Category Archives: Stem Cell Treatment


FDA: All but 3 stem cells

Human body parts grown in a lab | Scientists are growing noses, ears and blood vessels

Human body parts grown in a lab For more latest tech news and product reviews SUBSCRIBE to In a north London hospital, scientists are growing noses, ears and blood vessels in the laboratory in a bold attempt to make body parts using stem cells. It is among several labs around the world, including in the U.S., that are working on the futuristic idea of growing custom-made organs in the lab. While only a handful of patients have received the British lab-made organs so far including tear ducts, blood vessels and windpipes researchers hope they will soon be able to transplant more types of body parts into patients, including what would be the world's first nose made partly from stem cells. It's like making a cake, said Alexander Seifalian at University College London, the scientist leading the effort. We just use a different kind of oven. TAGS future for mobile phones, future mobile, future mobile applications, future mobile computing, future mobile phone, future mobile phone technology, future mobile phones, future mobile technology, future of mobile, future of mobile applications, future of mobile computing, future of mobile phone, future of mobile phones, future of mobile technology, future of t mobile, future of the mobile phone, future technology mobile phones, latest mobile phone prices in pakistan, latest mobile phone samsung, latest mobile phone sony ericsson, latest mobile phone technology, latest mobile phone with price latest mobile phones, latest mobile phones and prices, latest mobile phones coming soon, latest mobile phones from samsung, latest mobile phones htc, latest mobile phones in india, latest mobile phones in market, latest mobile phones in pakistan, latest mobile phones in samsung, latest mobile phones in sony ericsson, latest mobile phones in the market, latest mobile phones india, latest mobile phones micromax, latest mobile phones models, latest mobile phones of micromax, latest mobile phones of samsung, latest mobile phones of sony ericsson, latest mobile phones on the market, latest mobile phones price, latest mobile phones price in india, latest mobile phones price list, latest mobile phones prices, latest mobile phones prices in india, latest mobile phones samsung, latest mobile phones sony ericsson, latest mobile phones technology, latest mobile phones touch screen, latest mobile phones with price, latest mobile phones with price list latest mobile phones with prices, latest samsung galaxy mobile latest samsung mobile, latest samsung mobile in india, latest samsung mobile india, latest samsung mobile models, latest samsung mobile phone, latest samsung mobile phone in india, latest samsung mobile phones, latest samsung mobile phones in india, latest smart mobile phones, latest technology in mobile, latest technology in mobile phone, latest technology in mobile phones, latest technology mobile, latest technology mobile phone, latest technology mobile phones, latest technology of mobile phones, latest touch mobile phones, latest touch screen mobile phones, latest windows mobile, mobile technology and business, mobile technology applications, mobile technology company, mobile technology development, mobile technology devices, mobile technology education, mobile technology for business, mobile technology future, mobile technology future, mobile technology healthcare, mobile technology in business, mobile technology in education, mobile technology in healthcare, mobile technology in india, mobile technology information, mobile technology news, mobile technology security, mobile technology services, mobile technology software, mobile technology trends, mobile telecommunication technology, new technology for mobile phones new technology in mobile, new technology in mobile phones, new technology mobile, new technology mobile phone, new technology mobile phones, new technology of mobile, new technology of mobile phones, sony ericson latest mobile, sony ericsson latest mobile sony ericsson mobile, sony ericsson new latest mobile, sony latest mobile phones, sony mobile, sony mobile phones, windows mobile phone, windows mobile phones, wireless and mobile technology, wireless mobile technologytyle, sony mobile,

Read more:
FDA: All but 3 stem cells

FDA: No way spas can do stem-cell therapy

Health authorities on Saturday reissued warnings against health facilities and medical practitioners offering stem-cell therapies or related products, which promise to cure a range of diseases, arrest the aging process or even increase libido.

In an advisory, the Food and Drug Administration stressed that to date not one stem cell or human cells, tissues, and cellular and tissue-based products (HCT/Ps) that applied for registration has been registered by the FDA for compassionate or clinical trial use or for general use.

The use of HCT/Ps without the authorization or permission by the FDA is considered illegal, it said. The agency warned hospitals and health facilities of the provisions of the FDA Act of 2009, which prohibits the manufacture, use, advertisement or sponsorship of unregistered health products.

