Category Archives: Stem Cell Treatment


Stem Cell Treatment Helped A Man Who Was Paralyzed From The Neck Down To Stand On His Own – Bored Panda

Long gone are the days of people being fearful of innovation and writing off any medical advance as witchcraft. However, it is hard not to believe in magic and science when doctors and scientists are making incredible discoveries that help patients improve their life quality and even make miraculous recoveries. Chris Barr is one of those lucky people who, thanks to science, is able to walk again after a severe spinal cord injury.

Share icon

Image credits: ABC News

Seven years ago, Chris Barr was having a regular day, just like a hundred other days gone by. The avid surfer was catching waves at a local beach until something went terribly wrong. One wave was particularly dangerous and threw Chris off the board. Soon, he realized that he was injured and the solemn expression on his doctors faces told him the news was going to be hard to swallow.

At the hospital, Chris learned about his life altering diagnosis he was paralyzed from the neck down. But Chris was determined to fight and believed that one day he will be able to regain some control of his body. However, even in his wildest dreams, he never imagined just how advanced his recovery will be and that he will be walking again thanks to an innovative stem cell treatment.

I never dreamed I would have a recovery like this, Chris shared his delight. I can feed myself. I can walk around. I can do day-to-day independent activities.

Share icon

Image credits: ABC News

Share icon

Image credits: ABC News

Share icon

Image credits: ABC News

Chris was the first patient in the Mayo Clinic study. It consisted of collecting stem cells from his own stomach fat and expanding them in the laboratory to 100 million cells. After that, the cells were injected into Chris lumbar spine. The treatment continued for over five years during which Chris saw a significant improvement in his quality of life, gaining more and more independence with each injection.

Mr. Barrs recovery story was published in the Nature Communications journal, as part of the research on the effects of stem cells in spinal cord injuries. The study claims that out of ten patients participating in the trial, seven saw positive effects in recovery from their injuries. The patients expressed that they have noticed increased strength in muscle motor groups and increased sensation to pinpricks and light touch. Each patient moved at least one level on the American Spinal Injury Association (ASIA) Impairment Scale. The scale has five levels detailing a patients ability to function. The other three patients, sadly, showed no improvement but they did not get worse.

These findings give us hope for the future, Dr. Mohamad Bydon, a neurosurgeon and the lead author of the study shared. The doctor, who is the director of The Christopher Reeve foundation, has dedicated his lifes work to curing spinal cord injuries, and is very hopeful of this trials future.

Share icon

Image credits: ABC News

Share icon

Image credits: ABC News

Share icon

Image credits: ABC News

Share icon

Image credits: ABC News

The participants ranged from 18 to 65, all spinal injuries were either from the neck or back down. They all had their stem cells harvested from the stomach. Patient 1, Chris, had the most remarkable recovery of them all.

At the beginning of the study, Chris was on a ventilator, completely immobile. As the study progressed, he started using a harness and then even started taking some steps on his own. Besides stem cell treatment, Chris was doing hard work with his physiotherapist.

We waited, we didnt intervene right away, as many studies in this space do, the doctor noted. The earliest we treated anyone was seven months after their injury and the latest was 22 months. The researchers wanted to give the body time to try and recover on its own.

Share icon

Image credits: ABC News

Share icon

Image credits: ABC News

Share icon

Image credits: ABC News

Despite the incredible findings, the road to this new treatment being approved is still a long way away, as there needs to be more research done so doctors could understand how stem cells operate. To us, it might seem like magic or a miracle but for doctors, it means long years of trial and error, hoping that in their lifetime they will be able to help those in need.

Patients are always looking for a cure. Were not there today, but we have to continue this research in order to get there, Dr. Bydon pondered.

The second part of the study, involving more patients, is now underway, giving hope to those who have heard the horrible words, Youll never walk again. Hopefully, in a few years, those people will take their first steps yet again and say, Take that, bad luck!

As for Chris, he is delighted that he was able to be a part of this groundbreaking study. He might never surf again but at least he is able to take longer and longer walks without any assistance.

Im just thrilled that there are people taking bold steps to try and do research to cure this. Its been a wild ride and its not over yet.

