Category Archives: Stem Cell Treatment


Immune system harnessed to improve stem cell transplant outcomes

ScienceDaily (Oct. 1, 2012) A novel therapy in the early stages of development at Virginia Commonwealth University Massey Cancer Center shows promise in providing lasting protection against the progression of multiple myeloma following a stem cell transplant by making the cancer cells easier targets for the immune system.

Outlined in the British Journal of Hematology, the Phase II clinical trial was led by Amir Toor, M.D., hematologist-oncologist in the Bone Marrow Transplant Program and research member of the Developmental Therapeutics program at VCU Massey Cancer Center. The multi-phased therapy first treats patients with a combination of the drugs azacitidine and lenalidomide. Azacitidine forces the cancer cells to express proteins called cancer testis antigens (CTA) that immune system cells called T-cell lymphocytes recognize as foreign. The lenalidomide then boosts the production of T-cell lymphocytes. Using a process called autologous lymphocyte infusion (ALI), the T-cell lymphocytes are then extracted from the patient and given back to them after they undergo a stem cell transplant to restore the stem cells' normal function. Now able to recognize the cancer cells as foreign, the T-cell lymphocytes can potentially protect against a recurrence of multiple myeloma following the stem cell transplant.

"Every cell in the body expresses proteins on their surface that immune system cells scan like a barcode in order to determine whether the cells are normal or if they are foreign. Because multiple myeloma cells are spawned from bone marrow, immune system cells cannot distinguish them from normal healthy cells," says Toor. "Azacitidine essentially changes the barcode on the multiple myeloma cells, causing the immune system cells to attack them," says Toor.

The goal of the trial was to determine whether it was safe, and even possible, to administer the two drugs in combination with an ALI. In total, 14 patients successfully completed the investigational drug therapy. Thirteen of the participants successfully completed the investigational therapy and underwent a stem cell transplant. Four patients had a complete response, meaning no trace of multiple myeloma was detected, and five patients had a very good partial response in which the level of abnormal proteins in their blood decreased by 90 percent.

In order to determine whether the azacitidine caused an increased expression of CTA in the multiple myeloma cells, Toor collaborated with Masoud Manjili, D.V.M., Ph.D., assistant professor of microbiology and immunology at VCU Massey, to conduct laboratory analyses on bone marrow biopsies taken from trial participants before and after treatments. Each patient tested showed an over-expression of multiple CTA, indicating the treatment was successful at forcing the cancer cells to produce these "targets" for the immune system.

"We designed this therapy in a way that could be replicated, fairly inexpensively, at any facility equipped to perform a stem cell transplant," says Toor. "We plan to continue to explore the possibilities of immunotherapies in multiple myeloma patients in search for more effective therapies for this very hard-to-treat disease."

In addition to Manjili, Toor collaborated with John McCarty, M.D., director of the Bone Marrow Transplant Program at VCU Massey, and Harold Chung, M.D., William Clark, M.D., Catherine Roberts, Ph.D., and Allison Hazlett, also all from Massey's Bone Marrow Transplant Program; Kyle Payne, Maciej Kmieciak, Ph.D., from Massey and the Department of Microbiology and Immunology at VCU School of Medicine; Roy Sabo, Ph.D., from VCU Department of Biostatistics and the Developmental Therapeutics program at Massey; and David Williams, M.D., Ph.D., from the Department of Pathology at VCU School of Medicine, co-director of the Tissue and Data Acquisition and Analysis Core and research member of the Developmental Therapeutics program at Massey.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

The rest is here:
Immune system harnessed to improve stem cell transplant outcomes

World Renowned Scientists and Advocates to Celebrate and Shine Light on Stem Cell Breakthroughs

IRVINE, CA--(Marketwire - Oct 1, 2012) - Oct. 3 marks International Stem Cell Awareness Day, a global celebration where leading scientists, researchers and supporters will acknowledge the scientific advances of stem cell research and its ability to potentially treat a variety of diseases and injuries in the 21st century. This dedicated community is committed to unlocking the potential of stem cells and has made significant strides since the discovery of a method to grow human stem cells less than 15 years ago.

