Category Archives: Stem Cell Treatment


Safety results of intra-arterial stem cell clinical trial for stroke presented

ScienceDaily (Oct. 11, 2012) Early results of a Phase II intra-arterial stem cell trial for ischemic stroke showed no adverse events associated with the first 10 patients, allowing investigators to expand the study to a targeted total of 100 patients.

The results were presented October 11 by Sean Savitz, M.D., professor of neurology and director of the Stroke Program at The University of Texas Health Science Center at Houston (UTHealth), at the 8th World Stroke Congress in Brasilia, Brazil.

The trial is the only randomized, double-blind, placebo-controlled intra-arterial clinical trial in the world for ischemic stroke. It is studying the safety and efficacy of a regenerative therapy developed by Aldagen Inc., a wholly-owned subsidiary of Cytomedix, Inc., that uses a patient's own bone marrow stem cells, which can be administered between 13 and 19 days post-stroke.

The therapy, called ALD-401, consists of stem cells that are identified using Aldagen's proprietary technology to isolate cells that express high levels of an enzyme that serves as a marker of stem cells. Pre-clinical studies found that these cells enhance recovery after stroke in mice. The cells are administered into the carotid artery. Patients are followed for 12 months to monitor safety and to assess mental and physical function.

"We have been approved by the Data Safety Monitoring Board (DSMB) to move the study into the next phase, which will allow us to expand the number of sites in order to complete enrollment," said Savitz, senior investigator for the multi-center study. As per the protocol for the trial, the Food and Drug Administration required a review by the DSMB prior to advancing to the next phase.

Preclinical research, including research at the UTHealth Medical School, has suggested that stem cells can promote the repair of the brain after an ischemic stroke, which is caused by a blood clot in the brain. Stroke is a leading cause of disability and the fourth-leading cause of death in the United States, according to 2008 statistics reported by the Centers for Disease Control and Prevention.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by University of Texas Health Science Center at Houston.

Link:
Safety results of intra-arterial stem cell clinical trial for stroke presented

Scientists discuss stem cell discoveries at New York Stem Cell Foundation Conference

Public release date: 11-Oct-2012 [ | E-mail | Share ]

Contact: David McKeon dmckeon@nyscf.org 212-365-7440 New York Stem Cell Foundation

NEW YORK, NY (October 11, 2012) For the second day, The New York Stem Cell Foundation (NYSCF) Seventh Annual Translational Stem Cell Research Conference hosts the world's most preeminent stem cell scientists to present their findings on how advances in stem cell science lead to better treatments and cures for disease and injury. The conference is held at The Rockefeller University in Manhattan on October 10-11.

Today, in disease-specific sessions, scientists will share their latest finds in moving stem cell research to treatments in the following areas: cancer and blood disease; diabetes and autoimmunity; heart and muscles; neurodegeneration and spinal cord injury.

In Cancer and Blood Disease, Elaine Fuchs, PhD, The Rockefeller University, will share findings on identification of skin cancer stem cells, which have implications in understanding other cancers as well as stem cells. Joanne Kurtzberg, MD, Duke University, will discuss her work developing therapies for disease with autologous cord blood transplants. Ravi Majeti, PhD, Stanford University, will describe his recent insights into acute myeloid leukemia and how stem cell technologies can lead to new cancer treatments.

Dieter Egli, PhD, The New York Stem Cell Foundation (NYSCF), will open the session on Diabetes and Autoimmunity by detailing his group's development of stem cell-derived models of pancreatic beta cells for the study of diabetes. Yuval Dor, PhD, Hebrew University, Israel, will discuss experiments with pancreatic beta cells with the goal to understand the regenerative potential of these cells. Matthias von Herrath, MD, Novo Nordisk, will delve into another aspect of Type 1 diabetes, the problem of autoimmunity. He will close the session by sharing insights into the need for an immune modulated therapy to diabetes.