What do you think of this? Do you think stem cell therapy is the future or does this sound like science fiction to you?

Continued here:
Stem Cell Treatment Helped A Man Who Was Paralyzed From The Neck Down To Stand On His Own - Bored Panda

Cell Therapies Now Beat Back Once Untreatable Blood Cancers. Scientists Are Making Them Even Deadlier. – Singularity Hub

Dubbed living drugs, CAR T cells are bioengineered from a patients own immune cells to make them better able to hunt and destroy cancer.

The treatment is successfully tackling previously untreatable blood cancers. Six therapies are already approved by the FDA. Over a thousand clinical trials are underway. These arent limited to cancerthey cover a range of difficult medical problems such as autoimmune diseases, heart conditions, and viral infections including HIV. They may even slow down the biological processes that contribute to aging.

But CAR T has an Achilles heel.

Once injected into the body, the cells often slowly dwindle. Called exhaustion, this process erodes therapeutic effect over time and has dire medical consequences. According to Dr. Evan Weber at the University of Pennsylvania, more than 50 percent of people who respond to CAR T therapies eventually relapse. This may also be why CAR T cells have struggled to fight off solid tumors in breast, pancreatic, or deadly brain cancers.

This month, two teams found a potential solutionmake CAR T cells more like stem cells. Known for their regenerative abilities, stem cells easily repopulate the body. Both teams identified the same protein master switch to make engineered cells resemble stem cells.

One study, led by Weber, found that adding the protein, called FOXO1, revved up metabolism and health in CAR T cells in mice. Another study from a team at the Peter MacCallum Cancer Center in Australia found FOXO1-boosted cells appeared genetically similar to immune stem cells and were better able to fend off solid tumors.

While still early, these findings may help improve the design of CAR T cell therapies and potentially benefit a wider range of patients, said Weber in a press release.

Heres how CAR T cell therapy usually works.

The approach focuses on T cells, a particular type of immune cell that naturally hunts downs and eliminates infections and cancers inside the body. Enemy cells are dotted with a specific set of proteins, a kind of cellular fingerprint, that T cells recognize and latch onto.

Tumors also have a unique signature. But they can be sneaky, with some eventually developing ways to evade immune surveillance. In solid cancers, for example, they can pump out chemicals that fight off immune cell defenders, allowing the cancer to grow and spread.

CAR T cells are designed to override these barriers.

To make them, medical practitioners remove T cells from the body and genetically engineer them to produce tailormade protein hooks targeting a particular protein on tumor cells. The supercharged T cells are then grown in petri dishes and transfused back into the body.

In the beginning, CAR T was a last-resort blood cancer treatment, but now its a first-line therapy. Keeping the engineered cells around inside the body, however, has been a struggle. With time, the cells stop dividing and become dysfunctional, potentially allowing the cancer to relapse.

To tackle cell exhaustion, Webers team found inspiration in the body itself.

Our immune system has a cellular ledger tracking previous infections. The cells making up this ledger are called memory T cells. Theyre a formidable military reserve, a portion of which resemble stem cells. When the immune system detects an invader its seen beforea virus, bacteria, or cancer cellthese reserve cells rapidly proliferate to fend off the attack.

CAR T cells dont usually have this ability. Inside multiple cancers, they eventually die offallowing cancers to return. Why?

In 2012, Dr. Crystal Mackall at Stanford University found several changes in gene expression that lead to CAR T cell exhaustion. In the new study, together with Weber, the team discovered a protein, FOXO1, that could lengthen CAR Ts effects.

In one test, a drug that inhibited FOXO1 caused CAR T cells to rapidly fail and eventually die in petri dishes. Erasing genes encoding FOXO1 also hindered the cells and increased signs of CAR T exhaustion. When infused into mice with leukemia, CAR T cells without FOXO1 couldnt treat the cancer. By contrast, increasing levels of FOXO1 helped the cells readily fight it off.

Analyzing genes related to FOXO1, the team found they were mostly connected to immune cell memory. Its likely that adding the gene encoding FOXO1 to CAR T cells promotes a stable memory for the cells, so they can easily recognize potential harmbe it cancer or pathogenlong after the initial infection.