"This is a critical and historic time for stem cell research," said Peter Donovan, Ph.D., director, Sue & Bill Gross Stem Cell Research Center, UC Irvine. "We're literally on the brink of developing new treatments for some of the world's most devastating diseases and injuries. The act of simply raising awareness about this research is one of the best things people can do to help accelerate the process. This event is a great opportunity for everyone to help spread the word and build momentum through a timely mass effort."

Scientists at UC Irvine and other research facilities around the globe continue to work diligently to develop therapies to treat life threatening and debilitating conditions such as Alzheimer's disease, multiple sclerosis, macular degeneration, cancer, Huntington's disease, Parkinson's disease, brain disorders and paralysis caused by spinal cord injuries. These efforts continue to give hope to millions who suffer from these devastating conditions by offering revolutionary treatments and potential cures.

There are several research programs taking place at the Sue & Bill Gross Stem Cell Research Center at UC Irvine that continue to break down barriers and open doors to new treatments for major diseases and injuries:

Spinal Cord and Traumatic Brain Injuries: Neurobiologist Hans Keirstead, Ph.D., as well as husband and wife scientists Aileen Anderson, Ph.D., and Brian Cummings, Ph.D., are conducting stem cell studies to develop treatments for the more than 1.3 million Americans who suffer from spinal cord injuries. Their advancements have led to the world's first clinical trial of human neural stem cell-based therapy for chronic spinal cord injuries (Anderson/Cummings) and the first FDA approved clinical trials using embryonic stem cells (Keirstead). Their research is significant because no drug or other forms of treatment have been able to restore function for those suffering from paralysis. In addition, Cummings and Anderson are applying their stem research to traumatic brain injury, a leading cause of death and disability worldwide, especially in children and young adults.

Alzheimer's Disease: An estimated 35 million people worldwide suffer from Alzheimer's disease, five million of whom live in the U.S. Frank LaFerla, Ph.D., director of UC Irvine's Institute for Memory Impairments and Neurological Disorders, and Matthew Blurton-Jones, Ph.D., of the Sue & Bill Gross Stem Cell Research Center, UC Irvine, have shown for the first time that neural stem cells can rescue memory in mice with advanced Alzheimer's disease, raising hope for a potential treatment in humans. Their work is expected to move to clinical trials in less than five years.

Huntington's Disease: Huntington's disease is a degenerative and ultimately fatal brain disorder that takes away a person's ability to walk, talk and reason. It affects about 30,000 people in the U.S. with another 200,000 or more likely to inherit the disorder. Leslie Thompson, Ph.D., and her team of researchers are currently investigating new stem cell lines and techniques to support the area of the brain that is susceptible to the disease with the hope of developing a cure for future generations.

Macular Degeneration, Retinitis Pigmentosa and Inherited Blindness: Henry Klassen, M.D., Ph.D. has focused his stem cell research on regenerating damaged retinal tissue to restore sight to people suffering from retinitis pigmentosa (an inherited form of degenerative eye disease) and macular degeneration which usually affects older people and leads to loss of vision. Macular degeneration affects millions of Americans. His work hopes to find cures and treatments for corneal and retinal eye disease.

New Website Helps Spread the Word Online To commemorate International Stem Cell Awareness Day and encourage support of stem cell research, an interactive website has been created. Advocates are asked to visit http://www.StemCellsOfferHope.com and share online a wide range of key facts, downloadable images and links to other valuable resources within their social networks.

