 12 February 2015 - Lonza, a global leader in biological and cell therapy manufacturing and TiGenix, an advanced biopharmaceutical company focused on developing and commercialising novel therapeutics from allogeneic expanded adipose-derived stem cells (eASCs) in inflammatory and autoimmune diseases, announced today an agreement for the supply of TiGenix's eASC product, Cx601. Under the agreement, Lonza will manufacture material for the Phase 3 trial of Cx601 in the US at Lonza's cell therapy production facility in Walkersville, Maryland (US).

Cx601 is a locally-injected suspension of allogeneic expanded adipose-derived stem cells (eASCs) for the treatment of complex perianal fistulas in Crohn's disease patients, currently in Phase 3 of clinical development in Europe. Following the positive feedback received at a meeting with the Center for Biologics Evaluation and Research within the US Food and Drug Administration (FDA), TiGenix is moving ahead with the development of Cx601 for the US market. To supply Cx601 for a Phase 3 trial in the US, and potentially for the US market when the product has been fully approved, TiGenix has chosen to partner with Lonza as its contract manufacturing organisation (CMO). TiGenix will begin the process of technology transfer to Lonza in the coming weeks.

In December 2014, TiGenix submitted to the FDA the required documentation for a Special Protocol Assessment (SPA) of its pivotal Phase 3 trial design for Cx601 in the treatment of complex perianal fistulas in patients with Crohn's disease in the US. Agreement with the FDA on the SPA will ensure that the trial design is aligned with the FDA's requirements for the future approval of Cx601. The Phase 3 trial in the US, if successful, together with positive data from the European Phase 3 trial, would enable TiGenix to file a Biologics License Application (BLA) with the FDA.

"It was critical for us to have secured an agreement with a leading CMO, like Lonza, for Cell Therapy Manufacturing," said Eduardo Bravo, CEO of TiGenix. "With our appointment of a US advisory board in gastroenterology and inflammatory bowel disease, our submission to the FDA for an SPA for our US Phase 3 trial design, and now the agreement with Lonza for our US-based manufacturing, we have completed the early steps to prepare Cx601 for approval and entry in the American market."

"We are pleased to partner with TiGenix for the production of Cx601. Lonza will utilise our manufacturing knowledge and world class quality systems to manufacture this potentially life- changing product for Crohn's disease patients with complex perianal fistulas", said David Smith, Head of Cell Therapy, Lonza Custom Manufacturing. "Lonza is looking forward to a long and productive partnership with TiGenix."

About Cx601

Read more:
TiGenix: TiGenix and Lonza sign agreement for the manufacture of stem cell-based treatment of complex perianal ...

Stem Cell Transplants May Work Better than Existing Drug for Severe Multiple Sclerosis

Contact Information

Available for logged-in reporters only

Newswise MINNEAPOLIS Stem cell transplants may be more effective than the drug mitoxantrone for people with severe cases of multiple sclerosis (MS), according to a new study published in the February 11, 2015, online issue of Neurology, the medical journal of the American Academy of Neurology.

The study involved 21 people whose disability due to MS had increased during the previous year even though they were taking conventional medications (also known as first-line treatments). The participants, who were an average age of 36, were at an average disability level where a cane or crutch was needed to walk.

In MS, the bodys immune system attacks its own central nervous system. In this phase II study, all of the participants received medications to suppress immune system activity. Then 12 of the participants received the MS drug mitoxantrone, which reduces immune system activity. For the other nine participants, stem cells were harvested from their bone marrow. After the immune system was suppressed, the stem cells were reintroduced through a vein. Over time, the cells migrate to the bone marrow and produce new cells that become immune cells. The participants were followed for up to four years.

This process appears to reset the immune system, said study author Giovanni Mancardi, MD, of the University of Genova in Italy. With these results, we can speculate that stem cell treatment may profoundly affect the course of the disease.

Intense immunosupression followed by stem cell treatment reduced disease activity significantly more than the mitoxantrone treatment. Those who received the stem cell transplants had 80 percent fewer new areas of brain damage called T2 lesions than those who received mitoxantrone, with an average of 2.5 new T2 lesions for those receiving stem cells compared to eight new T2 lesions for those receiving mitoxantrone.

For another type of lesion associated with MS, called gadolinium-enhancing lesions, none of the people who received the stem cell treatment had a new lesion during the study, while 56 percent of those taking mitoxantrone had at least one new lesion.

