Category Archives: Stem Cell Treatment


Great Ormond Street deaths caused by stem cell lab failures, inquest told

Katie Joyce, left, aged four, and Sophie Ryan Palmer, aged 12, were among the four children who died as a result of complications with transplants. Photograph: Steve Parsons/PA

Four children have died after failings in how stem cells used in life-saving operations were frozen at Great Ormond Street hospital, it emerged this week.

The four, who were between one and 12 years old, were among eight children with cancer whose bone marrow transplants did not work as a result of problems with the freezing process.

Britains best-known childrens hospital has admitted that one of them, four-year-old Katie Joyce, might have survived if it had acted more quickly when problems arose.

An inquest into the deaths this week heard that doctors were initially baffled as to why a decade of success using the procedures suddenly came to a halt in summer 2013. Despite extensive investigations, the hospital failed to pinpoint the source of the setbacks in its cryopreservation laboratory, used for freezing stem cells which were kept there for using in bone marrow transplants in children.

The transplanted stem cells were intended to help the childs bone marrow, damaged during chemotherapy, grow again to maximise the chance of recovery.

At the inquest, lawyers for two of the families whose children died accused Great Ormond Street of taking too long to halt the transplants once staff began having concerns.

The hospital has since overhauled its procedures to prevent further incidents and there are calls for the deaths to lead to tighter procedures around how stem cells are stored at hospitals and research centres across the UK.

Concerns were first raised in June 2013 when 12-year-old Sophie Ryan Palmer, who had acute lymphoblastic leukaemia, failed to make progress after her transplant at Great Ormond Street, which involved using a donors stem cells rather than her own.

By October 2013 the hospital had identified that a higher than usual proportion of eight patients who had undergone stem cell transplantation between March and August had suffered setbacks after encountering what doctors call delayed engraftment. It immediately stopped freezing stem cells on site at its base in Bloomsbury, central London, and launched an investigation.

See more here:
Great Ormond Street deaths caused by stem cell lab failures, inquest told

Mount Sinai researchers awarded grant to find new stem cell therapies for vision recovery

PUBLIC RELEASE DATE:

20-Nov-2014

Contact: Jessica Mikulski jmikulski@nyee.edu 212-979-4274 The Mount Sinai Hospital / Mount Sinai School of Medicine @mountsinainyc

The National Eye Institute (NEI), a division of the National Institutes of Health, has awarded researchers at the Icahn School of Medicine at Mount Sinai a five-year grant totaling $1 million that will support an effort to re-create a patients' ocular stem cells and restore vision in those blinded by corneal disease.

About six million people worldwide have been blinded by burns, trauma, infection, genetic diseases, and chronic inflammation that result in corneal stem cell death and corneal scarring.

There are currently no treatments for related vision loss that are effective over the long term. Corneal stem cell transplantation is an option in the short term, but availability of donor corneas is limited, and patients must take medications that suppress their immune systems for the rest of their lives to prevent rejection of the transplanted tissue.

A newer proposed treatment option is the replacement of corneal stem cells to restore vision. The grant from the NEI will fund Mount Sinai research to re-create a patient's own stem cells and restore vision in those blinded by corneal disease. Technological advances in recent years have enabled researchers to take mature cells, in this case eyelid or oral skin cells, and coax them backward along the development pathways to become stem cells again. These eye-specific stem cells would then be redirected down pathways that become needed replacements for damaged cells in the cornea, in theory restoring vision.

"Our findings will allow the creation of transplantable eye tissue that can restore the ocular surface," said Albert Y. Wu, MD, PhD, Assistant Professor, Department of Ophthalmology at the Icahn School of Medicine at Mount Sinai and principle investigator for the grant-funded effort. "In the future, we will be able to re-create a patient's own corneal stem cells to restore vision after being blind," added Dr. Wu, also Director of the Ophthalmic Plastic and Reconstructive Surgery, Stem Cell and Regenerative Medicine Laboratory in the Department of Ophthalmology and a member of the Black Family Stem Cell Institute at Icahn School of Medicine. "Since the stem cells are their own, patient's will not require immunosuppressive drugs, which would greatly improve their quality of life."

Specifically, the grant will support efforts to discover new stem cell therapies for ocular surface disease and make regenerative medicine a reality for people who have lost their vision. The research team will investigate the most viable stem cell sources, seek to create ocular stem cells from eyelid or oral skin cells, explore the molecular pathways involved in ocular and orbital development, and develop cutting-edge biomaterials to engraft a patient's own stem cells and restore vision.

