Category Archives: Stem Cell Treatment


Daiichi Sankyo Authorizes the First YESCARTA (Axicabtagene Ciloleucel) CAR T-cell Therapy Treatment Site in Japan – Business Wire

SANTA MONICA, Calif. & TOKYO--(BUSINESS WIRE)--Kite, a Gilead Company, and Daiichi Sankyo Company, Limited (hereafter, Daiichi Sankyo) today announced that YESCARTA (axicabtagene ciloleucel), a chimeric antigen receptor (CAR) T-cell therapy, will be available to patients with relapsed or refractory large B-cell lymphomas in Japan through the first treatment center now authorized by Daiichi Sankyo. Kite and Daiichi Sankyo will also build on the exclusive licensing deal for commercialization rights for axicabtagene ciloleucel in Japan, formalized in January 2017. Both partners are pleased to agree on a broadening of their business collaboration in Japan.

We are pleased to bring the benefits of axicabtagene ciloleucel to eligible patients in Japan, in collaboration with Daiichi Sankyo, said Warner Biddle, Kites Global Head of Commercial. Japan has the second-largest number of people diagnosed with non-Hodgkin lymphoma globally1 and we remain committed to bringing our innovative CAR T-cell therapies to additional new markets.

We are pleased to be able to deliver axicabtagene ciloleucel, Daiichi Sankyo's first cell therapy product, to patients in Japan, said Akio Sakurai, Daiichi Sankyo Corporate Officer, Head of Sales Division. By strengthening our collaboration with Kite, the originator of axicabtagene ciloleucel and a world leader in cell therapy, we will strive to bring this innovative therapy to as many patients as possible.

CAR T-cell therapy is a complex immunotherapy, and all hospitals must complete a rigorous training process before administering axicabtagene ciloleucel to patients. These hospitals receive specific training in handling and risk minimization procedures in order to ensure that patient safety remains a priority.

Several factors are considered when qualifying a hospital, including their specialist skills and services, geographic coverage and experience in managing other complex procedures, such as stem cell transplantation and a co-located intensive care unit.

Axicabtagene ciloleucel has been approved in Japan for treatment of patients with relapsed or refractory diffuse large B-cell lymphoma, primary mediastinal B-cell lymphoma, transformed follicular lymphoma or high-grade B-cell lymphoma. The use of axicabtagene ciloleucel is limited to patients not previously treated with a CD-19 CAR-positive T-cell infusion; patients previously treated with two or more lines of treatment including chemotherapy or an autologous stem cell transplant; and, patients ineligible for an autologous stem cell transplant. In January 2017, Daiichi Sankyo received exclusive development, manufacturing and commercialization rights for axicabtagene ciloleucel in Japan from California-based Kite, a Gilead Company.

The approval of axicabtagene ciloleucel in Japan is based on data from the global pivotal trial conducted by Kite (ZUMA-1)2 and results of a Phase 2 study conducted by Daiichi Sankyo in Japan. In the Japanese Phase 2, open-label, single-arm study, the same dose (2.0 x 106 cells/kg) of axicabtagene ciloleucel as used in the ZUMA-1 study was administered to assess efficacy and safety in 16 Japanese patients with relapsed or refractory large B-cell lymphoma, including diffuse large B-cell lymphoma, primary mediastinal B-cell lymphoma, transformed follicular lymphoma or high-grade B-cell lymphoma. The study reached its primary endpoint, demonstrating an objective response rate (ORR) of 86.7% (95% CI: 59.5 98.3%).

The overall safety and tolerability profile of axicabtagene ciloleucel in the Japan trial was consistent with that observed in ZUMA-1. Dose limiting toxicity was not observed. Grade 3 treatment emergent adverse event occurred in all patients; most commonly neutropenia (81.3%), lymphopenia (81.3%) and thrombocytopenia (62.5%). Cytokine release syndrome (CRS), a typical CAR T-cell therapy-emergent adverse event, occurred in 13 patients (81.3%, all Grade), with Grade 3 CRS in one patient (6.3%). No neurological events, another CAR T-cell therapy-emergent adverse event, were observed.

About YESCARTA

YESCARTA (axicabtagene ciloleucel) is a CAR T-cell therapy directed against CD19 (a cell membrane protein), which harnesses a patients own immune system to fight cancer. Axicabtagene ciloleucel is made by removing a patients T cells and engineering them in the lab to express chimeric antigen receptors so that they can recognize and destroy cancer cells. The CAR T therapy is manufactured specifically for each patient and administered only once.3

Axicabtagene ciloleucel received Orphan Drug Designation from the Japan MHLW in 2018 for the treatment of diffuse large B-cell lymphoma, primary mediastinal B-cell lymphoma, transformed follicular lymphoma and high-grade B-cell lymphoma.

YESCARTA is approved in the U.S. and Europe for patients with certain types of relapsed or refractory B-cell lymphoma, where it is developed, manufactured and commercialized by Kite.

Please see full U.S. Prescribing Information, including BOXED WARNING and Medication Guide.

Yescarta is a CD19-directed genetically modified autologous T cell immunotherapy indicated for the treatment of:

Limitations of Use: Yescarta is not indicated for the treatment of patients with primary central nervous system lymphoma.

About Daiichi Sankyo

Daiichi Sankyo is dedicated to creating new modalities and innovative medicines by leveraging our world-class science and technology for our purpose to contribute to the enrichment of quality of life around the world. In addition to our current portfolio of medicines for cancer and cardiovascular disease, Daiichi Sankyo is primarily focused on developing novel therapies for people with cancer as well as other diseases with high unmet medical needs. With more than 100 years of scientific expertise and a presence in more than 20 countries, Daiichi Sankyo and its 16,000 employees around the world draw upon a rich legacy of innovation to realize our 2030 Vision to become an Innovative Global Healthcare Company Contributing to the Sustainable Development of Society. For more information, please visit: http://www.daiichisankyo.com.

About Kite

Kite, a Gilead Company, is a global biopharmaceutical company based in Santa Monica, California, with manufacturing operations in North America and Europe. Kites singular focus is cell therapy to treat and potentially cure cancer. As the cell therapy leader, Kite has more approved CAR T indications to help more patients than any other company. For more information on Kite, please visit http://www.kitepharma.com.

Forward-Looking Statements

This press release includes forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 that are subject to risks, uncertainties and other factors, including Kites ability to realize the anticipated benefits from the collaboration with Daiichi Sankyo or other investments in cell therapy; Kites ability to initiate, progress or complete clinical trials or studies within currently anticipated timelines or at all, including those involving YESCARTA; the possibility of unfavorable results from ongoing or additional clinical trials or studies, including those involving YESCARTA; the risk that physicians may not see the benefits of prescribing YESCARTA; the possibility that the treatment center may experience disruptions or difficulties in delivering YESCARTA to patients; and any assumptions underlying any of the foregoing. These and other risks, uncertainties and factors are described in detail in Gileads Quarterly Report on Form 10-Q for the quarter ended September 30, 2021, as filed with the U.S. Securities and Exchange Commission. These risks, uncertainties and other factors could cause actual results to differ materially from those referred to in the forward-looking statements. All statements other than statements of historical fact are statements that could be deemed forward-looking statements. The reader is cautioned that any such forward-looking statements are not guarantees of future performance and involve risks and uncertainties and is cautioned not to place undue reliance on these forward-looking statements. All forward-looking statements are based on information currently available to Gilead and Kite, and Gilead and Kite assume no obligation and disclaim any intent to update any such forward-looking statements.

