Category Archives: Stem Cell Treatment


Dr. Jeffrey Adler Presents on Use of Stem Cell Therapy at Graham International Implant Symposium

St. Petersburg, Floriday (PRWEB) March 13, 2014

Dr. Jeffrey Adler of Adler Footcare New York is presenting at the 7th Annual Graham International Implant Symposium, a two-day event that brings together foot and ankle specialists to present and attend lectures on the latest in foot and ankle topics. Dr. Adler will be speaking on the use of stem cells in the first MP (metacarpophalangeal) joint surgery.

Stem Cell Replacement Therapy offers an advanced treatment option for problems like plantar fasciitis, Osteoarthritis, Achilles tendonitis and torn soft tissue.

Stem Cell Replacement Therapy is proving to be much more effective and long lasting than traditional treatments.

In the past common foot problems have been treated by physical therapy or orthotic therapy, but the results have often been poor, leaving patients continuing to struggle with the foot pain.

Stem cells are used by many physicians to treat a broad variety of conditions because of their ability to either replicate themselves or change into the cell type that is needed to repair the tissue that has been damaged. The New York podiatrists at Adler Footcare introduce live birth stem cells into the affected area. When a patient comes in for stem cell therapy, the affected area is carefully measured so the stem cells can be delivered directly to the area that needs the treatment.

Stem cell treatment helps patients heal much quicker and allows them to return to their normal activities much sooner, Dr. Adler said. Actual recovery time will depend on each individual patients general health and medical diagnosis, but in the end they will be able to live life without chronic foot pain.

Treatments using stem cells have been used by physicians for over 100 years. Stem Cell Replacement Therapy is covered by commercial insurance and Medicare, and is approved and regulated by the FDA. The product is tested and screened by medical professionals to eliminate the potential of any communicable diseases.

Graham International Implant Institute

The Graham International Implant Institute (GIII) is a global-reaching organization dedicated to research, training, certification and support on implantology for foot physicians worldwide.

See the original post here:
Dr. Jeffrey Adler Presents on Use of Stem Cell Therapy at Graham International Implant Symposium

Miami Stem Cell Treatment Center: What The Stem Cell Procedure Entails and An Invitation To MSCTC Public Seminar; Meet …

Boca Raton, Florida (PRWEB) March 12, 2014

The Miami Stem Cell Treatment Center, PC, located in Miami, Ft. Lauderdale, and Boca Raton, Florida, offers a free public seminar on the use of stem cells for various degenerative and inflammatory conditions. They will be provided by Dr. Thomas A. Gionis, Surgeon-in-Chief, and, Dr. Nia Smyrniotis, Medical Director. The next upcoming seminar will be held on March 16th at the Comfort Suites Weston, 2201 N. Commerce Parkway, Weston, Florida 33326, at 2pm.

Regenerative Medicine: Our Procedure The Miami Stem Cell Treatment Center uses Autologous Adult Adipose Stem Cells to provide care for patients suffering from chronic conditions that may benefit from adult stem cell-based regenerative medicine.

The Miami Stem Cell Treatment Center follows the regenerative medicine procedures developed by the California Stem Cell Treatment Centers (CSCTC) and Cell Surgical Network (CSN) which involves the initial screening, examination and evaluation of every potential candidate for stem cell investigational therapy by one of our physicians. Once a patient is deemed to be an appropriate candidate, the procedure itself is performed by our Surgeon-in-Chief, who is assisted by a team of experienced surgical team members and surgical technicians. The entire process from start to finish takes less than two hours. It is relatively painless, and recovery time is minimal.

In recent times, the bone marrow has been a source for stem cells. Taking bone marrow, however, is a painful procedure. Fat, however, contains many times more stem cells than bone marrow and is much easier and safer to harvest.

For many disease types such as cardiac pathology, adipose derived cells appear to be showing superiority to bone marrow derived cells. This may be related to the well documented fact that chronic disease causes bone marrow suppression. Fat derived cells are a natural choice for our investigational work considering their easy and rapid availability in extremely high numbers.

With our current technology, we can harvest your own fat cells, digest the fat cells and separate out the stem cells. The most significant advantage of using your fat as a source for the stem cells, is that the procedure can be done in the office in only a few hours, as the stem cells can be ready for injection after only 60 minutes of processing with our state of the art equipment. Your stem cells do NOT need to be sent out for processing and there is no need for you to travel outside of the U.S. to have them injected.