When treating mice with leukemia, a single dose of the FOXO1-enhanced cells decreased cancer growth and increased survival up to five-fold compared to standard CAR T therapy. The enhanced treatment also tackled a type of bone cancer in mice, which is often hard to treat without surgery and chemotherapy.

Meanwhile, the Australian team also zeroed in on FOXO1. Led by Drs. Junyun Lai, Paul Beavis, and Phillip Darcy, the team was looking for protein candidates to enhance CAR T longevity.

The idea was, like their natural counterparts, engineered CAR T cells also need a healthy metabolism to thrive and divide.

They started by analyzing a protein previously shown to enhance CAR T metabolism, potentially lowering the chances of exhaustion. Mapping the epigenome and transcriptome in CAR T cellsboth of which tell us how genes are expressedthey also discovered FOXO1 regulating CAR T cell longevity.

As a proof of concept, the team induced exhaustion in the engineered cells by increasingly restricting their ability to divide.

In mice with cancer, cells supercharged with FOXO1 lasted longer by months than those that hadnt been boosted. The critters liver and kidney functions remained normal, and they didnt lose weight during the treatment, a marker of overall health. The FOXO1 boost also changed how genes were expressed in the cellsthey looked younger, as if in a stem cell-like state.

The new recipe also worked in T cells donated by six people with cancer who had undergone standard CAR T therapy. Adding a dose of FOXO1 to these cells increased their metabolism.

Multiple CAR T clinical trials are ongoing. But the effects of such cells are transient and do not provide long-term protection against exhaustion, wrote Darcy and team. In other words, durability is key for CAR T cells to live up to their full potential.

A FOXO1 boost offers a wayalthough it may not be the only way.

By studying factors that drive memory in T cells, like FOXO1, we can enhance our understanding of why CAR T cells persist and work more effectively in some patients compared to others, said Weber.

Image Credit: Gerardo Sotillo, Stanford Medicine

Read the original:
Cell Therapies Now Beat Back Once Untreatable Blood Cancers. Scientists Are Making Them Even Deadlier. - Singularity Hub

Somite Raises $5.3M As Five Leading Scientists Join Forces To Incorporate AI In Stem Cell Therapy – PR Newswire

[[To comply with academic institution guidelines, the founders' academic affiliations and roles are listed only at the end of the statement.]]

BOSTON and AUSTIN, Texas, April 16, 2024 /PRNewswire/ --Somite, a venture-backed company aiming to become the OpenAI of stem cell biology, announces that it has raised $5.3M in pre-seed funding. The round was led by Israel's preeminent Venture fund TechAviv, and joined by renowned Austin-based VCs Next Coast Ventures, Trust Ventures and Texas Venture Partners as well as NY-based Lerer Hippeau and others. The funds will be used to continue development of Somite's proprietary AlphaStem AI platform, building Somite labs and bringing the first therapeutic asset to phase 1 clinical trials.

Founded in October 2023, Somite is building AI foundation models to produce human tissue at scale for cell therapies. These therapies have the potential to cure a wide range of diseases that involve the loss or deficiency of cell populations, such as Diabetes, Obesity, and Muscular Dystrophies.

Somite Raises $5.3M in Pre-seed Round to Transform Cell Therapy with Al

The founding team comprises five distinguished experts in their respective fields: Dr. Micha Breakstone, a seasoned AI entrepreneur who successfully sold Chorus.ai for $575 million, serves as the CEO. Joining him are the CTO,Dr. Jonathan Rosenfeld, who pioneered AI scaling laws at MIT,along with Boston-based scientistsDr. Olivier Pourquie, Dr. Allon Klein, and Dr. Cliff Tabin, who bring expertise in developmental biology, stem cells and computational biology.