This warning extends to all unlicensed practitioners from other countries and to tourists who visit the Philippines for leisure and medical needs.

According to FDA acting director general Kenneth Hartigan Go, the FDA recognizes only hematopoietic (pertaining to the formation and development of blood cells) stem-cell transplantation, corneal resurfacing with limbal stem cells and skin regeneration with epidermal stem cells as generally accepted standards of healthcare procedures.

If health institutions are doing these three procedures, they can continue because those are allowed, Go said.

But the efficacy of the use of stem cells for the treatment of other diseases, such as diabetes, cancer and autism, among others, have yet to be proven, he said.

Go noted that while many spa centers and salons are advertising stem-cell therapy treatment and products, none of them have secured the FDAs approval. As of now, we have not accredited any health facility offering stem-cell therapy yet.

Applicants with deficiencies

Original post:
FDA: No way spas can do stem-cell therapy

Stem Cell Therapy Market (Autologous & Allogeneic) Worth $330 Million in 2020 – New Report by MarketsandMarkets

(PRWEB) May 02, 2014

The report Stem Cell Therapy Market by Treatment Mode (Autologous & Allogeneic), Therapeutic Applications (CNS, CVS, GIT, Wound Healing, Musculoskeletal, Eye, & Immune System) - Regulatory Landscape, Pipeline Analysis & Global Forecasts to 2020 analyzes and studies the major market drivers, restraints, opportunities, and challenges in North America, Asia-Pacific, Europe, and the Rest of the World (RoW).

Browse 57 market data tables 32 figures spread through 196 Slides and in-depth TOC on Stem Cell Therapy Market http://www.marketsandmarkets.com/Market-Reports/stem-cell-technologies-and-global-market-48.html

Early buyers will receive 10% customization on report.

This report studies the global stem cell therapy market over the forecast period of 2015 to 2020.The market is poised to grow at a CAGR of 39.5% from 2015 to 2020, to reach $330million by 2020.

Download Free PDF Download @ http://www.marketsandmarkets.com/pdfdownload.asp?id=48

The global stem cell therapy market on the basis of the mode of treatment is segmented into allogeneic and autologous stem cell therapy. In addition, based on the therapeutic applications, the global stem cell therapy market is segmented into eye diseases, metabolic diseases, GIT diseases, musculoskeletal disorders, immune system diseases, CNS diseases, CVS diseases, wounds and injuries, and others.

Inquire Before Buying @ http://www.marketsandmarkets.com/Enquiry_Before_Buying.asp?id=48

A number of factors such as the increasing funding from various government and private organizations, growing industry focus on stem cell research, and increasing global awareness about stem cell therapies through various organizations are stimulating the research activities for stem cell therapies. Developing markets, emergence of induced pluripotent stem (iPS) cells as an alternative to embryonic stem cells (ESCs), and evolution of new stem cell therapies represent high growth opportunities for market players.

In 2015, North America will hold the largest share of the global stem cell therapy market. This large share is primarily attributed to the extensive government funding and increasing fast-track approval for stem cell therapeutics by the FDA. Moreover, development of advanced genomic methods for stem cell analysis and high number of ongoing research activities are further fueling the growth of the stem cell therapy market in North America. However, the Asia-Pacific stem cell therapy market is expected to grow at the highest CAGR in the forecast period, owing to factors such as increasing regulatory support through favorable government policies, strong product pipelines, and increasing licensing activities in this region.

More here:
Stem Cell Therapy Market (Autologous & Allogeneic) Worth $330 Million in 2020 - New Report by MarketsandMarkets

Stem Cells Of Infertile Men Used To Create Preliminary Sperm Cells

April Flowers for redOrbit.com Your Universe Online

A new study, from the Stanford University School of Medicine and Montana State University, demonstrates that, when implanted into the reproductive system of a mouse model, stem cells created from adult, infertile men will yield primordial germ cells. Primordial germ cells normally become sperm cells.

The findings, published in Cell Reports, help to further our understanding of a genetic cause of male infertility and basic sperm biology. The research team says that their approach holds considerable potential for clinical applications.

All of the infertile male participants suffer from a genetic mutation that prevents their bodies from producing mature sperm. The study suggests that the men with this condition called azoospermia might have produced germ cells at some point in their early lives, but these cells were lost as the men matured to adulthood.