International Stem Cell Awareness Day Events at UC Irvine The Sue & Bill Gross Stem Cell Research Center at UC Irvine will celebrate International Stem Cell Awareness Day by hosting three special events. An open house will take place on Oct. 1 for high school students. A UC Irvine student, faculty and staff open house will take place on Oct. 2. Finally, an all-day science symposium on Oct. 3 will feature a "Meet the Scientist" interactive forum. The forum and symposium are open to all UC Irvine scientists, clinicians, graduate students, post-docs and members of the community. To RSVP for any these events or for more information, include the name of the event in the subject line and email stemcell@research.uci.edu.

Read the rest here:
World Renowned Scientists and Advocates to Celebrate and Shine Light on Stem Cell Breakthroughs

Stem cells improve visual function in blind mice

Public release date: 1-Oct-2012 [ | E-mail | Share ]

Contact: Elizabeth Streich estreich@columbia.edu 212-305-3689 Columbia University Medical Center

An experimental treatment for blindness, developed from a patient's skin cells, improved the vision of blind mice in a study conducted by Columbia ophthalmologists and stem cell researchers.

The findings suggest that induced pluripotent stem (iPS) cells which are derived from adult human skin cells but have embryonic properties could soon be used to restore vision in people with macular degeneration and other diseases that affect the eye's retina.

"With eye diseases, I think we're getting close to a scenario where a patient's own skin cells are used to replace retina cells destroyed by disease or degeneration," says the study's principal investigator, Stephen Tsang, MD, PhD, associate professor of ophthalmology and pathology & cell biology. "It's often said that iPS transplantation will be important in the practice of medicine in some distant future, but our paper suggests the future is almost here."

The advent of human iPS cells in 2007 was greeted with excitement from scientists who hailed the development as a way to avoid the ethical complications of embryonic stem cells and create patient-specific stem cells. Like embryonic stem cells, iPS cells can develop into any type of cell. Thousands of different iPS cell lines from patients and healthy donors have been created in the last few years, but they are almost always used in research or drug screening.

No iPS cells have been transplanted into people, but many ophthalmologists say the eye is the ideal testing ground for iPS therapies.

"The eye is a transparent and accessible part of the central nervous system, and that's a big advantage. We can put cells into the eye and monitor them every day with routine non-invasive clinical exams," Tsang says. "And in the event of serious complications, removing the eye is not a life-threatening event."

In Tsang's new preclinical iPS study, human iPS cells derived from the skin cells of a 53-year-old donor were first transformed with a cocktail of growth factors into cells in the retina that lie underneath the eye's light-sensing cells.

The primary job of the retina cells is to nourish the light-sensing cells and protect the fragile cells from excess light, heat, and cellular debris. If the retina cells die which happens in macular degeneration and retinitis pigmentosa the photoreceptor cells degenerate and the patient loses vision. Macular degeneration is a leading cause of vision loss in the elderly, and it is estimated that 30 percent of people will have some form of macular degeneration by age 75. Macular degeneration currently affects 7 million Americans and its incidence is expected to double by 2020.

Read this article:
Stem cells improve visual function in blind mice

Mesenchymal Stem Cell (MSC) Product Market Fastest Growing Area of Stem Cell Research

Dallas, TX (PRWEB) September 30, 2012

Mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate into a variety of cell types, including osteoblasts, chondrocytes, myocytes, adipocytes, beta-pancreatic islets cells, and even neural cells. MSCs are of intense therapeutic interest because they represent a population of cells with the potential to treat a wide range of acute and degenerative diseases and are immuno-privileged, which makes them an advantageous cell type for allogenic transplantation.

In the market research report Mesenchymal Stem Cells Advances & Applications, trend analysis of grant activity, publications, and patent applications reveals that global research activity involving MSCs increased by 112% from 2009 to 2010, and by 116% from 2010 to 2011. This rate accelerated throughout 2011, positioning mesenchymal stem cells as the fastest growing area of stem cell research for 2012.