Cell therapy, a revolutionary approach to treating medical conditions, involves replacing missing, damaged, or diseased cells. While recent strides in stem cell research have opened new avenues for producing various human cell types, challenges persist in terms of efficiency, scalability, and robustness across existing protocols. Somite.ai stands out as the premier company excelling in the efficient production of cells derived from somites, crucial embryonic structures giving rise to musculoskeletal cells. These include muscle, brown adipose, cartilage, bone, tendon, and dermis. Leveraging its expertise, Somite is pioneering the development of a digital twin of the embryoa computational model mirroring real embryo development and behavior. Drawing from data-rich sources such as scRNA-Seq, scATAC-seq, and gene expression databases, the digital twin empowers Artificial Intelligence to swiftly uncover innovative protocols, identify regulators of cell differentiation, and conduct rapid optimization cycles.

Somite's proprietary digital twin not only surfaces actionable insights but also expedites protocol iterations. Somite also builds on work performed in the Pourquie laboratory where production of somite-derived lineages such as human satellite and brown adipose cellsin vitro was optimized using computational analysis and AI, allowing a critical increase in purity without the need for sorting procedures.

Since its inception, Somite has rapidly achieved noteworthy milestones, including gaining acceptance to the esteemed Blavatnik Harvard Life Labs and securing intellectual property for groundbreaking patents.

"The future of medicine lies at the intersection of AI and biology," says Micha Breakstone, CEO and Co-Founder of Somite. "With Somite's AlphaStem platform we have the unique opportunity to both unlock the governing principles of cell differentiation and introduce therapies to cure tens of millions of people. This funding round is only one of many first steps in our exciting journey."

"We are proud to partner with Somite and have high conviction in the exceptional team and transformative solution for stem cell therapy," says Yaron Samid, Founder and Managing Partner at TechAviv. "I am captivated by Somite's potential to redefine the boundaries of medical innovation. They are committed to advancing their groundbreaking stem cell therapy technology and have the power to transform the lives of millions of people by leveraging AI to produce human tissue for cell therapies."

About SomiteSomite.aiis a venture-backed company aiming to become the OpenAI of stem cell biology, developing AI foundation models to produce human tissue for cell therapies at scale for diseases such as diabetes, obesity, and muscular dystrophies. Somite's AI platform, AlphaStem, fuels a virtuous cycle: It enables new cell therapies, generating massive data that further improve the platform, empowering even faster therapy creation with broader applications.

Incorporated in Oct. 2023, Somite.ai has raised $5.3m to date.

Somite Management Team:

Scientific Co-founders:

Media Contact: [emailprotected]

SOURCE Somite Therapeutics

View original post here:
Somite Raises $5.3M As Five Leading Scientists Join Forces To Incorporate AI In Stem Cell Therapy - PR Newswire

Abu Dhabi Stem Cells Center partners with Red Crescent to enhance bone marrow transplant accessibility for patients – Abu Dhabi Media Office

Abu Dhabi Stem Cells Center (ADSCC) has partnered with Emirates Red Crescent (ERC) to enhance accessibility to bone marrow transplants for patients in need, providing them with treatment and support via the centres dedicated Abu Dhabi Bone Marrow Transplant (BMT) Programme.

Under the partnership, ADSCC will provide medical consultations to patients referred by the medical committee of ERC. In addition, both entities will join efforts in fundraising initiatives aimed at supporting and financing BMT procedures for underprivileged patients.

The partnership aims to provide these critical treatments to individuals affected by various blood cancers, blood disorders, and autoimmune diseases like multiple sclerosis, ensuring they receive the highest standard of care and support throughout their treatment process by Abu Dhabi Bone Marrow Transplant program (ADBMT) at ADSCC, which is accredited as a Centre of Excellence in Hematopoietic Stem Cell Transplantation by the Department of Health Abu Dhabi.

The agreement was signed by His Excellency Mohammed Al Fahim, Deputy Secretary General of Support Services Sector at ERC and Dr Maysoon Al Karam, Chief Medical Officer of ADSCC.

His Excellency Mohammed Al Fahim said: The agreement with Abu Dhabi Stem Cells Center embodies the vision of the UAE Red Crescent of enhancing humanitarian partnerships with various local sectors, particularly the healthcare sector, which is currently a priority in the authority's local and international efforts. It reflects the shared goal between both parties of alleviating the suffering of patients, supporting their health needs, and strengthening cooperation to achieve better health outcomes for the Red Crescent's beneficiaries. I would like to express our appreciation for such initiatives that address the health needs of vulnerable groups and commend Abu Dhabi Stem Cell Center's (ADSCC) efforts, and their contributions to advancing treatment and healing. The alignment of visions between the UAE Red Crescent and ADSCC, highlights the importance and potential for strategic partnerships in healthcare.