U.S. Prescribing Information for YESCARTA including BOXED WARNING, is available at http://www.kitepharma.com and http://www.gilead.com.

Kite, the Kite logo, YESCARTA, and GILEAD are trademarks of Gilead Sciences, Inc. or its related companies.

For more information on Kite, please visit the companys website at http://www.kitepharma.com Follow Kite on social media on Twitter (@KitePharma) and LinkedIn.

_________

Read the original post:
Daiichi Sankyo Authorizes the First YESCARTA (Axicabtagene Ciloleucel) CAR T-cell Therapy Treatment Site in Japan - Business Wire

Communication between cells plays a major role in deciding their fate > News > USC Dornsife – USC Dornsife College of Letters, Arts and Sciences

Findings from a new study could point the way to new treatments for blood diseases including cancers such as leukemia and lymphoma. [3 min read]

By Darrin S. Joy - December 22, 2021

In this schematic, cells (black spheres) within each well are committed to a specific fate, but external stimuli, such as cell-to-cell communication, can force cells out of one state and into another. (Illustration: Courtesy of Adam MacLean.)

Scientists have found a way to prove that biochemical signals sent from cell to cell play an important role in determining how those cells develop.

The study from researchers at the USC Dornsife College of Letters, Arts and Sciences was published in the journal Development on Dec. 22.

A little background:

Whats new:

We discovered that the communication process can change the formation of blood cell types dramatically, and that cells that are closer to one another have a greater influence on each others fate, MacLean said.

A controversy resolved

Researchers trying to determine what early factors nudge a cell down one developmental path or another have wondered if random fluctuations within the cell are enough to decide which path is taken. Many models have suggested they were, but recent breakthrough studies showed that random fluctuations were not enough, that something else drives cells toward their fate.

The model MacLean and Rommelfanger have developed appears to put an end to the controversy altogether. They show that cell-to-cell communication can, in fact, be the deciding factor that sets cells along a certain path.

Why it matters:

By understanding how blood cell fate decisions are made, MacLean said, we get closer to being able to identify leukemia cells of origin, and in theory we can design strategies to control or alter cell fate decision-making and stop the development of cancer.

The research could help improve cancer therapies such as bone marrow transplant.

Better understanding stem cell fate decisions, as our study provides, could provide new insight to improve clinical outcomes for these diseases, MacLean said.

More than just blood

This new model has important implications beyond the blood system.

Our model is broadly applicable, so researchers working on other cell types can apply it to find out for those other cells how important cell-to-cell communication may be, said MacLean.

Whats next:

The role of cell-to-cell communication in determining cell fate is in its nascent stages, says MacLean, but further experiments and future technologies to integrate these new types of data with sophisticated models should help expand understanding.

In addition, the team is developing methods to study the regulation of key genes involved in cell fate decisions, which should further advance their overall theoretical model.

About the study

This work was supported by National Science Foundation grant DMS 2045327 and a USC Women in Science and Engineering Top-up Fellowship.

Read the original here:
Communication between cells plays a major role in deciding their fate > News > USC Dornsife - USC Dornsife College of Letters, Arts and Sciences

Emendo Biotherapeutics and Seattle Childrens Research Institute Announce Collaboration to Develop CRISPR-based Therapeutic Strategy for Severe…

Collaboration formed to conduct preliminary research to inform protocol development ahead of gene editing clinical trial

NEW YORK & SEATTLE, December 22, 2021--(BUSINESS WIRE)--Emendo Biotherapeutics, a next-generation CRISPR biotech expanding the reach of gene editing therapeutics, and Seattle Childrens Research Institute today announced a research collaboration to investigate how hematopoietic stem cells (HSCs) extracted from patients with severe congenital neutropenia (SCN) respond to priming treatments ahead of administering a CRISPR-based therapeutic.

ELANE-related SCN, also known as SCN1, is a rare, autosomal dominant disease in which a mutation occurs in one allele of the ELANE gene, thereby preventing HSCs from differentiating into white blood cells, specifically neutrophils, which leaves the patient highly susceptible to recurrent bacterial infections, osteoporosis, developmental delays and abnormalities.

"Patients with SCN often suffer from reduced quality of life due to the lack of improvements in the standard of care," said Dr. David Rawlings, Division Chief of Immunology at Seattle Children's Hospital and Director of the Center for Immunity and Immunotherapies at Seattle Childrens Research Institute. "These children are immunocompromised, and, as a result, we feel a great sense of urgency to ensure were exploring all possible avenues towards a solution."

"Seattle Childrens collaboration with Emendo, utilizing its unique approach to edit only the mutated allele with CRISPR, will enable us to address the unmet needs of SCN at the very core," added Rawlings, who also serves as a professor of pediatrics and adjunct professor in the Department of Immunology at the University of Washington School of Medicine. "Were excited about this opportunity, and look forward to continuing the collaboration beyond this initial study."

Editing the mutated ELANE gene with CRISPR first requires overcoming a technological hurdle: Only the mutated allele must be targeted, while the healthy allele remains intact. Emendo engineered its roster of next-generation CRISPR nucleases to be biologically active and so specific that they can differentiate between two alleles of the same gene. EMD-101, Emendos lead therapeutic candidate for SCN, was specifically engineered to target the mutant ELANE allele.

Story continues

HSCs have been widely studied as a treatment for sickle cell anemia and cancer, as well as a potential therapy to treat organ and tissue damage. However, HSCs require initial priming prior to stem cell transplantation, which is typically done by administering G-CSF (granulocyte colony stimulating factor). Yet, the same drug is also a short-term treatment for SCN patients.

To better understand how SCN patients would respond to a priming dose of G-CSF and plerixafor, Emendo will evaluate the mobilization of HSCs excised from a small group of patients with SCN, which would be gene-edited later. Concurrently, Seattle Childrens will evaluate the composition of the HSCs obtained from the same patients. Prior mouse studies conducted by Emendo have shown that human cells edited to excise the disease-causing ELANE allele sufficiently engrafted and replaced existing diseased cells, restoring proper neutrophil differentiation.

"By combining our allele-specific genome editing technology with Seattle Childrens renowned expertise in SCN spearheaded by Dr. Rawlings we are laying the foundation for future clinical trials that could lead to potential therapies to treat the disease," said David Baram, Ph.D., CEO of Emendo. "Our portfolio of engineered nucleases tailored to any gene or allele gives us the unique opportunity to tackle the inherent challenges of SCN. Through this collaboration well be able to provide stronger evidence and further proof points for the capabilities of our technology."

Based on the outcome of the research, a protocol for a clinical trial could be developed with an expected initiation in late 2022, pending regulatory approval. Seattle Children's has certain preferred rights to serve as a clinical trial site.

About Emendo Biotherapeutics

EmendoBio is a next generation CRISPR gene editing company leveraging dual proprietary technology platforms to enable high precision gene editing throughout the genome. EmendoBios novel nuclease discovery platform broadens the targetable range of the genome while its target-specific optimization platform enables highly precise editing, including allele specific editing, while maintaining high efficiencies. The capabilities of the OMNI technology platforms, along with deep expertise in genomic medicine, protein engineering and therapeutic development, provide EmendoBio with a unique advantage when addressing indications within hematology, oncology, ophthalmology and other disease areas. For more information please visit us at http://www.emendobio.com.