While competitors are guessing, this report divulges exactly where to focus R&D and marketing spend to create the most profitable MSC research products. A key element of this report is survey findings from a large population of mesenchymal stem cell (MSC) researchers that reveals:

It is also important for bio-pharmaceutical and pharma companies interested in MSC therapy applications to understand underlying market forces, and in particular, to consider progressive areas of MSC research as opportunistic areas for drug and therapy development. The report presents a range of topics of interest to these companies as well, including how advances in MSC research can reveal potential new drug targets, improve methods of drug delivery, and provide personalized treatment strategies.

Highlights include:

It was compiled using a broad range of sources, including:

To summarize, the market intelligence report Mesenchymal Stem Cells Advances & Applications identifies recent advances in MSC research applications, explores research priorities by market segment, highlights individual labs and end-users of MSC research products, explores the competitive environment for MSC research products, and provides 5-year growth and trend analysis. It is your guide for how to profit from the mesenchymal stem cell (MSC) product market the fastest growing area of stem cell research.

Buy your copy of the report @ http://www.reportsnreports.com/reports/10598-mesenchymal-stem-cells-advances-applications.html.

Explore more reports on the Stem Cell Market and Biotechnology Industry.

Read this article:
Mesenchymal Stem Cell (MSC) Product Market Fastest Growing Area of Stem Cell Research

Jamie Inglis undergoes pioneering stem cell treatment

Jamie Inglis undergoes pioneering stem cell treatment

10:06am Saturday 29th September 2012 in News By Kate Liptrot, kate.liptrot@thepress.co.uk

Jamie Inglis smiles from his hospital bed in Germany

JAMIE INGLIS would love to join the children in the colourful playroom on the other side of the hospital corridor.

He would like to play with his new friend, Ryan, who he has painted a picture for and who has waved at him from the doorway but who wasnt allowed to come in. He would like to spend longer looking for spiders outside.

Instead, to guard against possible infection and to stay near to medical treatment, the seven-year-old spends every day in the sunny bedroom that could belong to any boy if it wasnt for the drip, monitors and medical equipment standing alongside his Batman posters, bright paintings, action models and cuddly toys.

Jamie has a little more freedom than a few weeks ago when, for a month, he was kept in isolation in a sealed room, which his parents had to be disinfected and wear gowns to enter.

Now, as long as he puts on a mask and a hat to protect him from the cold, he is allowed to slowly pad through the hospital corridors on legs weak from not walking, and travel the short distance to the hospital-owned Elternhaus where his parents, Vicky and John, are staying close to the childrens hospital in Tubingen, near Stuttgart.

Jamie is undergoing pioneering treatment that could save his life, but which is unavailable in the UK. The medical trial, led by world expert Professor Peter Lang and his colleagues, has seen Johns stem cells transplanted into his sons system in order to create a new immune system to help his body fight the cancer he was first diagnosed with at the age of three and which returned this year.

There can be fewer more charming children than Jamie, whose beaming smile wins the hearts of everyone he meets, from his nurses to the hospital teacher.

View original post here:
Jamie Inglis undergoes pioneering stem cell treatment

FDA Approves Stemedica IND Application for Stemedyne(TM)-MSC In Cutaneous Photoaging

SAN DIEGO, Calif., Sept. 28, 2012 (GLOBE NEWSWIRE) -- via PRWEB - Stemedica Cell Technologies, Inc., a leader in adult allogeneic stem cell manufacturing, research and development, announced today that the U.S. Food and Drug Administration (FDA) approved its application for an Investigational New Drug (IND) to assess the safety, tolerability and clinical effects of Stemedyne-MSC (Stemedica's human bone marrow-derived ischemia tolerant mesenchymal cells) in subjects with cutaneous photoaging resulting from overexposure to ultraviolet radiation.

Curt M. Littler, M.D., F.A.A.D., dermatologist at Sharp Rees-Stealy Medical Group, Inc., is the principal investigator of the study. Dr. Littler commented, "This study is an important step forward in the field of dermatology. Photoaging is a universal condition. Damage from the sun's rays alters the skin's underlying structures, such as collagen, elastin, and blood vessels, and contributes to the creation of abnormal epidermal cells, which can become precancerous. By administering stem cells systemically, this study has the potential to target skin damage throughout the body and promises to pave the way for new treatment approaches for photoaged skin."