Dr Maysoon Al Karam said: "The UAEs leadership has always placed the health and wellbeing of its people at the forefront of its priorities, ensuring that high-quality healthcare services are accessible to all. This commitment underscores the essence of our collaboration with the Emirates Red Crescent, reflecting our joint vision to expand the accessibility of advanced medical treatments. Through such collaborations, we aim to bridge the gap in healthcare access, ensuring that state-of-the-art treatments are accessible to those in need. As a Centre of Excellence in Hematopoietic Stem Cell Transplantation, our Abu Dhabi Bone Marrow Transplant Programme has been offering holistic care for autologous and allogenic bone marrow transplant for adults and children since 2020. By providing advanced treatments locally, we eliminate the need for patients to seek medical care abroad. This not only enhances convenience for patients and their families but also plays a vital role in reducing the nation's healthcare expenditures.

To ensure healthcare access in the UAE, ADSCC is dedicated to collaborating with key stakeholders across the nation. This commitment is geared towards achieving our vision of pioneering innovative solutions to discover cures for diseases.

Visit link:
Abu Dhabi Stem Cells Center partners with Red Crescent to enhance bone marrow transplant accessibility for patients - Abu Dhabi Media Office

Anemia: Symptoms, Causes & Treatment – Cleveland Clinic

How do I take care of myself?

While some types of anemia are short-term and mild, others can last a lifetime. Regardless, there are several things you can do to help manage symptoms. Here are some suggestions:

If you have anemia, you should check with your provider if your symptoms get worse despite treatment or if you notice changes in your body that may be new symptoms.

Anemia may increase your risk of a heart attack. Call 911 if you have the following symptoms:

Anemia may affect your body in many ways. It may happen for many different reasons. If you have anemia, here are some questions you may want to ask your healthcare provider:

A note from Cleveland Clinic

Anemia happens when you dont have enough red blood cells or your red blood cells arent working as well as they could. Some people are born with forms of anemia, but most people who have anemia develop the condition over time. Thats why its important to keep track of changes in your body. For example, we all have days when we feel worn out. But if youre feeling very tired for several days despite getting rest, consider talking to your healthcare provider.

Read more here:
Anemia: Symptoms, Causes & Treatment - Cleveland Clinic

Mesenchymal stem cell based therapies for uveitis: a systematic review of preclinical studies | Eye – Nature.com

Wakefield D, Chang JH. Epidemiology of uveitis. Int Ophthalmol Clin. 2005;45:113.

Article PubMed Google Scholar

Miserocchi E, Fogliato G, Modorati G, Bandello F. Review on the worldwide epidemiology of uveitis. Eur J Ophthalmol. 2013;23:70517.

Article PubMed Google Scholar

Babu K, Mahendradas P. Medical management of uveitis - current trends. Indian J Ophthalmol. 2013;61:27783.

Article PubMed PubMed Central Google Scholar

Zhao PT, Zhang LJ, Shao H, Bai LL, Yu B, Su C, et al. Therapeutic effects of mesenchymal stem cells administered at later phase of recurrent experimental autoimmune uveitis. Int J Ophthalmol. 2016;9:13819.

PubMed PubMed Central Google Scholar

Li J, Qiu C, Zhang Z, Yuan W, Ge Z, Tan B, et al. Subretinal transplantation of human amniotic epithelial cells in the treatment of autoimmune uveitis in rats. Cell Transpl. 2018;27:150414.

Article Google Scholar

Zhang L, Zheng H, Shao H, Nian H, Zhang Y, Bai L, et al. Long-term therapeutic effects of mesenchymal stem cells compared to dexamethasone on recurrent experimental autoimmune uveitis of rats. Investig Ophthalmol Vis Sci. 2014;55:556171.