About Seattle Childrens

Seattle Childrens mission is to provide hope, care and cures to help every child live the healthiest and most fulfilling life possible. Together, Seattle Childrens Hospital, Research Institute and Foundation deliver superior patient care, identify new discoveries and treatments through pediatric research, and raise funds to create better futures for patients.

Ranked as one of the top childrens hospitals in the country by U.S. News & World Report, Seattle Childrens serves as the pediatric and adolescent academic medical center for Washington, Alaska, Montana and Idaho the largest region of any childrens hospital in the country. As one of the nations top five pediatric research centers, Seattle Childrens Research Institute is internationally recognized for its work in neurosciences, immunology, cancer, infectious disease, injury prevention and much more. Seattle Childrens Foundation works with the Seattle Childrens Guild Association, the largest all-volunteer fundraising network for any hospital in the country, to gather community support and raise funds for uncompensated care and research. Join Seattle Childrens bold initiative It Starts With Yes: The Campaign for Seattle Childrens to transform childrens health for generations to come.

For more information, visit seattlechildrens.org or follow us on Twitter, Facebook, Instagram or on our On the Pulse blog.

View source version on businesswire.com: https://www.businesswire.com/news/home/20211222005552/en/

Contacts

Zuri McClelland HDMZ Emendo.pr@hdmz.com 312-506-5214

Read the original:
Emendo Biotherapeutics and Seattle Childrens Research Institute Announce Collaboration to Develop CRISPR-based Therapeutic Strategy for Severe...

National Advertising Division Recommends Cryo-Cell Discontinue or Modify Certain Health-Related Claims for Cord Blood Banking and Treatment Services -…

PR Newswire

NEW YORK, Dec. 21, 2021

NEW YORK, Dec. 21, 2021 /PRNewswire/ -- The National Advertising Division (NAD) of BBB National Programs determined that certain advertising claims made by Cryo-Cell International, Inc. reasonably conveyed the unsupported message that families must engage the advertiser's cord blood storage services to ensure access to the advertised cord blood infusion treatments. Therefore, NAD recommended that Cryo-Cell discontinue such claims, or modify its advertising to avoid conveying the message that consumers have exclusive or superior access to advertised cord blood infusion treatments by virtue of choosing Cryo-Cell for storage services.

National Advertising Division (NAD) (PRNewsfoto/National Advertising Division,B)

The advertising at issue was challenged by ViaCord, LLC, a provider of competing cord blood banking services.

The challenged claims, which appeared on the advertiser's website, included express claims stating:

"This partnership will benefit families who store with Cryo-Cell by allowing them to have foremost access to the infusion treatments that are currently only performed at Duke University to treat autism, cerebral palsy, and other neurologic diseases in accordance with the FDA expanded access rights granted to Duke."

"What Sets Us Apart Key Partnerships Patients will have access to investigational therapies for certain conditions through our partnership with Duke University.

"Additionally, families will benefit from access to investigational therapies through the arrival of a new infusion clinic, expected in January 2022."

"Treatment Access" Cryo-Cell "[w]ill offer families expanded treatment options under an FDA-approved IND for therapies using cord blood stem cells."

"New Treatment Possibilities: Receive access to innovative and quality care."

"Access to Innovative Treatments"

"Extended Benefits for Patients access to treatment in clinical trialsExpedited Participationcritically important to provide access to therapy before the child outgrows the number of cells available for treatment."

"NOT ALL CORD BLOOD BANKS ARE CREATED EQUALkey partnerships"

ViaCord also challenged implied claims that:

Story continues

Storing cord blood with Cryo-Cell provides consumers exclusive and/or better access to treatments than storing with other cord blood banks.

Such access is because competitors lack "key partnerships" relating to such treatments.

The advertiser offers services relating to the preservation, storage and transportation of cord blood stored on behalf of families for potential future medical use. Expectant parents who choose to bank cord blood with a private bank such as Cryo-Cell register with the bank before the birth of their child. The bank helps facilitate the collection of the blood at the time of birth and the blood is then immediately taken by courier to a facility where it is then processed and stored.

Duke University holds a patent on methods of treating autism with cord blood and has granted Cryo-Cell an exclusive license to practice those treatment methods. Clinical trials of cord blood as treatment for autism and other neurologic disorders are being conducted by Dr. Joanne Kurtzberg at Duke University under the FDA's Expanded Access Protocol (EAP). The cord blood used in these trials has come from numerous cord blood banks, including both ViaCord and Cryo-Cell. Cryo-Cell is planning on opening a clinic in 2022 to provide infusion treatments to patients in accordance with the patent license and the EAP to advance regenerative therapy research and "bring greater access to novel cord blood and cord tissue-based cellular therapies to treat conditions such as autism, cerebral palsy, and other neurological conditions."

Cord blood banking and cord blood-based treatments are distinct services. Families who have stored cord blood at an FDA-compliant bank are free to use that blood for treatments offered by any treatment provider, regardless of where the blood is stored. Cord blood used for treatments is often transferred from the bank to an infusion center, even when within the same facility, where it must be processed according to required protocols.

NAD determined that one reasonable takeaway from the context of the challenged advertising, on an audience of expectant parents under time pressure to make an important health care decision for their family, is that one must engage the advertiser's cord blood storage service to ensure access to the advertised cord blood infusion treatments.

NAD found that the advertiser did not substantiate the message reasonably conveyed that Cryo-Cell storage clients have exclusive access to the treatments. Nor did the Advertiser demonstrate that Cryo-Cell customers have "better" access to the treatments than those families who store cord blood at a different bank in the sense that Cryo-Cell storage customers will be at risk of losing access to the treatments because they store their cord blood elsewhere.

NAD recommended that the advertiser discontinue the challenged claims or modify its advertising to avoid conveying the message that consumers have exclusive or superior access to the advertised cord blood infusion treatments by virtue of choosing Cryo-Cell for storage services. NAD noted that the advertiser may make this modification by clearly and conspicuously disclosing that using Cryo-Cell's storage services will not impact eligibility for the treatments, or, by modifying its website to separate its claims related to exclusive benefits for Cryo-Cell customers and access to the treatments available to all eligible patients.

Finally, NAD noted that nothing in its decision precludes the advertiser from making truthful and non-misleading claims about any convenience benefit to Cryo-Cell storage customers when accessing cord blood treatments or from advertising the exclusive license it has with Duke University and the treatments that may be available to eligible patients as a result.

In its advertiser statement, Cryo-Cell stated that it "agrees to comply with NAD's recommendations" and that it "will indeed provide additional disclosures stating that access to treatments at the Cryo-Cell Institute for Cellular Therapies, including treatments under Cryo-Cell's exclusive license with Duke University and the FDA's Expanded Access Protocol, will be available to all eligible patients, including those that have their cord blood stored at another cord blood storage provider."

All BBB National Programs case decision summaries can be found in the case decision library. For the full text of NAD, NARB, and CARU decisions, subscribe to the online archive.