The IND approval allows Stemedica to initiate a clinical trial at medical centers within the United States. The clinical trial will be a Phase I/IIa multi-center open-label study involving 30-35 subjects with significant cutaneous photodamage.

"The FDA's approval of Stemedica's IND for the treatment of photoaging with our Stemedyne-MSCs is a significant milestone not only for Stemedica, but for the whole skin healthcare industry," said Nikolai Tankovich, M.D., Ph.D., Stemedica's President and Chief Medical Officer. "This is the first clinical trial approved for the systemic treatment of aging skin utilizing intravenous administration of stem cells. " Dr. Tankovich added "Our internal organ health is reflected in the appearance of our skin. In this clinical trial, we will be following systemic indicators such as liver panel and kidney function. We are encouraged that the FDA acknowledges cutaneous photoaging as a medical indication and that potential treatments should be regulated as a drug."

Lev Verkh, Ph.D., Stemedica's Chief Regulatory and Clinical Development Officer, commented, "With photoaging, we lose certain proteins that affect the health and appearance of our skin. For the first time in a clinical trial we can address the underlying biological changes of the skin to slow down this process and repair the changes of aging."

Stemedyne-MSC is one of the three adult allogeneic adult stem cell products developed by the Company. Other products include Stemedyne-NSC neural human stem cells and Stemedyne-RPE retinal progenitor epithelial cells available in early 2013. All Stemedica products are unique in their ability to tolerate ischemic conditions.

About Stemedica Cell Technologies, Inc.

Stemedica Cell Technologies, Inc. is a specialty bio-pharmaceutical company that is committed to the manufacturing and development of best-in-class allogeneic adult stem cells and stem cell factors for use by approved research institutions and hospitals for pre-clinical and clinical (human) trials. The company is a government licensed manufacturer of clinical grade stem cells and is approved by the FDA for its clinical trial for ischemic stroke. Stemedica is currently developing regulatory pathways for a number of medical indications using adult allogeneic stem cells. The company is headquartered in San Diego, California.

For more information regarding Stemedica Cell Technologies, Inc., contact Dave McGuigan at dmcguigan (at) Stemedica.com.

This article was originally distributed on PRWeb. For the original version including any supplementary images or video, visit http://www.prweb.com/releases/Stemedica-FDA-IND/stemedyne-photoaging/prweb9954537.htm

Read the original post:
FDA Approves Stemedica IND Application for Stemedyne(TM)-MSC In Cutaneous Photoaging

Purging Stem Cells To Make Therapy Safer

Featured Article Academic Journal Main Category: Stem Cell Research Also Included In: Biology / Biochemistry Article Date: 28 Sep 2012 - 1:00 PDT

Current ratings for: Purging Stem Cells To Make Therapy Safer

4.67 (3 votes)

5 (1 votes)

The study appears in a 27 September issue of the journal Stem Cells Translational Medicine.

iPS cells have properties similar to embryonic stem cells, which are "master cells" with an unlimited capacity to differentiate into any type of tissue in the body, such as brain, lung, skin, heart, and liver. Thus their potential in regenerative medicine, where damaged or diseased tissue can be repaired or replaced by growing new tissue, is huge, as senior author Timothy Nelson explains in a press release:

"Pluripotent stem cells show great promise in the field of regenerative medicine; however, the risk of uncontrolled cell growth will continue to prevent their use as a therapeutic treatment."

Nelson is Assistant Professor of Medicine and Pharmacology and works in the General Internal Medicine department and the Transplant Center at the Mayo.

The idea of using iPS cells is for doctors to be able to take some adult tissue, for example skin cells, from the patient who needs the treatment, and then turn the cells from that tissue into iPS cells.