Article CAS Google Scholar

Margiana R, Markov A, Zekiy AO, Hamza MU, Al-Dabbagh KA, Al-Zubaidi SH, et al. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther. 2022;13:366.

Article CAS PubMed PubMed Central Google Scholar

Kanda P, Davis DR. Cellular mechanisms underlying cardiac engraftment of stem cells. Expert Opin Biol Ther. 2017;17:112743.

Article CAS PubMed Google Scholar

Levy O, Kuai R, Siren EMJ, Bhere D, Milton Y, Nissar N, et al. Shattering barriers toward clinically meaningful MSC therapies. Sci Adv. 2020;6:eaba6884.

Article CAS PubMed PubMed Central Google Scholar

Li Y, Ren X, Zhang Z, Duan Y, Li H, Chen S, et al. Effect of small extracellular vesicles derived from IL-10-overexpressing mesenchymal stem cells on experimental autoimmune uveitis. Stem Cell Res Ther. 2022;13:100.

Article CAS PubMed PubMed Central Google Scholar

Wei W, Ao Q, Wang X, Cao Y, Liu Y, Zheng SG, et al. Mesenchymal stem cell-derived exosomes: a promising biological tool in nanomedicine. Front Pharm. 2020;11:590470.

Article CAS Google Scholar

Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

Article PubMed PubMed Central Google Scholar

Kung J, Chiappelli F, Cajulis OO, Avezova R, Kossan G, Chew L, et al. From systematic reviews to clinical recommendations for evidence-based health care: validation of Revised Assessment of Multiple Systematic Reviews (R-AMSTAR) for grading of clinical relevance. Open Dent J. 2010;4:8491.

PubMed PubMed Central Google Scholar

Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLEs risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:43.

Article PubMed PubMed Central Google Scholar

McHugh ML. Interrater reliability: the kappa statistic. Biochem Med. 2012;22:27682.

Article Google Scholar

Zhang X, Ren X, Li G, Jiao C, Zhang L, Zhao S, et al. Mesenchymal stem cells ameliorate experimental autoimmune uveoretinitis by comprehensive modulation of systemic autoimmunity. Investig Ophthalmol Vis Sci. 2011;52:314352.

Article CAS Google Scholar

Tasso R, Ilengo C, Quarto R, Cancedda R, Caspi RR, Pennesi G. Mesenchymal stem cells induce functionally active T-regulatory lymphocytes in a paracrine fashion and ameliorate experimental autoimmune uveitis. Investig Ophthalmol Vis Sci. 2012;53:78693.

Article CAS Google Scholar

Qin Y, Chan AM, Chang YL, Matynia A, Kouris NA, Kimbrel EA, et al. Human embryonic stem cell-derived mesenchymal stromal cells decrease the development of severe experimental autoimmune Uveitis in B10.RIII Mice. Ocul Immunol Inflamm. 2018;26:122836.

Article CAS PubMed Google Scholar

Oh JY, Kim TW, Jeong HJ, Lee HJ, Ryu JS, Wee WR, et al. Intraperitoneal infusion of mesenchymal stem/stromal cells prevents experimental autoimmune uveitis in mice. Mediat Inflamm. 2014;2014:624640.

Article Google Scholar

Li G, Yuan L, Ren X, Nian H, Zhang L, Han ZC, et al. The effect of mesenchymal stem cells on dynamic changes of T cell subsets in experimental autoimmune uveoretinitis. Clin Exp Immunol. 2013;173:2837.

Article CAS PubMed PubMed Central Google Scholar

Lee HJ, Ko JH, Jeong HJ, Ko AY, Kim MK, Wee WR, et al. Mesenchymal stem/stromal cells protect against autoimmunity via CCL2-dependent recruitment of myeloid-derived suppressor cells. J Immunol. 2015;194:363445.

Article CAS PubMed Google Scholar

Ko JH, Lee HJ, Jeong HJ, Kim MK, Wee WR, Yoon SO, et al. Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye. Proc Natl Acad Sci USA. 2016;113:15863.