Mancardi noted that the serious side effects that occurred with the stem cell treatment were expected and resolved without permanent consequences.

More research is needed with larger numbers of patients who are randomized to receive either the stem cell transplant or an approved therapy, but its very exciting to see that this treatment may be so superior to a current treatment for people with severe MS that is not responding well to standard treatments, Mancardi said.

See the article here:
Stem Cell Transplants May Work Better than Existing Drug for Severe Multiple Sclerosis

A Pancreas in a Capsule

Stem-cell advocates pin their hopes on an artificial pancreas to treat diabetes.

Fourteen years ago, during the darkest moments of the stem-cell wars pitting American scientists against the White House of George W. Bush, one group of advocates could be counted on to urge research using cells from human embryos: parents of children with type 1 diabetes. Motivated by scientists who told them these cells would lead to amazing cures, they spent millions on TV ads, lobbying, and countless phone calls to Congress.

Now the first test of a type 1 diabetes treatment using stem cells has finally begun. In October, a San Diego man had two pouches of lab-grown pancreas cells, derived from human embryonic stem cells, inserted into his body through incisions in his back. Two other patients have since received the stand-in pancreas, engineered by a small San Diego company called ViaCyte.

Its a significant step, partly because the ViaCyte study is only the third in the United States of any treatment based on embryonic stem cells. These cells, once removed from early-stage human embryos, can be grown in a lab dish and retain the ability to differentiate into any of the cells and tissue types in the body. One other study, since cancelled, treated several patients with spinal-cord injury (see Geron Shuts Down Pioneering Stem-Cell Program and Stem-Cell Gamble), while tests to transplant lab-grown retina cells into the eyes of people going blind are ongoing (see Stem Cells Seem Safe in Treating Eye Disease).

Type 1 diabetes is especially hard on children. If they dont manage their glucose properly, they could suffer nerve and kidney damage, blindness, and a shortened life span.

Type 1 patients must constantly monitor their blood glucose using finger pricks, carefully time when and what they eat, and routinely inject themselves with insulin that the pancreas should make. Insulin, a hormone, triggers the removal of excess glucose from the blood for storage in fat and muscles. In type 1 diabetics, the pancreas doesnt make it because their own immune system has attacked and destroyed the pancreatic islets, the tiny clusters of cells containing the insulin-secreting beta cells.

The routine is especially hard on children, but if they dont manage their glucose properly, they could suffer nerve and kidney damage, blindness, and a shortened life span. Yet despite years of research, there is still just nothing to offer patients, says Robert Henry, a doctor at the University of California, San Diego, whose center is carrying out the surgeries for ViaCyte.

Henry slightly overstates the case, but not by much. There is something called the Edmonton Protocol, a surgical technique first described in the New England Journal of Medicine in 2000. It used islets collected from cadavers; by transplanting them, doctors at the University of Alberta managed to keep all seven of their first patients off insulin for an entire year.

Early hopes for the Edmonton Protocol were quickly tempered, however. Only about half of patients treated have stayed off insulin long-term, and the procedure, which is still regarded as experimental in the U.S., isnt paid for by insurance. It requires recipients to take powerful immune-suppressing drugs for life. Suitable donor pancreases are in extremely short supply.

The early success of the Edmonton Protocol came only two years after the discovery of embryonic stem cells, in 1998. Those pressing for a diabetes cure quickly set a new goal: pair something like the Edmonton Protocol with the technology of lab-grown beta cells, the supplies of which are theoretically infinite.

Follow this link:
A Pancreas in a Capsule

Stem cells reduce MS brain damage

Structure of a typical neuron, showing the protective myelin sheath that is attacked in multiple sclerosis

In what could herald a major advance in treating multiple sclerosis, brain damage was significantly reduced in patients getting stem cell transplants, compared to a control group. Results of the small Phase 2 trial -- the first of its kind -- are preliminary but promising, according to experts not involved with the trial.

The four-year study compared the results of intense immune suppression followed by transplants of the patient's own blood-forming, or hematopoietic stem cells to those of a control group given immune suppression alone. Dr. Giovanni L. Mancardi of the University of Genova in Italy led the 21-patient study, released Wednesday in the journal Neurology.