Then, those iPS cells are coaxed to turn into the target type of cell, for instance lung cells. As a result of the coaxing the iPS cells turn into (differentiate) the target tissue type.

Link:
Purging Stem Cells To Make Therapy Safer

The great stem cell dilemma

By Jeffrey M. O'Brien, contributor

Stem cells stored in liquid nitrogen at Advanced Cell Technology in Marlborough, Mass.

FORTUNE -- Imagine yourself the proud but rueful owner of an ancient Jaguar. Every day you dread the uncertainty that comes with trying to get from here to there -- there, more often than not, being the shop. No sooner does one ailment find repair than another appears. At best, it's a slow, uncomfortable ride. Lonely too. There's really no one around who fully understands your plight.

That is how Patricia Riley describes life in a 95-year-old body. Riley, who reached that milestone birthday last St. Patrick's Day, lives alone in the same 1,100-square-foot house in Plainfield, Conn., that she's called home for 64 years, having survived her husband (heart disease), a daughter (breast cancer), and every friend she ever had. "All the people I knew have all gone, Jeffrey," she says in a quivering voice laced with melancholy. "They've all died. I go to church and I never see people my age." Her remaining family includes two daughters, five grandchildren, and eight great-grandchildren, including my two young sons. In a nod to her French-Canadian heritage, we call her Mme.

Mme attributes her longevity to good genes, but she clearly owes a debt to modern medicine. Over the years she's had a cholecystectomy, a hysterectomy, esophageal surgery, a stroke, and ulcerative colitis. Lately she relies on a cane and a walker, and her daily regimen includes pain pills for arthritis, two inhalers for asthma, high-blood-pressure meds, a statin, vitamins, digestion aids, and an anti-anxiety drug that she calls "my nerve pill." Her vision also comes courtesy of medical science. Three years ago Mme was diagnosed with a form of age-related macular degeneration, or AMD, a disease of the back of the retina that is the leading cause of vision loss in the developed world. The ophthalmologist gave her a choice: a needle into her eyeballs every six weeks, or blindness. Mme opted for the injections and now receives shots of an off-label cancer drug called Avastin, which has demonstrated efficacy in halting the progress of her type of AMD. Holding the ailment at bay is all she can hope for. "I'll have to go for as long as I live," she says. "It's just a treatment -- it's not a cure."

Treatments, not cures. This, in a nutshell, is the MO of our health care system, and it's precisely the reason that regenerative medicine -- and stem cell therapy in particular -- has been the subject of so much hope and hype over the past decade or so. Stem cell therapies promise to empower a body to fight ailments by enabling it to build new parts. Think about growing new neurons or heart tissue. Think about the difference between perpetually slathering that old Jag with Bondo and having it heal itself overnight in the garage.

MORE:Stem cell dollars: California leads the way

While stem cells have ignited plenty of religious outrage and political grandstanding, behind the headlines the underlying science has been advancing the way science often does -- by turns slowly and dramatically. To be clear, the earliest stem cell therapies are almost certainly years from distribution. But so much progress has been made at venerable research institutions that it now seems possible to honestly discuss the possibility of a new medical paradigm emerging within a generation. Working primarily with rodents in preclinical trials, MDs and Ph.D.s are making the paralyzed walk and the impotent virile. A stem cell therapy for two types of macular degeneration recently restored the vision of two women. Once they were blind. Now they see! Some experts assert that AMD could be eradicated within a decade. Other scientists are heralding a drug-free fix for HIV/AIDS. Various forms of cancer, Parkinson's, diabetes, heart disease, stroke, and ALS have already been eradicated in mice. If such work translates to humans, it will represent the type of platform advancement that comes along in medicine only once in a lifetime or two. The effect on the economy would be substantial. Champions of stem cell research say it would be on the order of the Internet or even the transistor.

