'Holy Grail' of stem cell research discovered
Washington, February 27 (ANI): Scientists have developed sugar-coated scaffolding to improve stem cell technology to cure some of the world's incurable diseases and conditions.
Stem cells have the unique ability to turn into any type of human cell, opening up all sorts of therapeutic possibilities for diseases from Alzheimer's to diabetes.
But how to encourage stem cells to turn into the particular type of cell required to treat a specific disease is the problem that scientists are facing now.
Now researchers at the University of Manchester's School of Materials and Faculty of Life Sciences have developed a web-like scaffold, coated with long-sugar molecules, that enhances stem-cell cultures to do just this.
The scaffold is formed by a process known as 'electrospinning', creating a mesh of fibres that mimic structures that occur naturally within the body.
The team's results are particularly promising, as the sugar molecules are presented on the surface of the fibres, retaining structural patterns important in their function. The sugars are also 'read' by the stem cells grown on the surface, stimulating and enhancing the formation of neuronal cell types.
"These meshes have been modified with long, linear sugar molecules, which we have previously shown play a fundamental role in regulating the behaviour of stem cells. By combining the sugar molecules with the fibre web, we hoped to use both biochemical and structural signals to guide the behaviour of stem cells, in a similar way to that used naturally by the body. This is the Holy Grail of research into developing new therapeutics using stem cell technology," said lead author Dr Catherine Merry, from Manchester's Stem Cell Glycobiology group.
The group anticipate that the combination of the sugar molecules with the fibre web will aid both the growth of stem cells and the formation of different cell types from the stem cell population.
Possible applications include tissue engineering, where the meshes could support cells differentiating to form bone, liver or blood vessels, for example.
The meshes also have potential therapeutic implications in the treatment of diseases such as multiple osteochondroma (MO), a rare disease creating bony spurs or lumps caused by abnormal production of these sugar molecules.
See more here:
'Holy Grail' of stem cell research discovered