Article CAS PubMed Google Scholar

Chen X, Shao H, Zhi Y, Xiao Q, Su C, Dong L, et al. CD73 pathway contributes to the immunosuppressive ability of mesenchymal stem cells in intraocular autoimmune responses. Stem Cells Dev. 2016;25:33746.

Article PubMed Google Scholar

Mu Y, Xu W, Liu J, Wang Y, Chen J, Zhou Q. Mesenchymal stem cells moderate experimental autoimmune uveitis by dynamic regulating Th17 and Breg cells response. J Tissue Eng Regen Med. 2022;16:2635.

Article CAS PubMed Google Scholar

Bai L, Shao H, Wang H, Zhang Z, Su C, Dong L, et al. Effects of mesenchymal stem cell-derived exosomes on experimental autoimmune uveitis. Sci Rep. 2017;7:4323.

Article PubMed PubMed Central Google Scholar

Kang M, Choi JK, Jittayasothorn Y, Egwuagu CE. Interleukin 35-Producing exosomes suppress neuroinflammation and autoimmune uveitis. Front Immunol. 2020;11:1051.

Article CAS PubMed PubMed Central Google Scholar

Shigemoto-Kuroda T, Oh JY, Kim DK, Jeong HJ, Park SY, Lee HJ, et al. MSC-derived extracellular vesicles attenuate immune responses in two autoimmune murine models: Type 1 diabetes and uveoretinitis. Stem Cell Rep. 2017;8:121425.

Article CAS Google Scholar

Caspi RR. Experimental autoimmune uveoretinitis in the rat and mouse. Curr Protoc Immunol. 2003;15:15.16.120.

Google Scholar

Horai R, Caspi RR. Cytokines in autoimmune uveitis. J Interferon Cytokine Res. 2011;31:73344.

Article CAS PubMed PubMed Central Google Scholar

Foussat A, Gregoire S, Clerget-Chossat N, Terrada C, Asnagli H, Lemoine FM, et al. Regulatory T Cell therapy for uveitis: a new promising challenge. J Ocul Pharm Ther. 2017;33:27884.

Article CAS Google Scholar

Muthu S, Bapat A, Jain R, Jeyaraman N, Jeyaraman M. Exosomal therapy-a new frontier in regenerative medicine. Stem Cell Investig. 2021;8:7.

Article CAS PubMed PubMed Central Google Scholar

Nikfarjam S, Rezaie J, Zolbanin NM, Jafari R. Mesenchymal stem cell derived-exosomes: a modern approach in translational medicine. J Transl Med. 2020;18:449.

Article PubMed PubMed Central Google Scholar

Moller-Hansen M, Larsen AC, Toft PB, Lynggaard CD, Schwartz C, Bruunsgaard H, et al. Safety and feasibility of mesenchymal stem cell therapy in patients with aqueous deficient dry eye disease. Ocul Surf. 2021;19:4352.

Article PubMed Google Scholar

Calonge M, Perez I, Galindo S, Nieto-Miguel T, Lopez-Paniagua M, Fernandez I, et al. A proof-of-concept clinical trial using mesenchymal stem cells for the treatment of corneal epithelial stem cell deficiency. Transl Res. 2019;206:1840.

Article PubMed Google Scholar

Ozmert E, Arslan U. Management of retinitis pigmentosa by Whartons jelly derived mesenchymal stem cells: preliminary clinical results. Stem Cell Res Ther. 2020;11:25.

Article CAS PubMed PubMed Central Google Scholar

Galderisi U, Peluso G, Di Bernardo G. Clinical trials based on mesenchymal stromal cells are exponentially increasing: where are we in recent years? Stem Cell Rev Rep. 2022;18:2336.

Article PubMed Google Scholar

Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R. Intravitreal injection of autologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy: a phase I trial. Retina. 2011;31:120714.

Article PubMed Google Scholar

Oner A, Gonen ZB, Sinim N, Cetin M, Ozkul Y. Subretinal adipose tissue-derived mesenchymal stem cell implantation in advanced stage retinitis pigmentosa: a phase I clinical safety study. Stem Cell Res Ther. 2016;7:178.

Article PubMed PubMed Central Google Scholar

Ezquer M, Urzua CA, Montecino S, Leal K, Conget P, Ezquer F. Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Res Ther. 2016;7:42.