About BBB National Programs: BBB National Programs is where businesses turn to enhance consumer trust and consumers are heard. The non-profit organization creates a fairer playing field for businesses and a better experience for consumers through the development and delivery of effective third-party accountability and dispute resolution programs. Embracing its role as an independent organization since the restructuring of the Council of Better Business Bureaus in June 2019, BBB National Programs today oversees more than a dozen leading national industry self-regulation programs, and continues to evolve its work and grow its impact by providing business guidance and fostering best practices in arenas such as advertising, child-directed marketing, and privacy. To learn more, visit bbbprograms.org.

About the National Advertising Division: The National Advertising Division (NAD) of BBB National Programs provides independent self-regulation and dispute resolution services, guiding the truthfulness of advertising across the U.S. NAD reviews national advertising in all media and its decisions set consistent standards for advertising truth and accuracy, delivering meaningful protection to consumers and leveling the playing field for business.

Cision

View original content to download multimedia:https://www.prnewswire.com/news-releases/national-advertising-division-recommends-cryo-cell-discontinue-or-modify-certain-health-related-claims-for-cord-blood-banking-and-treatment-services-301449131.html

SOURCE BBB National Programs

See more here:
National Advertising Division Recommends Cryo-Cell Discontinue or Modify Certain Health-Related Claims for Cord Blood Banking and Treatment Services -...

Systemic Mastocytosis Treatments Gain Hope Due To Increasing Novel Treatment Options – PRNewswire

PALM BEACH, Fla., Dec. 21, 2021 /PRNewswire/ -- FinancialNewsMedia.com News Commentary - Systemic mastocytosis is rare disease which affects very few people and it causes due to C-kit mutation which leads to higher number of mast cell production in the body resulting in accumulation of excessive mast cells in the internal body organs such as spleen, liver, bone marrow and small intestine etc. Recently, the World Health Organization (WHO) updated the prognosis, diagnosis and systemic mastocytosis treatment guidelines for the disease which in turn helped to bring uniformity in the approach by healthcare professionals. The manufacturers in the systemic mastocytosis treatment market are focusing on evaluating possible treatment options to cure the disease by investing heavily in the research & development. Various leading manufacturers are focusing on gaining FDA approval to respective drugs for the systemic mastocytosis treatment to enhance their revenue generation. A reportfrom Future Market Insights said:"Increasing awareness about the systemic mastocytosis treatment as well as symptoms of the disease due to extended effort by non-profit organizations, governmental associations and through other platforms expected to drive the growth of the systemic mastocytosis treatment market Increasing approvals and launches of drugs for the systemic mastocytosis treatment expected to drive the growth of the market Increasing spending on research & development by various pharmaceutical companies to develop novel systemic mastocytosis treatment expected to further fuel the growth of market. Increasing early diagnosis rate subsequently followed by increasing treatment seeking rate further expected to drive the growth of the systemic mastocytosis treatment market." Active companies in the markets today include: Hoth Therapeutics, Inc. (NASDAQ:HOTH), Longeveron Inc. (NASDAQ: LGVN), Bristol Myers Squibb (NYSE: BMY), Takeda Pharmaceutical Company Limited (NYSE: TAK), Amgen (NASDAQ: AMGN).

Future Market Insights continued:"The global systemic mastocytosis treatment market is expected to experience significant growth due to increasing novel treatment options. By drug class, systemic mastocytosis treatment market is expected to be dominated by the mast cell stabilizers due to superior efficacy. By indication, systemic mastocytosis treatment market is expected to be dominated by indolent systemic mastocytosis (ISM) due to higher prevalence. By route o administration, systemic mastocytosis treatment market is expected to be dominated by injectables. By distribution channel, systemic mastocytosis treatment market is expected to be dominated by the retail pharmacies due to higher patient footfall. The global systemic mastocytosis treatment market is expected to be dominated by the North America due to comparatively higher prevalence of the disease. Europe systemic mastocytosis treatment market is expected to be second most lucrative market due to higher treatment seeking rate. Latin America expected to show gradual growth in the systemic mastocytosis treatment market due to steadily increasing diagnosis. Asia-Pacific is emerging systemic mastocytosis treatment market due to increasing diagnosis subsequently followed by treatment. Middle East & Africa is the least lucrative systemic mastocytosis treatment market due to least diagnostic rate and lower awareness about the symptoms."

Hoth Therapeutics, Inc. (NASDAQ:HOTH) BREAKING NEWS: Hoth Therapeutics Announces Submission of Orphan Designation Application for HT-KIT to Treat Mastocytosis Hoth Therapeutics, Inc., a patient-focusedclinical-stage biopharmaceutical company, announced it submitted an Orphan Drug Designation Application to the US Food and Drug Administration (FDA) for HT-KIT for the treatment of mastocyctosis. HT-KIT is an antisense oligonucleotide that targets the proto-oncogene cKIT by inducing mRNA frame shifting, resulting in apoptosis of neoplastic mast cells. The KIT signaling pathway is implicated in multiple diseases, including all types of mastocytosis (such as aggressive systemic mastocytosis (ASM), mast cell leukemia (MCL), and systemic mastocytosis with associated hematological neoplasm (SM-AHN)), acute myeloid leukemia, gastrointestinal stromal tumors, and anaphylaxis.

Drugs intended to treat orphan diseases (rare diseases that affect less than 200,000 people in the US)are eligible to apply for Orphan Drug Designation (ODD), which provides multiple benefits to the sponsor during development and after approval. Hoth intends to pursue these benefits as part of the drug development for HT-KIT for treatment of mastocytosis, pending designation of the ODD application.

Benefits of Orphan Drug Designation - Under the Orphan Drug Act, drug companies can apply for ODD, and if granted, the drug will have a status which gives companies exclusive marketing and development rights along with other benefits to recover the costs of researching and developing the drug. A tax credit of 50% of the qualified clinical drug testing costs awarded upon drug approval is also possible. Regulatory streamlining and provide special assistance to companies that develop drugs for rare patient populations. In addition to exclusive rights and cost benefits, the FDA will provide protocol assistance, potential decreased wait-time for drug approval, discounts on registration fees, and eligibility for market exclusivity after approval.

Key benefits of ODD:

Hoth recently announcedthat its novelanti-cancer therapeuticexhibited highly positive results in humanized mast cell neoplasm models, representative in vitro and in vivo models for aggressive, mast cell-derived cancers such as mast cell leukemia and mast cell sarcoma. CONTINUED Read the Hoth Therapeutics full press release by going to: https://ir.hoththerapeutics.com/news-releases

In other news and developments of note in the markets this week:

Amgen (NASDAQ: AMGN) recently announced that the U.S. Food and Drug Administration (FDA) has approved Amgen and AstraZeneca'sTezspire (tezepelumab-ekko) for the add-on maintenance treatment of adult and pediatric patients aged 12 years and older with severe asthma.

Tezspirewas approved following a Priority Review by the FDA and based on results from the PATHFINDER clinical trial program. The application included results from the pivotal NAVIGATOR Phase 3 trial in whichTezspiredemonstrated superiority across every primary and key secondary endpoint in patients with severe asthma, compared to placebo, when added to standard therapy.

Longeveron Inc. (NASDAQ: LGVN), a clinical stage biotechnology company developing cellular therapies for chronic aging-related and certain life-threatening conditions, recently announced that the U.S. Food and Drug Administration (FDA) has granted Orphan Drug Designation (ODD) for Lomecel-B for the treatment of Hypoplastic Left Heart Syndrome (HLHS), a rare and life-threatening congenital heart defect in infants.