Indeed, adipose tissue is an abundant source of mesenchymal stem cells, which have shown promise in the field of regenerative medicine. Furthermore, these cells can be readily harvested in large numbers with low donor-site morbidity. During the past decade, numerous studies have provided pre-clinical data on the safety and efficacy of adipose-derived stem cells, supporting the use of these cells in clinical applications. Various clinical trials have shown the regenerative capability of adipose-derived stem cells in numerous fields of medicine. In addition, a great deal of knowledge concerning the harvesting, characterization, and culture of adipose-derived stem cells has been reported.

Our current areas of study include: Heart Failure, Emphysema, COPD, Asthma, Parkinsons Disease, Stroke, Multiple Sclerosis, and orthopedic joint injections. . The investigational protocols utilized by the Miami Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Research Protections; and the study is registered with http://www.Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information contact: Miami(at)MiamiStemCellsUSA(dot)com or visit our website: http://www.MiamiStemCellsUSA.com.

See more here:
Miami Stem Cell Treatment Center: What The Stem Cell Procedure Entails and An Invitation To MSCTC Public Seminar; Meet ...

Regenestem and Global Stem Cells Group Announce Alliance With Eric Yalung, M.D. to Build First Regenestem Clinic in …

Miami (PRWEB) March 10, 2014

Regenestem, Inc., a division of Global Stem Cells Group, has announced plans to build the first Regenestem brand clinic in the Philippines. The planned, 22,000 square foot, state-of-the-art medical facility in Manila will focus on providing the latest stem cell-based anti-aging and cosmetic therapies available, eliminating the need for invasive surgery.

Regenestem is collaborating with distinguished Philippine Cosmetic Surgeon Eric Yalung, M.D. of the Cosmetic Surgery Institute-Manila, Inc. to create the stem cell therapy center, offering the most advanced protocols in cosmetic cellular medicine to patients from around the world.

The new Regenestem clinic will be headed by Yalung, a prominent and popular cosmetic surgeon in Manila who has built a reputation for incorporating the latest, most modern and least-invasive techniques in aesthetic medicine into his practice. Yalung will be joined by a team of talented stem cell specialists to provide patient treatment and follow-up care under the Regenestem brand.

Regenestem currently offers stem cell treatments for arthritis, autism, chronic obstructive pulmonary disease (COPD), diabetes and multiple sclerosis among other conditions at various facilities worldwide

As part of its commitment to maintaining the highest standards in service and technology, Regenestem provides an international staff and the leading cellular therapies available.

All Regenestem facilities are certified for the medical tourism market, and staff physicians are board-certified or board-eligible. Regenestem clinics provide services in more than 10 specialties, attracting patients from the United States and around the world.

For more information, visit the Regenestem website, email info(at)regenstem(dot)com, or call 305-224-1858.

About Regenestem:

Regenestem, a division of the Global Stem Cells Group, Inc., is an international medical practice association committed to researching and producing comprehensive stem cell treatments for patients worldwide. Having assembled a highly qualified staff of medical specialistsprofessionals trained in the latest cutting-edge techniques in cellular medicineRegenestem continues to be a leader in delivering the latest protocols in the adult stem cell arena.

View post:
Regenestem and Global Stem Cells Group Announce Alliance With Eric Yalung, M.D. to Build First Regenestem Clinic in ...

Stem cell transplant shows 'landmark' promise for treatment of degenerative disc disease

Stem cell transplant was viable and effective in halting or reversing degenerative disc disease of the spine, a meta-analysis of animal studies showed, in a development expected to open up research in humans. Recent developments in stem cell research have made it possible to assess its effect on intervertebral disc (IVD) height, Mayo Clinic researchers reported in a scientific poster today at the 30th Annual Meeting of the American Academy of Pain Medicine.

"This landmark study draws the conclusion in pre-clinical animal studies that stem cell therapy for disc degenerative disease might be a potentially effective treatment for the very common condition that affects people's quality of life and productivity," said the senior author, Wenchun Qu, MD, PhD, of the Mayo Clinic in Rochester, Minn.

Dr. Qu said not only did disc height increase, but stem cell transplant also increased disc water content and improved appropriate gene expression. "These exciting developments place us in a position to prepare for translation of stem cell therapy for degenerative disc disease into clinical trials," he said.

The increase in disc height was due to restoration in the transplant group of the nucleus pulposus structure, which refers to the jelly-like substance in the disc, and an increased amount of water content, which is critical for the appropriate function of the disc as a cushion for the spinal column, the researchers concluded.

The researchers performed a literature search of MEDLINE, EMBASE and PsycINFO databases and also manually searched reference lists for original, randomized, controlled trials on animals that examined the association between IVD stem cell transplant and the change of disc height. Six studies met inclusion criteria. Differences between the studies necessitated the use of random-effects models to pool estimates of effect.