Before the afternoon sessions, Shahin Rafii, MD, Weill Medical College of Cornell University will deliver the first of two keynote addresses of the conference. He will describe his recent successes in deriving vascular cells from amniotic cells.

In the afternoon session on Heart and Muscle Diseases, Amy Wagers, PhD, Harvard University, will focus on advances in treatments and explain how studies into the mechanisms of tissue stem cell renewal may have relevant therapeutic implications. Gordon Keller, PhD, McEwen Centre for Regenerative Medicine, Canada, will describe modeling cardiac cell development from human pluripotent cells for use in toxicology and electrophysiology studies. Helen Blau, PhD, Stanford University, will describe her research to improve stem cell culture in the direction of stem cell fate and for drug screens.

In Neurodegeneration and Spinal Cord Injury, Paola Arlotta, PhD, Harvard University and a NYSCF-Robertson Stem Cell Investigator, will address the application of stem cells to understanding and possibly treating these debilitating diseases and conditions, and will describe investigations to direct reprogramming of neurons into different neuronal lineages. Lorenz Studer, MD, Memorial Sloan-Kettering Cancer Center, will discuss the potential stem cell technology holds in the treatment of Parkinson's disease. Despite past failures in the replacement of lost dopamine neurons, Dr. Studer will describe his novel protocols for the generation of these neurons for eventual use in clinical trials.

Rudolf Jaenisch, MD, The Whitehead Institute, will deliver the second keynote address of the day. Building on Shinya Yamanaka's paradigm-changing work in induced pluripotent stem (iPS) cell reprogramming, Dr. Jaenisch will discuss new methods to counter the generally low successful output of these cells. He will also summarize how targeted genome editing may help unleash the potential of iPS cells and embryonic stem cells for both the study of and therapy for disease.

Excerpt from:
Scientists discuss stem cell discoveries at New York Stem Cell Foundation Conference

Brain Stem-Cell Implants Help Children With Rare Illness

Four boys with a rare and often fatal brain disease were implanted with stem cells that began fixing damage that impeded their ability to walk, talk and eat, a trial found.

The findings, published today in the journal Science Translational Medicine, are from the first stage of human tests funded by StemCells Inc. (STEM), a Newark, California-based company.

The children have a genetic disorder called Pelizaeus- Merzbacher, in which the brain cant make myelin, the fatty insulation for nerve cells that helps conduct brain signals. The children all had evidence of myelin growth a year later. The increased abilities shown by three of the boys in the University of California San Francisco study may bode well for other diseases caused by a lack of myelin insulation, including multiple sclerosis and cerebral palsy, the authors wrote.

Those were severely impaired children, said Stephen Back, a professor of pediatrics and neurology at Portlands Oregon Health & Science University, in a telephone interview. The fact that they showed any neurological improvement is very encouraging.

Back did work in mice that preceded todays work in humans, which he wasnt directly involved in. His study, published simultaneously, showed that the animals with no myelin at all grew some after being implanted with human stem cells.

Pelizaeus-Merzbacher disease causes the degeneration of the nervous system, and there is no cure or standard treatment. People with the illness experience a loss of coordination, thinking and motor abilities. Its one of several disorders linked to genes that control myelin production.

The incidence of the disease is 1 in 200,000 to 500,000 people, according to todays study of the boys.

The boys were between the ages of 1 and 6. They were given purified neural stem cells from a fetal brain, which was then grown in culture. The stem cells were inserted into the frontal lobe, using brain imaging as a guide. The boys brains were scanned 24 to 48 hours after surgery to assess safety.

The children were on drugs to suppress their immune systems and prevent their bodies from rejecting the stem cells for nine months. Side effects included rashes, diarrhea and fever. One boy had fluid collect under his scalp, which later vanished on its own. A second subject had some bleeding in the brain after the surgery, which was without clinical consequence, according to the paper.

One of the boys developed the ability to take steps with assistance and began to speak single words. Another started eating solid food on his own. A third began to walk without the assistance of a walker and began eating on his own.