The obstacles along the road from lab rat to human patients are many, of course, but the biggest by far is money. With the dramatic events in the lab, you might think that a gold rush would be under way. That's far from true. Long time horizons, regulatory hurdles, huge R&D costs, public sentiment, and political headwinds have all scared financiers. Wall Street isn't interested in financing this particular dream. Most stem cell companies that have dared go public are trading down 90% or more from their IPOs. Sand Hill Road is AWOL. The National Venture Capital Association doesn't even have a category to track stem cell investments.

Big Pharma would seem to be the most obvious benefactor. The drug companies understand the complexities (and billion-dollar outlays) involved in bringing therapies to market. A few drug companies have kicked the tires on stem cells over the years, but waiting for them to undo the current model is akin to banking on Big Oil to rethink energy. They may do it, but it's unlikely to be by choice. Which leaves stem cell researchers begging for state and federal grants at a time scientific funding is under siege.

Read more:
The great stem cell dilemma

Cytori’s Stem Cell Therapy for Burns Wins U.S. Contract

By Ryan Flinn - 2012-09-28T20:12:41Z

Cytori Therapeutics Inc. (CYTX), a biotechnology company with $10 million in annual revenue, rose the most in about a year after the company won a $4.7 million U.S. government contract to develop a stem cell therapy to treat burns caused by thermal or radioactive bombs.

Cytori jumped 14 percent to $4.41 at the close in New York, the biggest single-day increase since October 2011. The shares of the San Diego-based company have doubled this year.

Were seeing a lot of momentum, Chief Executive Officer Christopher Calhoun said today in an interview with Bloomberg Television. This contract is one more major thing that we are delivering on, and there is more to come.

The two-year contract with the Department of Health and Human Services Biomedical Advanced Research and Development Authority may be worth $106 million over five years if certain milestones are met, Cytori said today in a statement. The company had a net loss last year of $32 million, according to data compiled by Bloomberg.

Cytoris experimental therapy takes adipose tissue, or body fat, from a patient and through its device separates the adult stem and regenerative cells before transferring them to a burn wound. Money from the contract will be used to develop the device and take it through the U.S. regulatory approval process with the Food and Drug Administration, Calhoun said.

These cells help to facilitate the healing of the injury, he said in a telephone interview earlier this week. They release growth factors that stimulate new blood flow.

Testing the technology in a clinical trial and getting approval may take five years, Calhoun said. The company is currently testing its therapy for other soft tissue damage, as well as cardiovascular disease.

Once approved, the device will be deployed in hospitals across the country, and can be used for routine burns as well as a treatment for patients in wake of a mass casualty event that could injure 10,000 people, Cytori said in the statement.

To contact the reporter on this story: Ryan Flinn in San Francisco at rflinn@bloomberg.net

Follow this link:
Cytori’s Stem Cell Therapy for Burns Wins U.S. Contract

StemCells, Inc. Achieves Spinal Cord Injury Milestone With First Neural Stem Cell Transplant Into Patient With Sensory …

NEWARK, Calif., Sept. 27, 2012 (GLOBE NEWSWIRE) -- StemCells, Inc. (STEM) today announced that the first patient with an incomplete spinal cord injury has been enrolled in the Company's Phase I/II clinical trial in chronic spinal cord injury and transplanted with the Company's proprietary HuCNS-SC(R) neural stem cells. The patient, a Canadian man who suffered a thoracic spinal cord injury from a sports-related accident, was administered the cells yesterday at Balgrist University Hospital, University of Zurich, a world leading medical center for spinal cord injury and rehabilitation. This is the first patient in the second cohort of the trial, which will be comprised of four patients who retain some sensory function below the level of trauma and are therefore considered to have an incomplete injury.