What they found was an over 23.6% increase in the disc height index in the transplant group compared with the placebo group (95% confidence interval [CI], 19.7-23.5; p<0.001). None of the 6 studies showed a decrease of the disc height index in the transplant group. Increases in the disc height index were statistically significant in all individual studies.

The authors commented that it is time to turn attention to the much-needed work of determining the safety, feasibility, efficacy of IVD stem cell transplant for humans.

"A hallmark of IVD degenerative disease is its poor self-repair capacity secondary to the loss of IVD cells. However, current available treatments fail to address the loss of cells and cellular functions. In fact, many invasive treatments further damage the disc, causing further degeneration in the diseased level or adjacent levels," said the lead study author Jason Dauffenbach, DO. "The goal of tissue engineering using stem cells is to restore the normal function and motion of the diseased human spine."

Story Source:

The above story is based on materials provided by American Academy of Pain Medicine (AAPM). Note: Materials may be edited for content and length.

View post:
Stem cell transplant shows 'landmark' promise for treatment of degenerative disc disease

Stem Cell Transplant Shows "Landmark" Promise for Treatment of Degenerative Disc Disease: Mayo Clinic

PHOENIX, March 7, 2014 /PRNewswire-USNewswire/ -- Stem cell transplant was viable and effective in halting or reversing degenerative disc disease of the spine, a meta-analysis of animal studies showed, in a development expected to open up research in humans. Recent developments in stem cell research have made it possible to assess its effect on intervertebral disc (IVD) height, Mayo Clinic researchers reported in a scientific poster today at the 30th Annual Meeting of the American Academy of Pain Medicine.

"This landmark study draws the conclusion in pre-clinical animal studies that stem cell therapy for disc degenerative disease might be a potentially effective treatment for the very common condition that affects people's quality of life and productivity," said the senior author, Wenchun Qu, MD, PhD, of the Mayo Clinic in Rochester, Minn.

Dr. Qu said not only did disc height increase, but stem cell transplant also increased disc water content and improved appropriate gene expression. "These exciting developments place us in a position to prepare for translation of stem cell therapy for degenerative disc disease into clinical trials," he said.

The increase in disc height was due to restoration in the transplant group of the nucleus pulposus structure, which refers to the jelly-like substance in the disc, and an increased amount of water content, which is critical for the appropriate function of the disc as a cushion for the spinal column, the researchers concluded.

The researchers performed a literature search of MEDLINE, EMBASE and PsycINFO databases and also manually searched reference lists for original, randomized, controlled trials on animals that examined the association between IVD stem cell transplant and the change of disc height. Six studies met inclusion criteria. Differences between the studies necessitated the use of random-effects models to pool estimates of effect.

What they found was an over 23.6% increase in the disc height index in the transplant group compared with the placebo group (95% confidence interval [CI], 19.7-23.5; p<0.001). None of the 6 studies showed a decrease of the disc height index in the transplant group. Increases in the disc height index were statistically significant in all individual studies.

The authors commented that it is time to turn attention to the much-needed work of determining the safety, feasibility, efficacy of IVD stem cell transplant for humans.

"A hallmark of IVD degenerative disease is its

More

SOURCE American Academy of Pain Medicine

See more here:
Stem Cell Transplant Shows "Landmark" Promise for Treatment of Degenerative Disc Disease: Mayo Clinic

Controversial Stem Cell Company Moves Treatment out of U.S.

Celltex Therapeutics of Houston ceased treatment patients in the U.S. last year after a warning from regulators, and will now send patients for treatments to Mexico

Flickr/GE Healthcare

US citizens who had pinned their hopes on a company being able to offer stem-cell treatments close to home will now need to travel a little farther. Celltex Therapeutics of Houston, Texas, stopped treating patients in the United States last year following a warning from regulators. A 25 January e-mail to Celltex customers indicates that the firm will now follow in the footsteps of many other companies offering unproven stem-cell therapies and send its patients abroad for treatment but only to Mexico.

The stem-cell treatments offered by Celltex involved extracting adult stem cells from a patient, culturing them and then reinjecting them in a bid to replenish damaged tissue. It had been offering the treatment for more than a year with one of its high-profile customers being Texas governor, Rick Perry when the US Food and Drug Administration (FDA) wrote to the company on 24 September 2012 advising it that the stem cells it harvested and grew were more than minimally manipulated during Celltex's procedures. As such, the FDA regarded the cells as drugs, which would require the agency's approval to be used in treatments. The FDA also warned that Celltex had failed to address problems in its cell processing that inspectors from the agency had identified in an April 2012 inspection of its cell bank in Sugar Land, Texas. Shortly after it received the letter, Celltex stopped injecting stem cells into patients.