Patients in the treatment group had 80 percent fewer new damaged brain areas called T2 lesions, compared to those who got the immune-suppressing chemotherapy drug mitoxantrone but no stem cells. The Phase 3 trial will look for signs of effectiveness in reducing disability. The goal is to "reboot" the immune system, which is maladjusted in MS and attacks the nervous system, impairing movement and balance.

Patients were randomly assigned to either the treatment or control group, something that hasn't been done in previous trials of stem cell therapy for MS, according to an accompanying editorial in Neurology.

Randomizing patient assignment gives the results more value, said UC San Diego stem cell researcher Larry Goldstein and neurologist Dr. Jody Corey-Bloom.

"It's a very exciting advance," said Goldstein, who heads UCSD's stem cell program. "It's a small study, but it sure looks like it was well controlled and carefully done."

Goldstein and Corey-Bloom, and the study authors themselves, cautioned that because the trial was so small, results must be regarded as preliminary. No improvement in disability was found in the trial, although there were so few patients that even a strong benefit might not have been noticed.

The Phase 3 trial now underway, which will include more patients, has been designed to find that benefit, if it exists. It can be found at clinicaltrials.gov under the identifier NCT00273364.

In the Phase 2 trial, nine patients received immune suppression followed by stem cell transplants. Immune suppression alone was administered to a control group of 12 patients, for a total of 21 patients. The patients receiving stem cells were given their own, or autologous, hematopoietic stem cells, reducing the risk of rejection.

The rest is here:
Stem cells reduce MS brain damage

Engineers put the 'squeeze' on human stem cells

Feb 10, 2015 Inside the cell, calcium ions are released from a structure called the endoplasmic reticulum (ER). Forces applied to the bead cause ion channels in the ER to open mechanically (shown in red above), rather through biochemical signaling chemically (shown in green below). Credit: Jie Sun/UC San Diego

After using optical tweezers to squeeze a tiny bead attached to the outside of a human stem cell, researchers now know how mechanical forces can trigger a key signaling pathway in the cells.

The squeeze helps to release calcium ions stored inside the cells and opens up channels in the cell membrane that allow the ions to flow into the cells, according to the study led by University of California, San Diego bioengineer Yingxiao Wang.

Researchers have known that mechanical forces exerted on stem cells have a significant role to play in how the cells produce all kinds of tissuesfrom bone to bloodfrom scratch. But until now, it hasn't been clear how some of these forces translate into the signals that prod the stem cells into building new tissue.

The findings published in the journal eLife could help scientists learn more about "the functional mechanisms behind stem cell differentiation," said Wang, an associate professor of bioengineering. They may also guide researchers as they try to recreate these mechanisms in the lab, to coax stem cells into developing into tissues that could be used in transplants and other therapies.

"The mechanical environment around a stem cell helps govern a stem cell's fate," Wang explained. "Cells surrounded in stiff tissue such as the jaw, for example, have higher amounts of tension applied to them, and they can promote the production of harder tissues such as bone."

Stem cells living in tissue environments with less stiffness and tension, on the other hand, may produce softer material such as fat tissue.

Wang and his colleagues wanted to learn more about how these environmental forces are translated into the signals that stem cells use to differentiate into more specialized cells and tissues. In their experiment, they applied force to human mesenchymal stem cellsthe type of stem cells found in bone marrow that transform into bone, cartilage and fat.

The engineers used a highly focused laser beam to trap and manipulate a tiny bead attached to the cell membrane of a stem cell, creating an optical "tweezers" to apply force to the bead. The squeeze applied by the tweezers was extremely smallon the order of about 200 piconewtons. (Forces are measured in a unit called newtons; one newton is about the weight of an apple held to the Earth by gravity, and one piconewton is equivalent to one-trillionth of a newton.)

When there were no calcium ions circulating outside the cell, this force helped to release calcium ions from a structure inside the cell called the endoplasmic reticulum. The release is aided by the cell's inner structural proteins called the cytoskeleton, along with contracting protein machinery called actomyosin. When the force triggered the movement of calcium ions into the cell from its extracellular environment, only the cytoskeleton was involved, the researchers noted.

See the original post here:
Engineers put the 'squeeze' on human stem cells

Hoping for a cure

John Wyse, a shellfish farmer and father of three from Nanaimo, has not been able to work due to deteriorating health from a rare form of multiple sclerosis.

image credit: CHRIS BUSH/The News Bulletin

John Wyse, 40, a Nanaimo father of three, is in a race against the progression of his disease.