"This is an important milestone for StemCells and the spinal cord injury community as it is the first time anyone has ever transplanted neural stem cells into a patient with an incomplete injury," said Stephen Huhn, MD, FACS, FAAP, Vice President and Head of the CNS Program at StemCells, Inc. "Given the encouraging interim data from the most severely injured patient cohort that we reported earlier this month, testing patients with less severe injury should afford us an even better opportunity to continue to test safety and to detect and assess clinical changes. Unlike the patients in the first cohort, patients with incomplete injuries have retained a degree of spinal cord function that might be even further augmented by transplantation with neural stem cells."

Earlier this month, the Company reported that interim six-month data from the first patient cohort in the Phase I/II clinical trial continued to demonstrate a favorable safety profile, and showed considerable gains in sensory function in two of the three patients compared to pre-transplant baselines. Patients in the first cohort all suffered a complete injury to their spinal cord, leaving them with no neurological function below the level of injury. Following transplantation with HuCNS-SC cells, there were no abnormal clinical, electrophysiological or radiological responses to the cells, and all the patients were neurologically stable through the first six months after transplantation. Changes in sensitivity to touch, heat and electrical stimuli were observed in well-defined and consistent areas below the level of injury in two of the patients, while the third patient remained stable. Importantly, the changes in sensory function were confirmed objectively by measures of electrical impulse transmission across the site of injury, each of which correlated with the clinical examination.

About the Spinal Cord Injury Clinical Trial

The Phase I/II clinical trial of StemCells, Inc.'s HuCNS-SC(R) purified human adult neural stem cells is designed to assess both safety and preliminary efficacy. Twelve patients with thoracic (chest-level) neurological injuries at the T2-T11 level are planned for enrollment, and their injuries must have occurred within three to twelve months prior to transplantation of the cells. In addition to assessing safety, the trial will assess preliminary efficacy based on defined clinical endpoints, such as changes in sensation, motor function and bowel/bladder function. The Company has dosed the first patient cohort, all of whom have injuries classified as AIS A according to the American Spinal Injury Association Impairment Scale (AIS). In AIS A injuries, there is no neurological function below the injury level. The second cohort will be patients classified as AIS B, in which there is some preservation of sensory or motor function below the injury level. The third cohort will be patients classified as AIS C, in which there is some preservation of both sensory and motor function.

All patients will receive HuCNS-SC cells through direct transplantation into the spinal cord and will be temporarily immunosuppressed. Patients will be evaluated regularly in the post-transplant period in order to monitor and assess the safety of the HuCNS-SC cells, the surgery and the immunosuppression, as well as to measure any recovery of neurological function below the injury site. The Company intends to follow the effects of this therapy long-term, and each of the patients will be invited to enroll into a separate four year observational study after completing the Phase I/II study.

The trial is being conducted at Balgrist University Hospital, University of Zurich, a world leading medical center for spinal cord injury and rehabilitation, and is open for enrollment to patients in Europe, Canada and the United States. Enrollment for the second cohort is now underway. If you believe you may qualify and are interested in participating in the study, please contact the study nurse either by phone at +41 44 386 39 01 or by email at stemcells.pz@balgrist.ch.

Additional information about the Company's spinal cord injury program can be found on the StemCells, Inc. website at http://www.stemcellsinc.com/Therapeutic-Programs/Clinical-Trials.htm and at http://www.stemcellsinc.com/Therapeutic-Programs/Spinal-Cord-Injury.htm, including video interviews with Company executives and independent collaborators.

About Balgrist University Hospital

Balgrist University Hospital, University of Zurich is recognized worldwide as a highly specialized center of excellence providing examination, treatment and rehabilitation opportunities to patients with serious musculoskeletal conditions. The clinic owes its leading international reputation to its unique combination of specialized medical services. The hospital's carefully-balanced, interdisciplinary network brings together under one roof medical specialties including orthopedics, paraplegiology, radiology, anesthesiology, rheumatology, and physical medicine. More information about Balgrist University Hospital is available at http://www.balgrist.ch.

Read more from the original source:
StemCells, Inc. Achieves Spinal Cord Injury Milestone With First Neural Stem Cell Transplant Into Patient With Sensory ...