Read more here:
Brain Stem-Cell Implants Help Children With Rare Illness

StemGenex™ on Adult Stem Cell-Based Therapy for Multiple Sclerosis

LA JOLLA, Calif., Oct. 10, 2012 /PRNewswire/ --New research directions are being explored to find therapies for hard to treat diseases. One exciting new approach is the use of autologous Adult Stem Cells. Multiple Sclerosis (MS) is one of the many notable diseasesadult stem cell therapycould potentially impact. Multiple Sclerosis (MS) is a disorder in which an individual's own immune system attacks the 'myelin sheath'. The myelin sheath serves to protect the nerve cells within the body's central nervous system (CNS). The damage caused by MS may result in many types of symptoms including:

(Photo: http://photos.prnewswire.com/prnh/20121010/LA89802-INFO)

Currently there is no cure for MS, but MS stem cell therapiesattempt to slow the disease's progression and limit symptoms. Since adult stem cells have the ability to differentiate into many different types of cells, such as those required for proper functioning and protection of nerve cells, the use of adult stem cells for MS therapy could be of substantial value. Adult stem cells can be isolated with relative ease from an individual's own 'adipose' (fat) tissue. As a result, adult stem cell therapy is not subject to the ethical or religious issues troubling embryonic methods.

Encouragingly for MS treatment potential, scientific researchers have been studying the properties of adipose-derived stem cells. Their results from canine and equine studies suggest anti-inflammatory and regenerative roles for these stem cells. Also, further research findings suggest these adipose-derived stem cells can have specific immune-regulating properties. Markedly, clinical-based work conducted overseas has indicated that individuals suffering from MS could respond well to adipose-derived stem cell treatment, with a substantially improved quality of life.

The US based company, StemGenex, is pioneering new methods for using adipose derived adult stem cells to help in diseases with limited treatment options like MS. StemGenex has been conducting research with physicians over the last 5 years to advance adult stem cell treatment protocols for alleviating MS symptoms. StemGenex's proprietary protocol includes the use of a double activation process, which increases both the viability and the quantity of stem cells that are received in a single application.

To find out more about stem cell treatments contact StemGenex either by phone at 800.609.7795 or email at Contact@StemGenex.com.

Follow this link:
StemGenex™ on Adult Stem Cell-Based Therapy for Multiple Sclerosis

The New York Stem Cell Foundation announces $9 million to 6 new NYSCF-Robertson Investigators

Public release date: 10-Oct-2012 [ | E-mail | Share ]

Contact: David McKeon dmckeon@nyscf.org 212-365-7440 New York Stem Cell Foundation

NEW YORK, NY (October 10, 2012) The New York Stem Cell Foundation (NYSCF) named six of the most promising scientists as its 2012 NYSCF Robertson Investigators.

Each Investigator will receive a $1.5 million award disbursed over the next five years to foster his or her innovative research by expanding laboratories and by training other scientists. Three of the scientists were named NYSCF Robertson Stem Cell Investigators, a program in its third year, and three were named NYSCF Robertson Neuroscience Investigators, a program in its second year.

"These young Investigators truly undertake the most daring yet rewarding stem cell research. We are all honored to support the future investigations of these promising talents," said Susan L. Solomon, Chief Executive Officer of NYSCF.

The Investigators were announced at NYSCF's Seventh Annual Translational Stem Cell Research Conference, held at The Rockefeller University in Manhattan.

Designed to support scientists engaged in novel neuroscience and cutting-edge translational stem cell research, the two Investigator programs aid these researchers as they move beyond postdoctoral work and establish their own laboratories.

The Investigator award builds on the previous success of NYSCF's Postdoctoral Fellowship program, which is the largest program of postdoctoral support for stem cell researchers in the United States, and has provided funding for 35 postdoctoral researchers to date.

Marc Tessier-Lavigne, President of The Rockefeller University, chaired the NYSCF Robertson Neuroscience Investigator program's selection committee.

