Category Archives: Stem Cell Treatment


Parkinson's stem cell therapy works in rats

Dopamine-making neurons derived from human embryonic stem cells.

A rat model of Parkinson's disease has been successfully treated with neurons derived from human embryonic stem cells, according to a study led by Swedish scientists. Its a promising sign for scientists at The Scripps Research Institute and Scripps Health who hope to perform similar therapy on Parkinsons patients, using artificial embryonic stem cells.

In rats and people, neurons that make the neurotransmitter dopamine are essential for normal movement. The cells are destroyed in Parkinson's, leading to the difficulty in movement that characterizes the disease.

Researchers transplanted dopamine-producing cells grown from human embryonic stem cells into the brains of rats whose own dopamine-making neurons had been destroyed. The rats were immune-suppressed so they would not reject the cells. Within five months, the transplanted cells boosted dopamine production to normal levels, restoring normal movement in the rats.

The study was published Thursday in the journal Cell Stem Cell. The senior author was Malin Parmar of Lund University in Lund, Sweden.

The results support the Scripps approach of using the artificial embryonic stem cells, called induced pluripotent stem cells, said Jeanne Loring, who heads the Center for Regenerative Medicine at The Scripps Research Institute in La Jolla. Loring is part of a group called Summit 4 Stem Cell that's raising funds to treat eight Parkinson's patients with their own IPS cells.

Particularly significant is the study's comparison of the effects of dopamine-making neurons derived from fetal cells to that of embryonic stem cells, Loring said by email.

"In the 1980s and 1990s, there were several clinical trials that showed that grafts of fetal brain containing the precursors of dopamine neurons could reverse the effects of Parkinson's disease in some patients," Loring said. "We, and the others developing stem cell therapies, based our plans on the results of those studies, but no one had ever directly compared fetal tissue and human pluripotent stem cell-derived dopamine neurons in an animal model of PD."

Induced pluripotent stem cells appear to have much the same capacity as human embryonic stem cells to generate different tissues and organs.

There has been uncertainty about how similar they are to each other, specifically whether the IPS process produces mutations. But recent studies have found the cell types are extremely similar, including a study also published in Cell Stem Cell on Thursday. That study compared IPS cells with embryonic stem cells produced by SCNT, or somatic cell nuclear transfer, the same process used to create Dolly the sheep.

See the article here:
Parkinson's stem cell therapy works in rats

New hope for Parkinsons patients in stem cell treatment

For more than 30 years, stem cells have been the great hope of medical science. Given their remarkable ability to turn into any type of cell in the body, researchers have theorized that they could be used to treat and perhaps even cure all sorts of diseases and conditions from spinal cord injury to baldness.

Progress has been painfully slow for most areas of research but this week researchers in Sweden are reporting a major advancein a possible stem cell treatment for Parkinson's. While the treatment has only been tried in rats, the scientists -- led byMalin Parmar, an associate professor of regenerative neurobiology at the Lund University -- said they believe the results are promising enoughto move to clinical trials in humans within a few years.

A degenerative condition of the central nervous system, Parkinson's affects an estimated 7 to 10 million people worldwide. Actor Michael J. Fox has Parkinson's and Google co-founder Sergey Brin has a gene that makes him susceptible to the disease. Both have not only raised awareness of the disease through their celebrity but have contributed millions of dollars to advance research.

Parkinson's is caused by the loss of dopamine-producing cells in the brain that help regulate things like movement and emotions. The scientistsat the Lund University found that when they turned human embryonic stem cells into neurons that produce dopamine and injected them into the brains of rats, something remarkable happened. The damage from the disease seemed to reverse.

The scientists wrote that while they believe their research was "rigorous," they pointed out that "a number of crucial issues" still need to be addressed before the treatment can be tested in humans. For instance, they need to make sure the cells continue to work the way they are supposed to over longer time periods.

Read more:

Parkinsons disease and depression often go hand in hand

Stem cell study shows promising results for severe stroke patients

Growing stem cells using cloning techniques reopens ethics debate

Dance for Parkinson's: movement as medicine

Read more here:
New hope for Parkinsons patients in stem cell treatment

FDA Clears ISCO's Parthenogenetic Stem Cells For Investigational Clinical Use

By Cyndi Root

International Stem Cell Corporation is now approved to manufacture human parthenogenetic stem cells. The Food and Drug Administration (FDA) cleared the cells for investigational clinical use. The company announced the approval in a press release, stating that it improves its chance for approval of its Parkinsons disease treatment and provides an avenue for using the cells in other indications such as stroke or traumatic brain injury.