Our results are the first to offer an experimental model to study sperm development, said Renee Reijo Pera of the Institute for Stem Cell Biology & Regenerative Medicine and Montana State University. Therefore, there is potential for applications to cell-based therapies in the clinic, for example, for the generation of higher quality and numbers of sperm in a dish.

It might even be possible to transplant stem-cell-derived germ cells directly into the testes of men with problems producing sperm, she added. Considerable study to ensure safety and practicality is needed, however, before reaching that point.

Infertility is a fairly common problem, affecting between 10 and 15 percent of couples in the US. The researchers say that many men are affected by genetic causes of infertility, most commonly due to the spontaneous loss of key genes on the Y sex chromosome. Until now, the causes of infertility at the molecular level have not been clear.

The fact that the research team was able to create primordial germ cells from the infertile men is very promising, but they note that these stem cells created far fewer of these sperm progenitors than the stem cells of men without the genetic mutations. They are sure, however, that this research provides a much needed model to study the earliest steps of human reproduction.

We saw better germ-cell differentiation in this transplantation model than weve ever seen, said Reijo Pera, former director of Stanfords Center for Human Embryonic Stem Cell Research and Education. We were amazed by the efficiency. Our dream is to use this model to make a genetic map of human germ-cell differentiation, including some of the very earliest stages.

Humans share many cellular and physiological processes with common laboratory animals such as mice or fruit flies. In reproduction, however, there are significant variances, making it challenging to recreate the human reproductive processes in a laboratory setting. In addition, many crucial steps, such as the development and migration of primordial germ cells to the gonads,occur in the relatively short first days or weeks after conception.

Read this article:
Stem Cells Of Infertile Men Used To Create Preliminary Sperm Cells

Stem cell innovation study converts skin cells to sperm cells in potential infertility treatment

May 2, 2014 7:02 pm by Stephanie Baum | 0 Comments MedCity News

In the latest stem cell innovation, a group of researchers from Stanford University successfully converted skin cells to stem cells to sperm cells, raising new questions about a potential path to treat infertility. The study was published in Cell Report.

The research used skin samples from five men with a genetic mutation calledazoospermia a genetic mutation that prevented them from making mature sperm.

According to a description of the study on NPRs website, researchers took skin cells from infertile men and transformed them into pluripotent stem cells, which can be converted into any cell in the body. The cells were inserted in mice testes and became immature human sperm cells.

The research is certainly at the early stage and experts caution it will take a lot more research to develop healthy sperm but it is already drawing mixed responses from the research world. Although its been called provocative, Dartmouth bioethicist Ronald Green got particularly dark and called attention to the downside. He speculated that it could lead to thefts of tissue samples or hair from the dead to recreate the dearly departed.

Get our daily newsletter or follow us.

Please enter your email below:

More:
Stem cell innovation study converts skin cells to sperm cells in potential infertility treatment

Stem Therapy May Improve Survival of Heart Patients

A new review of previous scientific studies has concluded that stem cell therapy may help reduce the number of deaths in heart patients.

The Cochrane Heart Review Group analyzed data from studies involving just over 1,200 patients in 23 randomized, controlled trials.

The group's report on the potential benefits of stem cell heart repair was published online on April 29 in The Cochrane Library. The Cochrane Reviews are systematic assessments of evidence-based research into human health care and health policy.

There were fewer deaths among heart patients receiving stem cell therapy in addition to standard treatment, compared to patients who were treated with traditional therapies alone or with a placebo. Stem cells are primitive master cells that, under the right conditions, can turn into any cell in the body.

The therapy also reduced the chances that patients, with improved heart function, had to be readmitted to the hospital.

The review noted that stem cell therapy could possibly reduce the number of deaths after one year, but the results of larger clinical trials are needed.

The stem cells are taken from a patients own bone marrow and injected into the hearts of patients with ischemic heart disease and congestive heart failure, repairing damaged cardiac tissue.

Dr. Enca Martin-Rendon, author of the review in Britain, said, This is encouraging evidence that stem cell therapy has benefits for heart disease patients. However, Martin-Rendon noted it is difficult to come to any concrete conclusions until larger clinical trials are carried out.