Wyse was diagnosed in 2010 with primary progressive multiple sclerosis and hopes to receive hematopoietic stem cell transplantation treatment at the Hassadah Medical Centre in Israel.

Multiple sclerosis affects the brain and spinal cord by causing inflammation that damages myelin the protective covering of the nerves and disrupts nerve impulses, giving rise to symptoms that include extreme fatigue, weakness, lack of coordination, impaired sensation, vision and bladder problems, cognitive impairment and mood changes.

What causes MS is unknown, but its thought to be an autoimmune disorder causing the bodys immune system to attack healthy tissue.

Patients suffer repeating cycles of advancing deterioration followed by periods of remission in all forms of MS except for the primary progressive variant of the disease, which progresses without remission and is the only form of MS for which there are no conventional drugs or treatments available.

Research into stem cell transplantation therapy is the latest avenue of hope for successful treatment and a possible cure. Clinics in Germany, Russia, India and Israel currently offer stem cell treatment and clinical trials are also being conducted in Canada, the U.S. and elsewhere.

Most clinical trials and some treatment clinics will not accept primary progressive MS patients.

Wyse, with his wife and three daughters, are trying to raise $158,200 to pay for his treatment in Israel, scheduled for April 2016, but the Hassadah Medical Centre places limits on how far Wyses condition can deteriorate before it will not accept him. Wyse, who now walks with a cane and hasnt been able to work for a year, figures he has little more than a year before hes no longer a treatment candidate.

Read more:
Hoping for a cure

The stem-cell miracle is anecdotal

On the weekend, a whos who of hockey legends gathered to pay tribute to Gordie Howe in his hometown of Saskatoon.

In addition to sharing memories about Mr. Hockey, a constant theme of the festivities was his miracle recovery from stroke.

Mr. Howe, 86, suffered two strokes last year and, according to his family, was near death before he travelled to Clinica Santa Clarita in Tijuana, Mexico, in December for experimental stem-cell treatment.

Afterward, Mr. Howe was able to walk again. He regained a lot of weight and he began to resemble his old self. (Most of this is second-hand; Mr. Howe also suffers from dementia and has not or cannot speak of his symptoms or treatment first-hand.)

After his stem-cell treatment, the doctor told us it was kind of an awakening of the body, his son, Marty Howe, told The Canadian Press. They call it the miracle of stem cells and it was nothing less than a miracle.

Mr. Howes Lazarus-like recovery makes for a great tug-at-the-heartstrings narrative for a man whose career has been the embodiment of perseverance and longevity. But if you step back a moment and examine the science, all sorts of alarm bells should go off.

Stem cells, which were discovered in the early 1960s, have the remarkable potential to develop into many different cells, at least in the embryonic stage. They also serve as the bodys internal repair system.

The notion that spinal cords and limbs and heart muscle and brain cells could be regenerated holds a magical appeal.

But, so far, stem-cell therapies have been used effectively to treat only a small number of blood disorders, such as leukemia. (Canada has a public bank that collects stem cells from umbilical-cord blood and a program to match stem-cell donors with needy patients.)

Stem cells also show promise in the treatment of conditions such as spinal-cord injuries, Parkinsons and multiple sclerosis, but those hopes have not yet moved from the realm of science-fiction into clinical medicine.

See original here:
The stem-cell miracle is anecdotal

AdiStem — Adult Stem Cells Derived from Adipose Tissue …

Adult Stem Cells (ASCs), by definition, are unspecialized or undifferentiated cells that not only retain their ability to divide mitotically while still maintaining their undifferentiated state but also, given the right conditions, have the ability to differentiate into different types of cells including cells of different germ-origin an ability referred to as transdifferentiation or plasticity.1,2 In vitro, the conditions under which transdifferentiation occurs can be brought about by modifying the culture medium in which the cells are cultured. In vivo, the same changes are seen when the ASCs are transplanted into a tissue environment different to their own tissue-of origin. Though the exact mechanism of this transdifferentiation of ASCs is still under debate, this ability of ASCs along with their ability to self-renew is of great interest in the field of Regenerative Medicine as a therapeutic tool in being able to regenerate and replace dying, damaged or diseased tissue.

Clinically, however, there are a few criteria that ASCs need to fulfill before they can be viewed as a viable option in Regenerative Medicine. These are as follows:3

Adds Millions of Stem Cells Back into Circulation.