Dr. Ruslan Semechkin, ISCO's Chief Scientific Officer, said, "Many stem cell lines can never be used to develop commercial therapeutic products because they don't meet the FDA's ethical and quality standards. With this clearance from the FDA, the Company has removed any uncertainty in the potential clinical use of human parthenogenetic stem cells."

FDA Action

Like all manufacturing to FDA standards, stem cells must be produced in good manufacturing practice (GMP) conditions. The cells must be grown under repeatable conditions and be identical, so that patients receive standardized stem cell therapy. In addition, the federal agency seeks to reduce the risk of an infectious disease. ISCO provided the FDA assurances relating to the original egg donor's risk of infectious diseases, the testing of the master cell bank, and the genetic stability of the stem cell line. ISCO intends to produce the stem cells at its facility in Oceanside, CA and will provide an update on the first batch later.

Parthenogenetic Stem Cells

ISCO states that its parthenogenetic stem cells (hpSCs) are a new class of stem cells with the best characteristics of other stem cells. The company creates the cells by stimulating the donors oocytes (eggs), which are not fertilized and are not viable embryos. Stimulating the oocytes begins the process of cell division. This method creates cells that are histocompatiblethey do not depend on the target patient. Immunomatching and using unfertilized oocytes provides an ethical advantage and a reliable source for cell-based therapy.

Parkinson's Disease Submission

Dr. Semechkin stated the FDA manufacturing approval provides a boost to its Parkinson's disease submission, which the company intends to submit by the end of 2014. ISCO provided an update on the program in October 2014, stating that none of the preclinical pharmacology and toxicology studies have shown adverse events or pathological reactions. ISCO intends to present the results of those studies at the Society for Neuroscience annual meeting.

Read the original:
FDA Clears ISCO's Parthenogenetic Stem Cells For Investigational Clinical Use

Human stem cell-derived neuron transplants reduce seizures in mice

McLean Hospital and Harvard Stem Cell Institute scientists have new evidence that stem cell transplantation could be a worthwhile strategy to help epileptics who do not respond to anti-seizure drugs.

As reported in Cell Stem Cell, the laboratory of McLean Associate Neurobiologist Sangmi Chung, PhD, transplanted seizure-inhibiting, human embryonic stem cell-derived neurons into the brains of mice with a common form of epilepsy. Half of the mice who received the transplanted neurons no longer had seizures, while the other half experienced a significant drop in seizure frequency.

"After the transplantation we observed that the human neurons integrate into the epileptic brain," said Chung, who is also a Harvard Stem Cell Institute affiliated faculty member and an assistant professor at Harvard Medical School. "The transplanted neurons begin to receive excitatory input from host neurons and in turn generate inhibitory responses that reverse the electrical hyperactivity that cause seizures."

The recovery seen after the human stem cell-derived neuron transplants, which were done while the cells were still maturing into their full-grown form, is similar to that published in a 2013 study by University of California, San Francisco, scientists who transplanted fetal mouse brain cells into epileptic mice.

While encouraging, Chung noted that further primate studies and a process to purify the neurons, so only those known to inhibit seizures are transplanted (called interneurons), would need to be completed before a treatment in humans could be considered.

"Because embryonic stem cells can differentiate into many different cell types, even when we drive them into neurons, there are always other cell types," she said. "For clinical purposes, we need to make sure the cells are safe, without any contaminant. Currently we are working on a different method to specifically isolate interneurons."

Over 65 million people worldwide are affected by epileptic seizures, which can cause convulsions, loss of consciousness and other neurological symptoms. The exact cause of the condition is unknown, but it is hypothesized that diminished populations of interneurons is a contributor.

Most epileptic patients can be treated with anti-seizure drugs, which contain molecules that can inhibit electrical symptoms, similar to the normal function of interneurons. But about one-third do not benefit from existing medication. Patients may opt to have a portion of their brain cut out to control symptoms.