Read more:
Stem Therapy May Improve Survival of Heart Patients

Scientists Produce Personalized Stem Cells For Specific Diseases

By Estel Grace Masangkay

An independent group of scientists led by experts at the New York Stem Cell Foundation Research Institute (NYSCF) reported that they have manufactured the first disease-specific line of embryonic stem cells made with a patients DNA. The achievement is heralded as a major breakthrough in the regenerative medicine field.

This is also the first time cloning technologies have been utilized to generate genetically matched stem cells. The team used somatic cell nuclear transfer to successfully clone a skin cell from a 32 year old female patient with Type 1 diabetes. The cells were transformed into insulin-producing cells similar to lost beta cells in diabetes, which could provide better treatment or even a cure for T1D.

Susan Solomon, CEO and co-founder of NYSCF, says she is excited about the successful production of patient-specific stem cells using somatic cell nuclear transfer (SCNT). CEO Solomon said she became involved with medical research when her son was diagnosed with T1D.

Dr. Egli, scientist from the New York Stem Cell Foundation Research Institute and who led the research, said, From the start, the goal of this work has been to make patient-specific stem cells from an adult human subject with type-1 diabetes that can give rise to the cells lost in the disease. By reprograming cells to a pluripotent state and making beta cells, we are now one step closer to being able to treat diabetic patients with their own insulin-producing cells.

The scientists analyzed factors that affect stem-cell derivation after SCNT. They added histone deacetylase inhibitors and protocol for human oocyte activation, which were crucial in delivering them to the stage at which embryonic stem cells can be properly derived. The beta cells produced from the patients own skin cells are autologous and match the patients DNA. Further research is underway at NYSCF and other institutions for the development of strategies to protect existing and therapeutic beta cells from attacks of the immune system.

The research teams work appeared in the journal Nature.

Follow this link:
Scientists Produce Personalized Stem Cells For Specific Diseases

Soft substrates may promote the production of induced pluripotent stem cells

17 hours ago Figure 1: Fluorescence microscopy image of cells cultured on soft (left) and rigid (right) substrates. Actin filaments (red) in these cells display dramatic differences in number and organization depending on substrate elasticity. Credit: The Society for Biotechnology, Japan

Converting adult cells into stem cells that can develop into other types of specialized cells is one of the most active areas of medical research, holding great promise for the treatment of disease and repair of damaged tissues. The techniques available for reprogramming adult cells into stem cells, however, remain imperfect and inefficient. In research that could help improve reprogramming efficiency, Sayaka Higuchi and colleagues from the RIKEN Quantitative Biology Center have now found that culturing cells on soft or elastic substrates enhances expression of some of the markers of stem cell reprogramming.

Motivated by previous observations that culturing cells on soft surfaces can affect their ability to multiply and renew, Higuchi and her team set out to examine whether the same principle might be applicable to enhancing the efficiency of producing induced pluripotent stem (iPS) cellsa type of stem cell that is reprogrammed from mature adult fibroblast cells using methods such as the introduction of genetic factors.

The researchers investigated the effect of culturing mouse and human fibroblasts treated with these factors on a range of gel substrates with different compositions and elasticities. They found that genes associated with reprogramming into stem cells were more active in the cells cultured on some of the soft surfaces than in the cells cultured on conventional rigid plastic dishes. They also found that changes in substrate elasticity significantly altered the amount and distribution of actin fibers, suggesting that the actin protein may be involved in mediating the effect of the substrate on the reprogramming process (Fig. 1).

Although the team did not proceed to the actual generation of viable stem cells, the results provide some promising avenues for further research. "It is likely that soft substrates promote only the initiation of the reprogramming process," explains Higuchi. "Even so, the results could lead to more effective and reproducible ways to produce pluripotent stem cells."

Another possibility of particular interest to Higuchi follows from her team's observations that the combination of chemical treatment with substrate manipulation could potentially form the basis for a full reprogramming method that does not involve gene transfera process that involves retroviral infection of mature cells with pluripotency factors. "Gene transfer is still the main method for full reprogramming of iPS cells," says Higuchi, "but if we can find a method for producing pluripotent stem cells that avoids this process, the cells may be much safer for medical use."