ODD is intended to assist and encourage companies to develop safe and effective therapies for the treatment of rare diseases or conditions. ODD positions Longeveron to be able to potentially leverage a range of financial and regulatory benefits, including government grants for conducting clinical trials, waiver of FDA user fees for the potential submission of a marketing application, and certain tax credits. Receiving ODD may also result in the product receiving seven years market exclusivity upon approval for use in the rare disease or condition for which the product was designated if all of the statutory and regulatory requirements are met.

Bristol Myers Squibb (NYSE: BMY) recently announced thatOrencia(abatacept) was approved by the U.S. Food and Drug Administration (FDA) for the prophylaxis, or prevention, of acute graft versus host disease (aGvHD), in combination with a calcineurin inhibitor (CNI) and methotrexate (MTX), in adults and pediatric patients 2 years of age and older undergoing hematopoietic stem cell transplantation (HSCT) from a matched or 1 allele-mismatched unrelated donor (URD).

"Orenciais the first FDA-approved therapy to prevent acute graft versus host disease following hematopoietic stem cell transplant, a potentially life-threatening complication that can pose a comparatively higher risk to racial and ethnic minority populations in the U.S. due to difficulty finding appropriately matched donors," said Tina Deignan, senior vice president, U.S. Immunology, Bristol Myers Squibb. "With this fourth indication forOrencia,Bristol Myers Squibb draws on its legacy and expertise in both immunology and hematology to deliver an important treatment option for patients in a disease with high unmet need.

Takeda Pharmaceutical Company Limited (NYSE: TAK) announced that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) has recommended the approval of intravenous (IV) vedolizumab for the treatment of adult patients with moderately to severely active chronic pouchitis, who have undergone proctocolectomy and ileal pouch-anal anastomosis (IPAA) for ulcerative colitis (UC), and have had an inadequate response with or lost response to antibiotic therapy. The CHMP opinion will now be reviewed by the European Commission. If approved, vedolizumab will become the first treatment indicated for active chronic pouchitis across the European Union.

DISCLAIMER: FN Media Group LLC (FNM), which owns and operates Financialnewsmedia.com and MarketNewsUpdates.com, is a third- party publisher and news dissemination service provider, which disseminates electronic information through multiple online media channels. FNM is NOT affiliated in any manner with any company mentioned herein. FNM and its affiliated companies are a news dissemination solutions provider and are NOT a registered broker/dealer/analyst/adviser, holds no investment licenses and may NOT sell, offer to sell or offer to buy any security. FNM's market updates, news alerts and corporate profiles are NOT a solicitation or recommendation to buy, sell or hold securities. The material in this release is intended to be strictly informational and is NEVER to be construed or interpreted as research material. All readers are strongly urged to perform research and due diligence on their own and consult a licensed financial professional before considering any level of investing in stocks. All material included herein is republished content and details which were previously disseminated by the companies mentioned in this release. FNM is not liable for any investment decisions by its readers or subscribers. Investors are cautioned that they may lose all or a portion of their investment when investing in stocks. For current services performed FNM was compensated twenty five hundred dollars for news coverage of current press release issued by: Hoth Therapeutics, Inc. by a non-affiliated third party.

FNM HOLDS NO SHARES OF ANY COMPANY NAMED IN THIS RELEASE.

This release contains "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E the Securities Exchange Act of 1934, as amended and such forward-looking statements are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. "Forward-looking statements" describe future expectations, plans, results, or strategies and are generally preceded by words such as "may", "future", "plan" or "planned", "will" or "should", "expected," "anticipates", "draft", "eventually" or "projected". You are cautioned that such statements are subject to a multitude of risks and uncertainties that could cause future circumstances, events, or results to differ materially from those projected in the forward-looking statements, including the risks that actual results may differ materially from those projected in the forward-looking statements as a result of various factors, and other risks identified in a company's annual report on Form 10-K or 10-KSB and other filings made by such company with the Securities and Exchange Commission. You should consider these factors in evaluating the forward-looking statements included herein, and not place undue reliance on such statements. The forward-looking statements in this release are made as of the date hereof and FNM undertakes no obligation to update such statements.

Contact Information:Media Contact email: [emailprotected] +1(561)325-8757

SOURCE FinancialNewsMedia.com

Excerpt from:
Systemic Mastocytosis Treatments Gain Hope Due To Increasing Novel Treatment Options - PRNewswire

Seven tech trends to watch in 2022 | The Star – Toronto Star

With COVID resurging and the climate crisis intensifying, 2021 is ending on a precarious note. But there are also reasons to be optimistic (or at least somewhat optimistic). Across Canada, scientists and entrepreneurs are innovating in ways that will help people strike a better work-life balance, live sustainably and stay healthy. Here are seven trends in Canadas thriving innovation economy to watch in the year ahead.

Farm-to-table becomes lab-to-table

With the supply-chain crisis expected to push family grocery bills up by an estimated $966 next year, Canada needs to find new ways to sustainably feed itself. According to Dana McCauley of the Canadian Food Innovation Network, when it comes to food, the really exciting stuff right now is happening in labs.

She points to companies, such as Vancouvers Wamame, which has produced the worlds first plant-based version of Wagyu beef and is leading a consortium to create other meatless meats. Meanwhile, researchers at the University of Guelph have discovered how to make plant-based cheese stretch, which could soon put a tastier and oozier vegan mozzarella on the menu.

Companies are taking advantage of advances in engineering yeast, algae and other microbes to create foods like animal-free milk. But researchers are also working on technologies to grow real meat from cell cultures, which are touted as being cruelty-free and better for the environment. Scientists at McMaster University recently found a way to better control the fat and muscle content of cultured meat, bringing the possibility of lab-grown steak a step closer.

McCauley points out that these techniques can also be used to grow specialized plant products, cutting down food miles: In future, instead of coming from Madagascar, maybe my vanilla will come from Montreal.

Hybrid working becomes a test of corporate culture

When the Omicron wave recedes, executives will again be mulling their return-to-the-office plans. But with 80 per cent of workers not keen on returning to their desks full time, a period of experimentation with various forms of part-office part-remote hybrid working lies ahead. Kyra Jones, head of talent at Communitech, says that successful companies will use this as an inflection point to reimagine how work is done, where work is done and what work looks like.

Toronto-based enterprise software company Sensei Labs is among a growing number of tech companies that have adopted work-from-anywhere policies. Staff are free to log on from the office, at home, in a coffee shop or even further afield. We have a very international team, many of them have family in places like Brazil, or India or Ukraine and we encourage them to go work from there for an extended period, says CEO Jay Goldman. The company also suggests which days each team might go into the office, so staff who want to be in part-time know when theyll be most likely to see their closest colleagues.

But its not just HR policies that are evolving, technology is too. Tools are now emerging designed with long-term remote working in mind. Vizetto, for instance, has created a virtual chalkboard to encourage collaborative meetings. WorkTango, an employee feedback platform, has created quick pulse surveys to make it easier for managers to check how workers are feeling. Regardless of the technology, however, hybrid working will continue to be tricky terrain for managers to navigate. Unsurprisingly, Jones says demand for leadership training courses is surging.

Lithium is the new oil

After production delays in 2021, electric-vehicle manufacturers are hoping to make up lost ground and they are all racing to secure supplies of lithium for the batteries. Amanda Hall, CEO of lithium-extraction firm Summit Nanotech, predicts global production will increase by about a third next year. But suppliers will still struggle to keep up with demand.