"This seems to be an area that needs a novel therapy," Chung said. "Before starting this project, I was a stem cell biologist mostly interested in the development of neural stem cells, but as I've come to know about epilepsy, I've become motivated to continue this research."

Story Source:

Go here to read the rest:
Human stem cell-derived neuron transplants reduce seizures in mice

Transplant of stem-cell-derived dopamine neurons shows promise for Parkinson's disease

PUBLIC RELEASE DATE:

6-Nov-2014

Contact: Mary Beth O'Leary moleary@cell.com 617-397-2802 Cell Press @CellPressNews

Parkinson's disease is an incurable movement disorder that affects millions of people around the world, but current treatment options can cause severe side effects and lose effectiveness over time. In a study published by Cell Press November 6th in Cell Stem Cell, researchers showed that transplantation of neurons derived from human embryonic stem cells (hESCs) can restore motor function in a rat model of Parkinson's disease, paving the way for the use of cell replacement therapy in human clinical trials.

"Our study represents an important milestone in the preclinical assessment of hESC-derived dopamine neurons and provides essential support for their usefulness in treating Parkinson's disease," says senior study author Malin Parmar of Lund University.

Parkinson's disease is caused, in part, by the death of neurons that release a brain chemical called dopamine, leading to the progressive loss of control over dexterity and the speed of movement. Currently available drug and surgical treatment options can lose effectiveness over time and cause serious side effects such as involuntary movements and psychiatric problems. Meanwhile, another approach involving the transplantation of human fetal cells has produced long-lasting clinical benefits; however, the positive effects were only seen in some individuals and can also cause involuntary movements driven by the graft itself. Moreover, the use of tissue from aborted human fetuses presents logistical issues such as the limited availability of cells, hampering the effective translation of fetal tissue transplantation as a realistic therapeutic option.

To rigorously assess an alternative hESC-based treatment approach, Parmar and lead study author Shane Grealish of Lund University transplanted hESC-derived dopamine neurons into brain regions that control movement in a rat model of Parkinson's disease. The transplanted cells survived the procedure, restored dopamine levels back to normal within five months, and established the correct pattern of long-distance connections in the brain. As a result, this therapy restored normal motor function in the animals. Importantly, the hESC-derived neurons show efficacy and potency similar to fetal neurons when transplanted in the rat model of Parkinson's disease, suggesting that the hESC-based approach may be a viable alternative to the approaches that have already been established with fetal cells in Parkinson's patients.

In a related Forum article published in the same issue, Roger Barker of Addenbrooke's Hospital and the University of Cambridge laid out the roadmap for taking stem-cell-derived dopamine neurons to the clinic for treating Parkinson's disease. "This involves understanding the history of the whole field of cell-based therapies for Parkinson's disease and some of the mistakes that have happened," he says. "It also requires a knowledge of what the final product should look like and the need to get there in a collaborative way without being tempted to take shortcuts, because a premature clinical trial could impact negatively on the whole field of regenerative medicine."

###

Cell Stem Cell, Grealish et al.: "Human ESC-derived dopamine neurons show preclinical efficacy and potency similar to fetal neurons when grafted in a rat model of Parkinson's disease."

Originally posted here:
Transplant of stem-cell-derived dopamine neurons shows promise for Parkinson's disease

Okyanos Treats First Patients with Cell Therapy

Freeport, Grand Bahama (PRWEB) November 05, 2014

Okyanos is the first to receive regulatory approval from the National Stem Cell Ethics Committee (NSEC) to provide adult stem cell therapy in its new state-of-the-art facility and has now begun treating patients. The licensing includes approval for cardiac cell therapy, as well as cell therapy for tissue ischemia, autoimmune diseases, and other chronic neurological and orthopedic conditions. The licensing criteria requires that approved protocols be supported by peer-reviewed papers showing substantial evidence of safety and efficacy.

"As the leader in cell therapy, Okyanos is very proud to bring a new standard of care and a better quality of life to patients who are looking for new options for unmet healthcare needs. said Matt Feshbach, CEO and co-founder of Okyanos. Adipose (fat)- derived stem and regenerative cells (ADRCs) are known to restore blood flow, modulate the immune system, reduce inflammation and prevent further cell death after a wound, helping the body begin the process of healing itself.