"With such an outstanding group of young scientists, we had an exceptionally difficult decision to make. We are thrilled to be able to give these awards to such a talented group of scientists," remarked Tessier-Lavigne. "We are confident they will become leaders in the field of neuroscience."

Read the original:
The New York Stem Cell Foundation announces $9 million to 6 new NYSCF-Robertson Investigators

Nobel Prize Winner Yamanaka Remains at Forefront of Fast-Moving Stem Cell Field He Galvanized

Mariselle Lancero, a research associate II, and research scientist Kiichiro Tomoda, PhD, work in the Yamanaka Lab at the Gladstone Institutes on the day Shinya Yamanaka won the Nobel Prize for Physiology or Medicine.

Stem cell researcher Shinya Yamanaka, MD, PhD, reached in Kyoto shortly after being named winner of the 2012 Nobel Prize for Physiology or Medicine, said he was doing some housecleaning when the call came in, and was very surprised.

But at UCSF, where Yamanaka joined the faculty in 2007, splitting his time between Kyoto University and the UCSF-affiliated Gladstone Institutes, his winning the Nobel Prize was considered virtually inevitable. The only surprise, colleagues say, was that the honor came so quickly.

Often the Nobel Committee waits decades before awarding the prize to make sure the discovery stands the test of time. Its rare for a scientists influence on scientific thought and experimentation to spread as fast as it did in this case.

Yamanaka discovered keys to the developmental destiny of cells, and how these keys can be used to manipulate cell fate in ways that offer hope to scientists who seek new methods of providing tissues for organ transplantation and for other medical applications. His seminal paper was published in 2006, and there is an expectation that the techniques he developed will lead to clinical trials for macular degeneration as early as next year.

Its a great day for the Gladstone, and a great day for UCSF, said Deepak Srivastava, MD, director of the Gladstone Institute of Cardiovascular Disease and a UCSF professor in the departments of pediatrics and biochemistry and biophysics.

Im a little surprised it happened this year, Srivastava said. I thought it would happen in the next five to 10 years.

Even without considering the clinical potential, the implications of Yamanakas work for understanding basic biology are deserving of recognition, Srivastava said.

The award is carefully worded, he noted. The fundamental, basic discovery that we can alter cell fates is really what this prize is about; its not so much about stem cells, or even about regenerative medicine. Its about the discovery that we can control the fate of the cell by manipulating DNA without changing the genetic code.

The ability to control cell fate, we hope, will allow us in the future to use the technology for regenerative medicine and disease modeling to drive discovery, he said.

Read this article:
Nobel Prize Winner Yamanaka Remains at Forefront of Fast-Moving Stem Cell Field He Galvanized

Fingers crossed at AIIMS after stem cell transplant for MS, first in country

Doctors at the All India Institute of Medical Sciences (AIIMS) have conducted a stem cell transplant on a multiple sclerosis (MS) patient. They believe this is the first recorded case of an autologous stem cell therapy where the donor and recipient are the same person for MS in the country.

Six months after the transplant, doctors say the spread of MS, an autoimmune disease that affects the brain and spinal cord, appears to have been contained but the therapy cannot be declared a success until the patient is monitored for at least a year.

International trials have demonstrated that this transplant can restrict the spread of the disease in advanced patients, and may even reverse symptoms in early stages in some patients.

Thirty-two-year-old Rohit Yadav, a commerce graduate from Delhi University, was diagnosed with the neurological disorder in 2010. In March this year, after trying all possible conventional treatment options, doctors at AIIMS finally decided on stem cell therapy.

Dr Kameshwar Prasad, professor of neurology who has been monitoring Yadav, said: The primary purpose of autologous stem cell transplant is to control the spread of lesions. We extract the patients own stem cells, treat and inject the stem cells back. Ever since the procedure, the patient has been completely stable. To the best of our knowledge, this is the first case of stem cell therapy for MS.