The downside is that soaring lithium prices could lead to sticker shock at the dealership if costs are passed on to electric-vehicle buyers. The upside: the focus on lithium is putting pressure on miners to clean up their operations.

The major investors in the world are saying we wont support unsustainable practices anymore, says Hall, who recently won Canadas $1-million Women in Cleantech Challenge for developing an extraction system that generates 90 per cent less waste than traditional chemical methods. Australia, one of the worst polluters, is looking at using electric vehicles and renewable energy in its lithium mines. As Canada considers plans for developing mineral mining in places like northern Ontario, expect environmental safeguards to come under close scrutiny here, too.

Stem cell therapies advance in clinical trials

For two decades, researchers have been experimenting with stem cells to repair damaged tissues and treat diseases. Now, those studies are leaving the lab and moving into clinical trials to see how they perform in real patients.

The long-standing investment in regenerative medicine is going to start to bear fruit but to a limited extent for a limited number of patients, says Michael Sefton, executive director of the University of Torontos Medicine by Design program.

In Vancouver, biotech firm ViaCyte is testing a device that implants pancreatic stem cells into diabetes patients, which should grow into insulin-producing cells and reduce the need for injections. And BlueRock Therapeutics, which has labs in Toronto, has started a trial using stem cells to replace damaged neurons in patients with Parkinsons Disease. If successful, these therapies could transform patients lives.

But Sefton cautions that we are still some way from seeing stem-cell treatments like these in clinical use: I think in 10 years they may be common, at least in large academic centres.

Investment in biotech picks up

After record investment poured into biotech at the start of the pandemic, 2021 was a bumpy year for the sector. Stocks of major pharmaceutical companies languished even as the industry was cranking out billions of doses of life-saving vaccines in record time.

But according to Dan Legault, CEO of Toronto-based Antibe Therapeutics, investment in biotech should pick up again in the coming year.

The pullback was too fast and too strong, he says. Legault puts the investment chill down to a lack of major mergers or acquisitions of late but says that with several promising developments on the horizon there is still huge money looking to invest in the sector.

Self-driving trucks inch closer to the road

While driverless cars may be taking longer than expected, developers of autonomous freight vehicles are stepping on the gas.

Michael Tremblay, CEO of Invest Ottawa, which operates a testing centre for driverless vehicles called AreaX.O, says interest in self-driving delivery vehicles is growing as trucking companies struggle to recruit drivers. Theres a real business need for it, he says.

At facilities like AreaX.O, researchers are now connecting up convoys of small test vehicles under the supervision of single drivers, which is seen as a potential stepping stone to fully autonomous trucks. They are also adapting driverless systems to Canadas harsh climate, including looking at centimetre-accurate GPS to enable vehicles to navigate when snow covers road markings, and testing special coatings to prevent sensors getting iced up.

For now, in Ontario, autonomous vehicles are confined to study tracks and pilot projects, and regulatory changes will be needed before driverless trucks hit our highways. But Tremblay points out that the core technology is available right now. Its a question of having society accept it.

In the meantime, researchers have discovered another uniquely Canadian challenge: geese. They dont behave the way youd expect them to they go right out in front of the vehicle, says Tremblay.

The end of writers block (maybe)

AI assistants can already help organize your life. Soon, they may be able to unlock your artistic side, too.

AI platforms have advanced to the point where they are surprisingly creative Rolling Stone recently deemed a computer-generated rock song to have an anthemic chorus.

According to Olga Vechtomova, a researcher at the University of Waterloo, its now possible to channel that creativity into a kind of electronic muse for artists. Vechtomovas lab has produced an AI model that listens to music and suggests lyrics that fit its rhythm and style. The aim is less to write the song than it is to spark musicians imaginations.

Its power is in its ability to surprise and be unpredictable, says Vechtomova. Ive seen it come up with novel metaphors and turns of phrase that would never occur to me.

There are already several platforms like LyricStudio, which uses AI to generate song lines based on topics and rhymes. Such tools are likely to proliferate in the next year or two.

But will we ever see an AI produce a masterpiece? Vechtomova has her doubts, not least because wed first need to figure out what genius actually is.

Try to set the objective to generate something thats musically brilliant we just cant define that.

David Paterson writes about technology for MaRS. Torstar, the parent company of the Toronto Star, has partnered with MaRS to highlight innovation in Canadian companies.

Disclaimer This content was produced as part of a partnership and therefore it may not meet the standards of impartial or independent journalism.

Report an error

About The Star

The rest is here:
Seven tech trends to watch in 2022 | The Star - Toronto Star

Seven tech trends to watch in 2022 | ThePeterboroughExaminer.com – ThePeterboroughExaminer.com

With COVID resurging and the climate crisis intensifying, 2021 is ending on a precarious note. But there are also reasons to be optimistic (or at least somewhat optimistic). Across Canada, scientists and entrepreneurs are innovating in ways that will help people strike a better work-life balance, live sustainably and stay healthy. Here are seven trends in Canadas thriving innovation economy to watch in the year ahead.

Farm-to-table becomes lab-to-table

With the supply-chain crisis expected to push family grocery bills up by an estimated $966 next year, Canada needs to find new ways to sustainably feed itself. According to Dana McCauley of the Canadian Food Innovation Network, when it comes to food, the really exciting stuff right now is happening in labs.

She points to companies, such as Vancouvers Wamame, which has produced the worlds first plant-based version of Wagyu beef and is leading a consortium to create other meatless meats. Meanwhile, researchers at the University of Guelph have discovered how to make plant-based cheese stretch, which could soon put a tastier and oozier vegan mozzarella on the menu.

Companies are taking advantage of advances in engineering yeast, algae and other microbes to create foods like animal-free milk. But researchers are also working on technologies to grow real meat from cell cultures, which are touted as being cruelty-free and better for the environment. Scientists at McMaster University recently found a way to better control the fat and muscle content of cultured meat, bringing the possibility of lab-grown steak a step closer.

McCauley points out that these techniques can also be used to grow specialized plant products, cutting down food miles: In future, instead of coming from Madagascar, maybe my vanilla will come from Montreal.

Hybrid working becomes a test of corporate culture

When the Omicron wave recedes, executives will again be mulling their return-to-the-office plans. But with 80 per cent of workers not keen on returning to their desks full time, a period of experimentation with various forms of part-office part-remote hybrid working lies ahead. Kyra Jones, head of talent at Communitech, says that successful companies will use this as an inflection point to reimagine how work is done, where work is done and what work looks like.

Toronto-based enterprise software company Sensei Labs is among a growing number of tech companies that have adopted work-from-anywhere policies. Staff are free to log on from the office, at home, in a coffee shop or even further afield. We have a very international team, many of them have family in places like Brazil, or India or Ukraine and we encourage them to go work from there for an extended period, says CEO Jay Goldman. The company also suggests which days each team might go into the office, so staff who want to be in part-time know when theyll be most likely to see their closest colleagues.

But its not just HR policies that are evolving, technology is too. Tools are now emerging designed with long-term remote working in mind. Vizetto, for instance, has created a virtual chalkboard to encourage collaborative meetings. WorkTango, an employee feedback platform, has created quick pulse surveys to make it easier for managers to check how workers are feeling. Regardless of the technology, however, hybrid working will continue to be tricky terrain for managers to navigate. Unsurprisingly, Jones says demand for leadership training courses is surging.