Adult stem cell therapy has emerged as a new treatment alternative for those who want to live a more normal life but are restricted in these activities due to their medical conditions. Just 50 miles from the US shore, Okyanos cell therapy is available to patients with severe heart disease including coronary artery disease (CAD) and congestive heart failure (CHF) as well as patients with auto-immune diseases, orthopedic, neurological and urological conditions. Okyanos cell therapy is performed in their new state-of-the-art facility built to exceed U.S. surgical center standards.

With the regulatory and licensing approvals for adult stem cell therapy, Okyanos is the first to treat patients with cell therapy for severe heart disease and other unmet medical conditions based on a combination of internationally approved cell processing technology, technical papers, clinical trials and in-clinic use which provide the basis for a new standard of care.

Patients can contact Okyanos at http://www.okyanos.com or by calling toll free at 1-855-659-2667.

About Okyanos: (Oh key AH nos) Based in Freeport, Grand Bahama, Okyanos brings a new standard of care and a better quality of life to patients with coronary artery disease, tissue ischemia, autoimmune diseases, and other chronic neurological and orthopedic conditions. Okyanos Cell Therapy utilizes a unique blend of stem and regenerative cells derived from patients own adipose (fat) tissue which helps improve blood flow, moderate destructive immune response and prevent further cell death. Okyanos is fully licensed under the Bahamas Stem Cell Therapy and Research Act and adheres to U.S. surgical center standards. The literary name Okyanos, the Greek god of the river Okyanos, symbolizes restoration of blood flow.

The rest is here:
Okyanos Treats First Patients with Cell Therapy

Goodes has stem cell treatment on troublesome knee

Sydney Swans star Adam Goodes spent his Melbourne Cup day undergoing revolutionary stem cell treatment in a bid to prolong his AFL career.

According to News Corp, Goodes requested the treatment on his troublesome right knee after also undergoing the procedure in January.

Following Sydney's heartbreaking grand final loss to Hawthorn, speculation mounted that Goodes would hang up the boots.

But the 351-game veteran announced he would keep playing in 2015.

"It gave me a new lease of life and took the pain away and my knee has been fantastic since," Goodes said.

"It seems like the smart thing to go back in and give it another shot."

And the 34-year-old hasn't ruled out playing beyond 2015.

"All the decisions weve made medically and physically as a team with Gibbsy (Swans medico Dr Nathan Gibbs) its all about playing at that optimal level.

"If I cant do that this year thats a true sign to hang the boots up."

Gibbs says the revolutionary treatment saved Goodes' career.

Read the original here:
Goodes has stem cell treatment on troublesome knee

Family saves lives through bone marrow registry and stem cell donation

Mark and Mindy Ammons lost their 2-year-old son, Christopher, in 1988 to neuroblastoma, an aggressive childhood cancer. In 2009, Mindy Ammons donated her own stem cells to a woman with cancer. And this weekend, the family's youngest son will prepare a bone marrow donor registry in memory of his oldest brother as an Eagle Scout project.

Family photo

Bone marrow donation is close to the heart for the Ammons family of Provo.

Mark and Mindy Ammons lost their 2-year-old son, Christopher, in 1988 to neuroblastoma, an aggressive childhood cancer. In 2009, Mindy Ammons donated her own stem cells to a woman with cancer. And this weekend, the familys youngest son will lead a bone marrow registry drive as an Eagle Scout project in memory of his oldest brother.

We are in the unique position of having been on both sides of the process, Mindy Ammons said.

In the "Be The Match" flier created for the project, Will Ammons, 13, explains that Christophers only chance of survival was a bone marrow transplant, but sadly, no one in our family was a match, so he had to be his own donor.

Christopher underwent treatment at the UCLA Medical Center where, after five days of chemotherapy, three days of full-body radiation and then surgery, he received his own marrow as a transplant. He died two weeks into the process, just shy of his third birthday.

Over the years, the Ammonses talked about this experience with their children and stayed informed on treatment advances. When it came time for their second oldest son, Jon, to do his Eagle Scout project, he didn't just want to do something to check off on a list. He wanted a meaningful project.

He wanted to do something that would make a difference and was cancer-related," Mindy Ammons said.

They discussed raising money for cancer research but decided that would be like dropping a coin in a well, she said.

See the article here:
Family saves lives through bone marrow registry and stem cell donation