In MS, the bodys own immune system attacks the myelin sheath that coats nerves, slowly destroying the central nervous system. Symptoms range from numbness and weakness in the limbs to sudden loss of balance and coordination, blurred vision and paralysis and, at the most advanced stage, disability.

... contd.

See the rest here:
Fingers crossed at AIIMS after stem cell transplant for MS, first in country

Nobel Prize goes to pioneers of induced stem cell research

John Gurdon and Shinya Yamanaka were jointly awarded the Nobel Prize in Physiology or Medicine on Monday for their research on resetting cells to their earliest developmental stages.The work has yet to yield a clear breakthrough in medical treatment, but it has revolutionized scientists ability to study both normal and diseased development.

Gurdon, 79, performed his seminal work in the late 1950s and early 1960sa good deal of it before Yamanaka was born. In his most famous study, Gurdon showed that replacing the nucleus of an adult cell with the nucleus of an embryonic cell reset the adult cell to an embryonic state: Many of the cells became tadpoles. This strongly suggested that embryonic-state DNA and the molecules that controlled gene expression in the nucleus were sufficient to make a cell "pluripotent" againor capable of turning into any type of tissue in the body.

Some40 years later, Yamanaka took this further by showing that adult mouse skin cells could be reset to their embryonic state just by adding a set of genes into the cells nuclei, and he later reduced this number to just four genes. The cells are now referred to as induced pluripotent stem cells, or iPS cells, and are a common tool in the study of development and disease.

With Yamanakas discovery, researchers suddenly had a way of studying pluripotent stem cells without destroying embryosa limitation that had caused countless headaches at the time of Yamanakas breakthrough, as President George W. Bush had instituted severe limitations on such research.

Since Yamanakas seminal finding, researchers have used the approach to demonstrate some stunning feats: They have turned the skin cells of people who have Parkinsons disease into disease in a dish models that allow them to watch the development of the disease over time and to observe what genes go wrong when and why, and, just last week, a team of scientists published research that used the approach to turn mouse skin cells back into mouse eggs, which then produced baby mice.

The technique has not been without complications: Because one of the four genes is also highly implicated in cancer, the iPS cells are more likely to become cancerous than true embryonic stem cells. The issue has slowed research in the field.

Today, Gurdon works at the Gurdon Institute in Cambridge, England, which he founded, and Yamanaka has appointments at UC San Franciscos Gladstone Institute and at Kyoto University.

You can read all about the winners here.

Return to the Science Now blog.

See original here:
Nobel Prize goes to pioneers of induced stem cell research

Stem cell pioneers take first prize in Nobel week

This year's Nobel Prize for Medicine goes to...

The 2012 Nobel Prize for medicine has been awarded to stem cell researchers John Gurdon and Shinya Yamanaka of Britain and Japan. They take the first Nobel prize of the year, with a flurry to follow over the next week.

Judges in Stockholm said on Monday that the medicine prize had been awarded to the researchers "for the discovery that mature cells can be reprogrammed to become pluripotent," saying that this discovery had "revolutionized our understanding of how cells and organisms develop."

Gurdon and Yamanaka are stem cell researchers who are seeking ways to obtain embryonic stem cells - a kind of genetic blank slate, cells that can be 'programmed' to take on many different forms and perform different functions - from the cells of an adult. Embryos themselves are another more controversial source of stem cells.

"We are trying to find ways of obtaining embryo cells from the cells of an adult," Gurdon writes on his Gurdon Institute website. "The eventual aim is to provide replacement cells of all kinds starting from usually obtainable cells of an adult individual."

A Nobel Prize medal on display in Stockholm

The British scientist also said such a system was advantageous because the stem cells could be obtained from the patient themselves, reducing the risk of rejection when they were employed as a treatment.

The medals will be doled out in December, the winners named in the next few days

Stem cells appear to have potential to treat a wide range of illnesses, with a major barrier to the research the ethical implications of obtaining the cells from unborn foetuses.

A busy week in the Swedish capital

More:
Stem cell pioneers take first prize in Nobel week