Lithium is the new oil

After production delays in 2021, electric-vehicle manufacturers are hoping to make up lost ground and they are all racing to secure supplies of lithium for the batteries. Amanda Hall, CEO of lithium-extraction firm Summit Nanotech, predicts global production will increase by about a third next year. But suppliers will still struggle to keep up with demand.

The downside is that soaring lithium prices could lead to sticker shock at the dealership if costs are passed on to electric-vehicle buyers. The upside: the focus on lithium is putting pressure on miners to clean up their operations.

The major investors in the world are saying we wont support unsustainable practices anymore, says Hall, who recently won Canadas $1-million Women in Cleantech Challenge for developing an extraction system that generates 90 per cent less waste than traditional chemical methods. Australia, one of the worst polluters, is looking at using electric vehicles and renewable energy in its lithium mines. As Canada considers plans for developing mineral mining in places like northern Ontario, expect environmental safeguards to come under close scrutiny here, too.

Stem cell therapies advance in clinical trials

For two decades, researchers have been experimenting with stem cells to repair damaged tissues and treat diseases. Now, those studies are leaving the lab and moving into clinical trials to see how they perform in real patients.

The long-standing investment in regenerative medicine is going to start to bear fruit but to a limited extent for a limited number of patients, says Michael Sefton, executive director of the University of Torontos Medicine by Design program.

In Vancouver, biotech firm ViaCyte is testing a device that implants pancreatic stem cells into diabetes patients, which should grow into insulin-producing cells and reduce the need for injections. And BlueRock Therapeutics, which has labs in Toronto, has started a trial using stem cells to replace damaged neurons in patients with Parkinsons Disease. If successful, these therapies could transform patients lives.

But Sefton cautions that we are still some way from seeing stem-cell treatments like these in clinical use: I think in 10 years they may be common, at least in large academic centres.

Investment in biotech picks up

After record investment poured into biotech at the start of the pandemic, 2021 was a bumpy year for the sector. Stocks of major pharmaceutical companies languished even as the industry was cranking out billions of doses of life-saving vaccines in record time.

But according to Dan Legault, CEO of Toronto-based Antibe Therapeutics, investment in biotech should pick up again in the coming year.

The pullback was too fast and too strong, he says. Legault puts the investment chill down to a lack of major mergers or acquisitions of late but says that with several promising developments on the horizon there is still huge money looking to invest in the sector.

Self-driving trucks inch closer to the road

While driverless cars may be taking longer than expected, developers of autonomous freight vehicles are stepping on the gas.

Michael Tremblay, CEO of Invest Ottawa, which operates a testing centre for driverless vehicles called AreaX.O, says interest in self-driving delivery vehicles is growing as trucking companies struggle to recruit drivers. Theres a real business need for it, he says.

At facilities like AreaX.O, researchers are now connecting up convoys of small test vehicles under the supervision of single drivers, which is seen as a potential stepping stone to fully autonomous trucks. They are also adapting driverless systems to Canadas harsh climate, including looking at centimetre-accurate GPS to enable vehicles to navigate when snow covers road markings, and testing special coatings to prevent sensors getting iced up.

For now, in Ontario, autonomous vehicles are confined to study tracks and pilot projects, and regulatory changes will be needed before driverless trucks hit our highways. But Tremblay points out that the core technology is available right now. Its a question of having society accept it.

In the meantime, researchers have discovered another uniquely Canadian challenge: geese. They dont behave the way youd expect them to they go right out in front of the vehicle, says Tremblay.

The end of writers block (maybe)

AI assistants can already help organize your life. Soon, they may be able to unlock your artistic side, too.

AI platforms have advanced to the point where they are surprisingly creative Rolling Stone recently deemed a computer-generated rock song to have an anthemic chorus.

According to Olga Vechtomova, a researcher at the University of Waterloo, its now possible to channel that creativity into a kind of electronic muse for artists. Vechtomovas lab has produced an AI model that listens to music and suggests lyrics that fit its rhythm and style. The aim is less to write the song than it is to spark musicians imaginations.

Its power is in its ability to surprise and be unpredictable, says Vechtomova. Ive seen it come up with novel metaphors and turns of phrase that would never occur to me.

There are already several platforms like LyricStudio, which uses AI to generate song lines based on topics and rhymes. Such tools are likely to proliferate in the next year or two.

But will we ever see an AI produce a masterpiece? Vechtomova has her doubts, not least because wed first need to figure out what genius actually is.

Try to set the objective to generate something thats musically brilliant we just cant define that.

David Paterson writes about technology for MaRS. Torstar, the parent company of the Toronto Star, has partnered with MaRS to highlight innovation in Canadian companies.

Disclaimer This content was produced as part of a partnership and therefore it may not meet the standards of impartial or independent journalism.

Report an error

About The Examiner

More:
Seven tech trends to watch in 2022 | ThePeterboroughExaminer.com - ThePeterboroughExaminer.com

Stem Cell Therapy: Alternative Treatment to Hip & Knee …

The Regenerative therapy procedure is performed in an outpatient setting and only takes up to two hours. No general anaesthesia is required, and most patients dont need post-operative pain medication. After the procedure, patients typically return to work within a week or two and may resume physical activity much faster than after invasive surgery. Many patients report feeling marked improvement in their joint within one to three months.

For the procedure, PRP and cell concentrates are obtained from your body and prepared for injection. Once injected, cells follow inflammatory signals from damaged tissues and travel to the injured areas. These cells have multiple ways of repairing these damaged areas from inducing the production of natural anti-inflammatories which can assist with Osteoarthritis pain and swelling in the joint area to kick-starting the healing in injuries and stimulating regeneration. The anti-inflammatory effect lasts from 2-3 months. From there, you can see continued gradual improvement as the cells help provide healing to the affected area. However, you should not expect to see the full effect of the treatment earlier than six months, especially in the case of joint interventions. Variables like the type of disease or condition, age, lifestyle, comorbidities, general health and other factors also affect the outcome and length of recovery.

Read the original here:
Stem Cell Therapy: Alternative Treatment to Hip & Knee ...

How The Overlap Between Artificial Intelligence And Stem Cell Research Is Producing Exciting Results – Forbes

Passage Of California Stem Cell Proposition Boosts Research

For the last decade and more, Stem Cell research and regenerative medicine have been the rave of the healthcare industry, a delicate area that has seen steady advancements over the last few years.

The promise of regenerative medicine is simple but profound that one day medical experts will be able to diagnose a problem, remove some of our body cells called stem cells and use them to grow a cure for our ailment. Using our body cells will create a highly personalized therapy attuned to our genes and systems.

The terminologies often used in this field of medicine can get a bit fuzzy for the uninitiated, so in this article, I have relied heavily on the insights of Christian Drapeau, a neurophysiologist and stem cell expert.

Drapeau was one of the first voices who discovered and began to speak about stem cells being the bodys repair system in the early 2000s. Since then, he has gone on to discover the first stem cell mobilizer, and his studies and research delivered the proof of concept that the AFA (Aphanizomenon flos-aquae) extract was capable of enhancing repair from muscle injury.