###

Follow this link:
Mount Sinai researchers awarded grant to find new stem cell therapies for vision recovery

Cardiac stem cell therapy may heal heart damage caused by Duchenne muscular dystrophy

PUBLIC RELEASE DATE:

17-Nov-2014

Contact: Sally Stewart sally.stewart@cshs.org 310-248-6566 Cedars-Sinai Medical Center @cedarssinai

LOS ANGELES (NOV. 17, 2014) - Researchers at the Cedars-Sinai Heart Institute have found that injections of cardiac stem cells might help reverse heart damage caused by Duchenne muscular dystrophy, potentially resulting in a longer life expectancy for patients with the chronic muscle-wasting disease.

The study results were presented today at a Breaking Basic Science presentation during the American Heart Association Scientific Sessions in Chicago. After laboratory mice with Duchenne muscular dystrophy were infused with cardiac stem cells, the mice showed steady, marked improvement in heart function and increased exercise capacity.

Duchenne muscular dystrophy, which affects 1 in 3,600 boys, is a neuromuscular disease caused by a shortage of a protein called dystrophin, leading to progressive muscle weakness. Most Duchenne patients lose their ability to walk by age 12. Average life expectancy is about 25. The cause of death often is heart failure because the dystrophin deficiency leads to cardiomyopathy, a weakness of the heart muscle that makes the heart less able to pump blood and maintain a regular rhythm.

"Most research into treatments for Duchenne muscular dystrophy patients has focused on the skeletal muscle aspects of the disease, but more often than not, the cause of death has been the heart failure that affects Duchenne patients," said Eduardo Marbn, MD, PhD, director of the Cedars-Sinai Heart Institute and study leader. "Currently, there is no treatment to address the loss of functional heart muscle in these patients."

During the past five years, the Cedars-Sinai Heart Institute has become a world leader in studying the use of stem cells to regenerate heart muscle in patients who have had heart attacks. In 2009, Marbn and his team completed the world's first procedure in which a patient's own heart tissue was used to grow specialized heart stem cells. The specialized cells were then injected back into the patient's heart in an effort to repair and regrow healthy muscle in a heart that had been injured by a heart attack. Results, published in The Lancet in 2012, showed that one year after receiving the experimental stem cell treatment, heart attack patients demonstrated a significant reduction in the size of the scar left on the heart muscle.

Earlier this year, Heart Institute researchers began a new study, called ALLSTAR, in which heart attack patients are being infused with allogeneic stem cells, which are derived from donor-quality hearts.

Recently, the Heart Institute opened the nation's first Regenerative Medicine Clinic, designed to match heart and vascular disease patients with appropriate stem cell clinical trials being conducted at Cedars-Sinai and other institutions.

Read more:
Cardiac stem cell therapy may heal heart damage caused by Duchenne muscular dystrophy

UCLA Stem Cell Researcher Pioneers Gene Therapy Cure for Children with "Bubble Baby" Disease

Contact Information

Available for logged-in reporters only

Newswise UCLA stem cell researchers have pioneered a stem cell gene therapy cure for children born with adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID), often called Bubble Baby disease, a life-threatening condition that if left untreated can be fatal within the first year of life.

The groundbreaking treatment was developed by renowned stem cell researcher and UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research member Dr. Donald Kohn, whose breakthrough was developed over three decades of research to create a gene therapy that safely restores immune systems in children with ADA-deficient SCID using the patients own cells with no side effects.

To date, 18 children with SCID have been cured of the disease after receiving the stem cell gene therapy in clinical trials at UCLA and the National Institutes of Health.

All of the children with SCID that I have treated in these stem cell clinical trials would have died in a year or less without this gene therapy, instead they are all thriving with fully functioning immune systems said Kohn, a professor of pediatrics and of microbiology, immunology and molecular genetics in Life Sciences.

To protect children born with SCID they are kept in isolation, in controlled environments because without an immune system they are extremely vulnerable to illness and infection that could be lethal.

Other current options for treating ADA-deficient SCID are not always optimal or feasible for many children, said Kohn. We can now, for the first time, offer these children and their families a cure, and the chance to live a full healthy life.