Explore further: A protein required for integrity of induced pluripotent stem cells

More information: Higuchi, S., Watanabe, T. M., Kawauchi, K., Ichimura, T. & Fujita, H. "Culturing of mouse and human cells on soft substrates promote the expression of stem cell markers." Journal of Bioscience and Bioengineering 6, 749755 (2014). DOI: 10.1016/j.jbiosc.2013.11.011

Cell reprogramming converts specialised cells such as nerve cells or skin cells towards an embryonic stem cell state. This reversal in the evolutionary development of cells also requires a reversal in the ...

A research team led by the group of Professor Yasuhiro Yamada, Center for iPS Cell Research and Application (CiRA), Kyoto University, has discovered that when cells are subjected to incomplete reprogramming ...

View original post here:
Soft substrates may promote the production of induced pluripotent stem cells

Regenexx Stem Cell Procedures – New York and New Jersey …

In October 2011, the Rehabilitation Medicine Center became the first east-coast clinic licensed and trained to perform the Regenexx Family of Regenerative Medicine Procedures.

These advanced stem cell and blood platelet procedures provide non-surgical treatment options for those suffering from joint or bone pain, torn or strained tendons and ligaments, or other common injuries and degenerative conditions. Regenexx procedures offer a viable alternative for patients with chronic pain and who may be considering surgery.

Stem Cells are in all of us and they are responsible for healing injured bone, ligaments, tendons and tissues. As we get older or injured, we sometimes cannot get enough of these cells into the area in need. The Regenexx Procedures help solve that problem by precisely delivering a high concentration of stem cells into the injured area and aiding your bodys ability to heal naturally. Patients experience very little down time and they typically avoid the long, painful rehabilitation periods that often follow surgery to restore joint strength and mobility.Procedures are performed in our New Jersey office, but evaluations can take place in our New York City or New Jersey clinics.To determine if youre a candidate for these procedures, please complete our Candidate Form.

Regenexx Procedures were recently featured on The Doctors TV show. The episode featured Dr. Christopher J. Centeno and Dr. Ron Hanson from the Centeno-Schultz Clinic in Colorado, along with patient Barbee James, who sought stem cell treatment following traditional knee surgery. The 6 minute video provides a nice overview of the Regenexx-SD (Same Day) Stem Cell procedure, which is now offered at the Rehabilitation Medicine Center.

On February 28, 2013 Seattle King TV featured Regenexx patient Paul Lyon, who underwent a Regenexx-SD knee procedure. The story looks at his results and includes an interview with Dr. Christopher Centeno, founder of the Regenexx Procedures.

If you are suffering from a joint injury, joint pain, a non-healing fracture or a degenerative condition like osteoarthritis, you may be a good candidate for these ground-breaking stem cell and blood platelet treatments. Please complete the Procedure Candidate Form below and we will immediately email you more information.

Download the Free E-Book on Regenerative Orthopedics Orthopedics 2.0 How Regenerative Medicine will Create the Next Generation of Less Invasive Orthopedics. Authored by the Centeno-Schultz clinics Dr. Chris Centeno, this book explains the comprehensive Orthopedics 2.0 approach to patients.

Follow this link:
Regenexx Stem Cell Procedures - New York and New Jersey ...

Stem cell jab is 'five times better than drugs' for treating people with life-threatening heart conditions

British study involved more than 1,000 sufferers of chronic heart disease Indicated injecting stem cells into heart significantly increase survival rates Those who had the treatment less likely to be readmitted to hospital Patients who had injection also more likely to have improved heart function

By Daily Mail Reporter

Published: 18:37 EST, 29 April 2014 | Updated: 02:30 EST, 30 April 2014

Stem cells could be five times more effective in treating people with life-threatening heart diseases than conventional drugs.

A study involving more than 1,000 sufferers of chronic heart disease indicated that injecting stem cells into the heart can significantly increase survival rates after a year.

It found that those who underwent the treatment were less likely to be readmitted to hospital and also had improved heart function.

Stem cells could be five times more effective in treating people with life-threatening heart diseases than conventional drugs

Stem cell treatment for heart disease is currently limited to specialist research centres, where cells are extracted from a patients own blood or bone marrow and used to repair damaged tissue in the heart and arteries.

The Cochrane Heart Review Group looked at data involving 1,255 people from 23 trials, where all patients received treatments currently available to the public.

Read the original post:
Stem cell jab is 'five times better than drugs' for treating people with life-threatening heart conditions