Christian Drapeau is also the founder of Kalyagen, astem cell research-based company, and the manufacturers of Stemregen. This stem cell mobilizer combines some of the most effective stem cell mobilizers Drapeau has discovered to create an effective treatment for varying diseases.

How exactly do stem cell-based treatments work? And how is it delivering on its promise of boosting our abilities to regenerate or self-heal?

Drapeau explains the concept for us;

Stem cells are mother cells or blank cells produced by the bone marrow. As they are released from the bone marrow stem cells can travel to any organ and tissue of the body, where they can transform into cells of that tissue.Stem cells constitute the repair system of the body.

The discovery of this function has led scientists on a long journey to discover how to use stem cells to cure diseases, which are essentially caused by cellular loss. Diseases like Diabetes and age-related degenerative diseases are all associated with the loss of a type of cell or cellular function.

However, what Drapeaus research has unearthed over the last few decades is that there are naturally occurring substances that show a demonstrated ability to induce the release of stem cells from the bone marrow. These stem cells then enter the bloodstream, from where they can travel to sites of cell deficiency or injury in the body to aid healing and regeneration. This process is referred to as Endogenous Stem Cell Mobilization (ESCM).

Stemregen is our most potent creation so far, explains Drapeau, and it has shown excellent results with the treatment of problems in the endocrine system, muscles, kidneys, respiratory systems, and even with issues of erectile dysfunction.

Despite the stunning advancements that have been made so far, a concern that both Drapeau and I share is how this innovation can be merged with another exciting innovation; AI.

Is it even a possibility? Drapeau, an AI enthusiast, explains that AI has already been a life-saver in stem cell research and has even more potential.

On closer observation, there are a few areas in which AI has greatly benefited stem cell research and regenerative medicine.

One obstacle that scientists have consistently faced with delivering the full promise of regenerative medicine is the complexity of the available data.Cells are so different from each other that scientists can struggle with predicting what the cells will do in any given therapeutic scenario. Scientists are faced with millions of ways that medical therapy could go wrong.

Most AI experts believe that in almost any field, AI can provide a solution whenever there is a problem with data analysis and predictive analysis.

Carl Simon, a biologist at the National Institute of Standards and Technology (NIST) and Nicholas Schaub recentlytested this hypothesiswhen they applied Deep Neural Networks (DNN), an AI program to the data they had collected in their experiments on eye cells. Their research revolved around causes and solutions for age-related eye degeneration. The results were stunning; the AI made only one incorrect prediction about cell changes out of 36 predictions it was asked to make.

Their program learned how to predict cell function in different scenarios and settings from annotated images of cells. It soon could rapidly analyze images of the lab-grown eye tissues to classify the tissues as good or bad. This discovery has raised optimism in the stem cell research space.

Drapeau explains why this is so exciting;

When we talk about stem cells in general, we say stem cells as if they were all one thing, but there are many different types of stem cells.For example, hair follicle and dental pulp stem cells contain neuronal markers and can easily transform into neurons to repair the brain. Furthermore, the tissue undergoing repair must signal to attract stem cells and must secrete compounds to stimulate stem cell function. A complex analysis of the tissue that needs repair and the conditions of that tissue using AI, in any specific individual, will help select the right type of stem cells and the best cells in that stem cell population, along with the accompanying treatment to optimize stem cell-based tissue repair.

Christian Drapeau

Ina study published in Februaryof this year inStem Cells, researchers from Tokyo Medical and Dental University (TMDU) reported that their AI system, called DeepACT, had successfully identified healthy, productive skin stem cells with the same accuracy that a human could. This discovery further strengthens Drapeaus argument on the potentials of AI in this field.

This experiment owes its success to AIs machine learning capabilities, but it is expected that Deep Learning can be beneficially introduced into regenerative medicine.There are many futuristic projections for these possibilities, but many of them are not as far-fetched as they may first seem.

Researchers believe that AI can help fast-track the translation of regenerative medicine into clinical practice; the technology can be used to predict cell behavior in different environments. Therefore, hypothetically, it can be used to simulate the human environment. This means that researchers can gain in-depth information more rapidly.

Perhaps the most daring expectation is the possibility of using AI to pioneer the 3D printing of organs. In a world where organ shortage is a harsh reality, this would certainly come in handy. AI algorithms can be utilized to identify the best materials for artificial organs, understand the anatomic challenges during treatment, and design the organ.

Can stem cells actually be used along with other biological materials to grow functional 3D-printed organs? If this is possible, then pacemakers will soon give way to 3D-printed hearts. A 3D-printedheart valvehas already become a reality in India, making this even more of an imminent possibility.

While all of these possibilities excite Drapeau, he is confident that AIs capabilities with data analysis and prediction, which is already largely in use, would go down as its most beneficial contribution to stem cell research;

It was already shown that stem cells laid on the connective tissue of the heart, the soft skeleton of the heart, can lead the entire formation of a new heart. Stem cells have this enormous regenerative potential. AI can take this to another level by helping establish the conditions in which this type of regeneration can be orchestrated inside the body.But we have to be grateful for what we already have, over the last 20 years, I have studied endogenous stem cell mobilization and today the fact that we have such amazing results with Stemregen is testament that regenerative medicine is already a success.

As AI continues to scale over industry boundaries, we can only sit back and hope it delivers on its full potential promise. Who knows? Perhaps AI really can change the world.

Excerpt from:
How The Overlap Between Artificial Intelligence And Stem Cell Research Is Producing Exciting Results - Forbes

Selma Blair Posts Nude Diving Photo After MS Stem Cell …

Kids do the darndest things to their parents, and thats apparently true whether you have a chronic illness or not.

Selma Blair just shared a photo on Instagram of herself executing a perfect dive. At first, its like whoa, Selma has amazing form! but then you realize you can totally see her bare butt. Sotheres a backstory to this.

On Wednesday, Selma (who has multiple sclerosis) shared a photo of herself on Instagram preparing to dive into a pool. Given that Selma uses a cane to walk and has mobility issues, this was kind of a BFD. Well, just as Selma prepared to take the plunge, her 8-year-old son Arthur came out of nowhere and pushed her in, leaving Selma flailing as she fell.

Preparing to dive. A very big deal for me, she wrote in the caption. "Instead, I felt a tiny hand on swimsuit and lost any coordination. Her hashtags were hilarious: #terror #punkkid #payback is coming.

This content is imported from Instagram. You may be able to find the same content in another format, or you may be able to find more information, at their web site.

Fast-forward to that gorgeous dive pic Victory. I dont give up. #bottomsup my boy is a #crackup@kidarthursaint, Selma wrote in the caption.

This content is imported from Instagram. You may be able to find the same content in another format, or you may be able to find more information, at their web site.

Selma, who was diagnosed with MS more than a year ago, has been very candid with fans about her mobility issues. She often uses a cane for balance and occasionally uses an Alinker walking bike to help her get around.

This content is imported from {embed-name}. You may be able to find the same content in another format, or you may be able to find more information, at their web site.

Selma recently revealed that she had been away from home for months to undergo treatment for her MS. One fan asked in the comments what differences she's noticed after having stem cell treatment, and she responded with this: "I can dive!"

Selma, FTW!

This content is created and maintained by a third party, and imported onto this page to help users provide their email addresses. You may be able to find more information about this and similar content at piano.io

The rest is here:
Selma Blair Posts Nude Diving Photo After MS Stem Cell ...