Adipose Tissue Yields an Abundance of ASCs

Compared to any other source, the high concentrations of regenerative cells found in adipose tissue (depots of fat for storing energy) especially in the abdominal region, by sheer volume of availability, ensure an abundance in number of ASCs ranging in the millions per unit volume. The sheer number available also has the added advantage of not needing to be cultured in a laboratory over days in order to get the desired number of ASCs to achieve what is called therapeutic threshold i.e. therapeutic benefit. In addition, harvesting ASCs from adipose tissue through simple, minimally invasive liposuction under local anesthesia is relatively easier and painless and poses minimal risk to the patient compared to all other possible methods.

Adipose tissue ASCs (AT-ASCs) are extremely similar to stem cells isolated from bone marrow (BMSCs). The similarities in profile between the two types of ASCs range from morphology to growth to transcriptional and cell surface phenotypes.4,5 Their similarity extends also to their developmental behavior both in vitro and in vivo. This has led to suggestions that adipose-derived stem cells are in fact a mesenchymal stem cell fraction present within adipose tissue.6

Clinically, however, stromal vascular fraction-derived AT-ASCs have the advantage over their bone marrow-derived counterparts, because of their abundance in numbers eliminating the need for culturing over days to obtain a therapeutically viable number and the ease of the harvest procedure itself being less painful than the harvest of bone marrow. This, in theory, means that an autologous transplant of adipose-derived ASCs will not only work in much the same way as the successes shown using marrow-derived mesenchymal stem cell transplant, but also be of minimal risk to the patient.

AT-ASCs, like BM-ASCs, are called Mesenchymal ASCs because they are both of mesodermal germ-origin. This means that AT-ASCs are able to differentiate into specialized cells of mesodermal origin such as adipocytes, fibroblasts, myocytes, osteocytes and chondrocytes.7,8,9 AT-ASCs are also able (given the right conditions of growth factors) to transdifferentiate into cells of germ-origin other than their own. Animal model and human studies have shown AT-ASCs to undergo cardiomyogenic 10, endothelial (vascular)11, pancreatic (endocrine) 12, neurogenic 13, and hepatic trans-differentiation14 , while also supporting haematopoesis15.

Low Risk to the Patient

Excerpt from:
AdiStem -- Adult Stem Cells Derived from Adipose Tissue ...

Human stem cells repair damage caused by radiation therapy for brain cancer in rats

For patients with brain cancer, radiation is a powerful and potentially life-saving treatment, but it can also cause considerable and even permanent injury to the brain. Now, through preclinical experiments conducted in rats, Memorial Sloan Kettering Cancer Center researchers have developed a method to turn human stem cells into cells that are instructed to repair damage in the brain. Rats treated with the human cells regained cognitive and motor functions that were lost after brain irradiation. The findings are reported in the February 5 issue of the journal Cell Stem Cell.

During radiation therapy for brain cancer, progenitor cells that later mature to produce the protective myelin coating around neurons are lost or significantly depleted, and there is no treatment available to restore them. These myelinating cells--called oligodendrocytes--are critical for shielding and repairing the brain's neurons throughout life.

A team led by neurosurgeon Viviane Tabar, MD, and research associate Jinghua Piao, PhD, of the Memorial Sloan Kettering Cancer Center in New York City, wondered whether stem cells could be coaxed to replace these lost oligodendrocyte progenitor cells. They found that this could be achieved by growing stem cells--either human embryonic stem cells or induced pluripotent stem cells derived from skin biopsies--in the presence of certain growth factors and other molecules.

Next, the investigators used the lab-grown oligodentrocyte progenitor cells to treat rats that had been exposed to brain irradiation. When the cells were injected into certain regions of the brain, brain repair was evident, and rats regained the cognitive and motor skills that they had lost due to radiation exposure. The treatment also appeared to be safe: none of the animals developed tumors or inappropriate cell types in the brain.

"Being able to repair radiation damage could imply two important things: improving the quality of life of survivors and potentially expanding the therapeutic window of radiation," said Dr. Tabar. "This will have to be proven further, but if we can repair the brain effectively, we could be bolder with our radiation dosing, within limits." This could be especially important in children, for whom physicians deliberately deliver lower radiation doses.

Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.

Read the rest here:
Human stem cells repair damage caused by radiation therapy for brain cancer in rats