Defeating ADA-Deficient SCID: A Game-Changing Approach

Children born with SCID, an inherited immunodeficiency, are generally diagnosed at about six months. They are extremely vulnerable to infectious diseases, and in a child with ADA-deficient SCID even the common cold can prove fatal. The disease causes cells to not create an enzyme called ADA, which is critical for production of the healthy white blood cells that drive a normal, fully-functioning immune system. About 15 percent of all SCID patients are ADA-deficient.

Read the original:
UCLA Stem Cell Researcher Pioneers Gene Therapy Cure for Children with "Bubble Baby" Disease

UW professor using stem cell research to find treatment for eye conditions

Through stem cell research, two Madison men who suffer from a genetic condition that causes blindness and hearing loss are receiving experimental treatment.

Johnny and Mike Walsh, sons of University of Wisconsin Regent David Walsh who suffer from Usher disease are receiving experimental treatmentfrom David Gamm, a UW professor and expert in retinal and stem biology.

Johnny has had hearing problems from birth and is now legally blind. However, he maintains a positive attitude due to the experimental treatment he is receiving in Madison and does not let his disability get in the way of his career as an attorney at Axley Brynelson LLP.

It is interesting that here I am in Madison getting a diagnosis and then having such a great research institution there in my backyard and its convenient for them to have my family there because you got four kids, three who carry the genes, two who are affected and one who isnt. So you have a perfect control right there, I think thats kind of neat for Dr. [David] Gamm to have and he takes our blood whenever he needs it, Walsh said.

Mike started a project entitled Flight4Sight, where he travels the world to spread awareness and understanding about blindness. His project is on Facebook and a blog, where he takes his followers advice on where to travel next.

Mike said he benefits from the research Gamm, of the Waisman Center,does.

Gammis working closely with Cellular Dynamics International, a Madison-based company which has recently received a $1.2 million grant to continue their research on human stem cells.

CDI specializes in creating human cells, including various types of stem cells. With the National Eye Institutes funding, CDI will carry out this stem cell-based research in the first study of its kind to be performed in the United States.

Eye conditions that include dry age-related macular degeneration affect as many as 11 million Americans who have some form of macular degeneration, according to the CDI statementregarding the grant. The cells being used for this study are CDI developed and manufactured through induced pluripotent stem cells, which will potentially have application in discovering treatments for retinal and eye conditions.

The goal of the study will be to find out how to reprogram stem cells in order to make retina cells to prevent further damage in decaying eyes and eye conditions, Gamm said.

Read more:
UW professor using stem cell research to find treatment for eye conditions

Stem Cells Treatment Not Useful In Stroke Patients Finds Indian Study

A large-scale trial conducted in India has shown that stem cell therapy does not work in stroke patientsREUTERS

A study conducted on 120 patients in India has shown that stem cell treatment is not effective in treating paralysis resulting from a stroke.

The research which is thefirst large-scale study conducted in Indiacompared outcomes in those treated with stem cells to others and found no difference, reports Down to Earth.

While 60 patients with some form of disability of limbs caused by a stroke were given conventional treatment, an equal number received bone marrow stem cells in addition. All had experienced a stroke 3-4 weeks before the trial.

"We found that at the end of the first month, patients with stem cells showed more improvement compared to the control group. But at the end of the third month and one year, there was no difference," said Kameshwar Prasad, head, Department of Neurology, All India Institute of Medical Sciences (AIIMS), who led the study.

On an average 280 million bone marrow cells were injected, of which blood forming stem cells were around 2.9 million per patient.

The average age of patients in the study was around 50.

The study, published in the current issue of American journal Stroke, was conducted at AIIMS in New Delhi and four other hospitals covering four cities.

The study comes when many others have been suggesting that stem cells could help treat paralysis in stroke patients. The earlier study was done on a small number of patients as compared to the AIIMs study.

More research needs to be done, before stem cells are used in therapy as in India, many private clinics are openly offering stem cell treatment for various diseases.

Read the original:
Stem Cells Treatment Not Useful In Stroke Patients Finds Indian Study

Reprogramming cells, long term

Harvard Stem Cell Institute (HSCI) researchers, representing five Harvard departments and affiliated institutions as well as the Massachusetts Institute of Technology (MIT), have demonstrated that adult cells, reprogrammed into another cell type in a living animal, can remain functional over a long period.

The work by Joe Zhou, an associate professor in Harvard's Department of Stem Cell and Regenerative Biology, and his collaborators is an important advance in the effort to develop cell-based therapies for tissue repair, and specifically in the effort to develop improved treatment for diabetes.