For customers who still had cells banked at Celltex and were wondering how to get them out, things became more chaotic when Celltex and RNL Bio, a company based in Seoul, South Korea, which operated the processing center and bank in Sugar Land, sued each other over financial disagreements. Celltex had to issue a restraining order just to gain access to the cells.

The January e-mail from Celltex reassures customers that their cells are safely stored in a facility in Houston and adds: We anticipate that we will be able to offer our stem cell therapy services to physicians in Mexico starting very soon! The e-mail also says that the company is building a new laboratory in Houston, to be opened in March.

Celltex adds that it will carry out an FDA-approved clinical trial, to start shortly after a March meeting with the FDA, pending a positive review from the regulator. However, the company had said in a 25 October e-mail to patients that it would start such a trial within two months and that patient enrolment could begin in late November.

Leigh Turner, a bioethicist at the University of Minnesota in Minneapolis, says that the move to Mexico is "not surprising", given the companys difficulties in the United States.

As Celltex's stem culturing and banking technology was licensed from RNL Bio, it is also not clear whether it has the expertise needed to launch a clinical trial on its own, says Turner. "It would have to build a stem-cell company from the ground floor up. I wouldnt say it is anywhere near the starting line."

Celltex did not respond to questions about how it would ship stem cells to Mexico or how it would perform the clinical research needed to seek FDA approval.

Read more:
Controversial Stem Cell Company Moves Treatment out of U.S.

Alzheimer's research team employs stem cells to understand disease processes and study new treatment

PUBLIC RELEASE DATE:

6-Mar-2014

Contact: Jessica Maki jmaki3@partners.org 617-525-6373 Brigham and Women's Hospital

Boston, MA A team of Alzheimer's disease (AD) researchers at Brigham and Women's Hospital (BWH) has been able to study the underlying causes of AD and develop assays to test newer approaches to treatment by using stem cells derived from related family members with a genetic predisposition to (AD).

"In the past, research of human cells impacted by AD has been largely limited to postmortem tissue samples from patients who have already succumbed to the disease," said Dr. Tracy L. Young-Pearse, corresponding author of the study recently published in Human Molecular Genetics and an investigator in the Center for Neurologic Diseases at BWH. "In this study, we were able to generate stem cells from skin biopsies of living family members who carry a mutation associated with early-onset AD. We guided these stem cells to become brain cells, where we could then investigate mechanisms of the disease process and test the effects of newer antibody treatments for AD."

The skin biopsies for the study were provided by a 57-year-old father with AD and his 33 year-old- daughter, who is currently asymptomatic for AD. Both harbor the "London" familial AD Amyloid Precursor Protein (APP) mutation, V7171. More than 200 different mutations are associated with familial AD. Depending on the mutation, carriers can begin exhibiting symptoms as early as their 30s and 40s. APPV7171 was the first mutation linked to familial AD and is the most common APP mutation.

The BWH researchers submitted the skin biopsies to the Harvard Stem Cell Institute, where the cells were converted into induced pluripotent stem cells (or iPSCs). Dr. Young-Pearse's lab then directed the stem cells derived from these samples into neurons specifically related to a particular region of the brain which is responsible for memory and cognitive function. The scientists studying these neurons made several important discoveries. First, they showed that the APPV7171 mutation alters APP subcellular location, amyloid-beta protein generation, and then alters Tau protein expression and phosphorylation which impacts the Tau protein's function and activity. Next, the researchers tested multiple amyloid-beta antibodies on the affected neurons. Here, they demonstrated that the secondary increase in Tau can be rescued by treatment with the amyloid -protein antibodies, providing direct evidence linking disease-relevant changes in amyloid-beta to aberrant Tau metabolism in living cells obtained directly from an AD patient.

While AD is characterized by the presence of amyloid-beta protein plaques and Tau protein tangles, observing living cell behavior and understanding the mechanisms and relationship between these abnormal protein deposits and tangles has been challenging. Experimental treatments for AD are using antibodies to try to neutralize the toxic effects of amyloid-beta, because they can bind to and clear the amyoid-beta peptide from the brain.

This study is the first of its kind to examine the effects of antibody therapy on human neurons derived directly from patients with familial AD.

"Amyloid-beta immunotherapy is a promising therapeutic option in AD, if delivered early in the disease process," said Dr. Young-Pearse. "Our study suggests that this stem cell model from actual patients may be useful in testing and comparing amyloid-beta antibodies, as well as other emerging therapeutic strategies in treating AD."

Continue reading here:
Alzheimer's research team employs stem cells to understand disease processes and study new treatment