The researchers used a combination of genes to change pancreatic exocrine cells -- one of the main forms of cells in the pancreas -- in adult mice that have diabetes into insulin-producing beta cells that appeared to cure about a third of the mice of the metabolic disease, and improved insulin production in most of the other mice.

A report on the work was published today in the journal Nature Biotechnology.

The new findings are a major advance in work by HSCI co-director Doug Melton and Zhou, who in 2008 reported having converted exocrine cells into functional beta cells in mice. At that time, however, it was not known how long, and how well, the repurposed cells would function.

"The efficiency of reprogramming has always been an issue," Zhou said. "Until now, the new cells have either dropped dramatically in number or disappeared completely," he said, noting that since his work with Melton in 2008 there have been reports published in other programing systems that question whether the reprogrammed cells could be stable enough ultimately to be useful.

"What we have demonstrated is that yes, the reprogrammed cells can be useful, and for that to happen you have to create a niche environment in which the cells can survive," Zhou continued. "We have improved the reprogramming efficiency to a point where one can create a large enough number of the new cells that the new cells create their own niche environment."

Zhou said that the researchers studied the mice for up to about 13 months, approximately half their normal life span, and found that "the cells are still there, and fairly robust. These are diabetic animals, and we were able to, I wouldn't use the word 'cure' because that's a very freighted word for me to use, but they became highly glycemic animals -- though not every animal became normal. That may be because to completely control the glucose level of the animal, you not only need beta cells, you need about a quarter of a million functional beta cells. If you are short of this number, even if the beta cells are perfectly normal," they can't completely control blood sugar levels, Zhou said.

When discussing the implications of the study for the field of cellular reprogramming, Zhou cautioned that the pancreas has a particularly simple cellular organization and structure, and thus findings in the pancreas might not necessarily apply to other organs.

Diabetes is a metabolic disease that is seen in two basic forms.

Read more here:
Reprogramming cells, long term

Researchers Discover Breakthrough Stem Cell Treatment For Parkinson's Disease

By C. Rajan, contributing writer

Researchers at Lund University in Sweden have made a major breakthrough in Parkinson's disease treatment by developing stem cell-derived brain cells that can replace the cells lost due to the disease, thus paving the way for the first stem cell transplant treatment for Parkinsons patients.

Parkinson's disease, which affects about 10 million people worldwide, is a degenerative nervous system condition which causes tremors, muscle weakness, stiffness, and loss in mobility. Parkinson's is caused by loss of dopamine-producing neurons in the brain. Dopamine is an essential neurotransmitter that is required for regulating movement and emotions.

In this study, for the first time ever, the researchers were able to convert human embryonic stem cells into dopamine producing neurons, which behaved like native dopamine cells lost in the disease.

The study was led by Malin Parmar, associate professor in Lund's Department of Medicine, and conducted at both Lund University and at MIRCen in Paris as part of the EU networks NeuroStemCell and NeuroStemcellRepair.

According to Medical News Today, the researchers produced rat models of Parkinson's disease by destroying the dopamine cells in one part of the rat's brain, and then they transplanted the new dopamine producing stem cell neurons. These next generation dopamine neurons were found to survive long term, restore the lost dopamine, and form long distance connections to the correct parts of the brain when transplanted into rats. Most excitingly, these transplanted stem cells reversed the damage from the disease.

As the new dopamine neurons have the same properties and functions of native cells lost in Parkinson's disease and can be produced in unlimited quantities from stem cell lines, this treatment shows promise in moving into clinical applications as stem cell transplants for Parkinsons.

"This study shows that we can now produce fully functioning dopamine neurons from stem cells. These cells have the same ability as the brains normal dopamine cells to not only reach but also to connect to their target area over longer distances. This has been our goal for some time, and the next step is to produce the same cells under the necessary regulations for human use. Our hope is that they are ready for clinical studies in about three years", says Malin Parmar.

Human embryonic stem cells (ESC) are powerful treatment options due to their ability to change into any cell type in the body. However, it is difficult to get them to change into the desired cell types, and research efforts are also hampered due to the ethical concerns associated with embryonic stem cells.

The study is published in the journal,Cell Stem Cell, titled Human ESC-Derived Dopamine Neurons Show Similar Preclinical Efficacy and Potency to Fetal Neurons when Grafted in a Rat Model of Parkinsons Disease.

See original here:
Researchers Discover Breakthrough Stem Cell Treatment For Parkinson's Disease