Article PubMed PubMed Central Google Scholar

Mastrolia I, Foppiani EM, Murgia A, Candini O, Samarelli AV, Grisendi G, et al. Challenges in clinical development of mesenchymal stromal/stem cells: concise review. Stem Cells Transl Med. 2019;8:113548.

Article PubMed PubMed Central Google Scholar

Kharbikar BN, Mohindra P, Desai TA. Biomaterials to enhance stem cell transplantation. Cell Stem Cell. 2022;29:692721.

Article CAS PubMed PubMed Central Google Scholar

Read the rest here:
Mesenchymal stem cell based therapies for uveitis: a systematic review of preclinical studies | Eye - Nature.com

Tr1X Announces FDA Clearance of First Investigational New Drug Application for TRX103, an Allogeneic Regulatory T … – BioSpace

SAN DIEGO, April 10, 2024 /PRNewswire/ --Tr1X, Inc., anautoimmune and inflammatory disease cell therapy company focused on the development of novel allogeneic regulatory T cell therapies (Allo-Tregs) and allogeneic regulatory T cells expressing Chimeric Antigen Receptors (Allo-CAR Tregs), today announced the U.S. Food and Drug Administration (FDA) accepted the company's Investigational New Drug (IND) application for TRX103 for the prevention of Graft versus Host Disease (GvHD) in patients undergoing HLA-mismatched hematopoietic stem cell transplantation (HSCT). The company plans to initiate a Phase 1 study of TRX103, an investigational allogeneic off-the-shelf Tr1 Treg therapy, for this indication in the second quarter of 2024. Additionally, the company is on track to submit an IND for TRX103 for patients with refractory Crohn's disease in the third quarter of 2024.

"The FDA's clearance of our IND for TRX103, the first ever allogeneic engineered Tr1 regulatory T cell product, is an important milestone that could quickly provide us with proof-of-concept data while we continue to develop TRX103 for multiple autoimmune and inflammatory diseases, including Crohn's disease," said Maria Grazia Roncarolo M.D., Co-Founder, President and Head of R&D at Tr1X. "Donor-derived autologous Tr1 cells have shown clinical promise in improving immune reconstitution and reducing GvHD but have limited potential due to lack of feasibility and high cost. TRX103, an off-the-shelf product with unique biological properties compared to other Treg and CAR-T cell therapies, has the potential to reduce inflammation, suppress pathogenic cells, and reset the immune system. TRX103 is currently produced cost effectively at scale in a fully closed end-to-end system using a process that yields billions of cells in a single campaign. This should enable Tr1X to develop further pipeline candidates that address even larger patient populations with equally unmet medical needs."

"Allogeneic stem cell transplantation is the only curative treatment formany advanced blood cancers and genetic and acquired diseases.However, there remains a burden of morbidity and mortalityrelated to GvHD and its complications, including severe infections," said Monzr M. Al Malki, M.D., lead investigator of the Phase 1 study, Associate Professor in the Department of Hematology & Hematopoietic Cell Transplantation, and Director of the Unrelated Donor, Haploidentical and Cord Blood Transplant Programs at City of Hope National Medical Center. "As a result, innovative treatments are urgently needed. We look forward to starting this first-in-human trial to evaluate the safety, tolerability and clinical activity of these allogeneic Tr1 Treg cells and their potential to benefit patients in this setting."

About TRX103 TRX103 is an investigational allogeneic off-the-shelf engineered T cell product generated from CD4+ cells sourced from healthy donors. These donor-derived CD4+ cells are engineered to produce cells that mimic the function of Tr1 regulatory T cells. Tr1X is developing TRX103 for the treatment of several immune and inflammatory disorders. Multiple preclinical models of disease have shown TRX103 to be tolerable and effective and to have the potential to reset immune systems to a healthy state. TRX103 has the potential to overcome major limitations of current cell therapies for autoimmune diseases, which include limited persistence and side effects including cytokine release syndrome (CRS) and neurotoxicity.

About Tr1X Tr1X is a privately held biotechnology company focused on engineering cures for immune and inflammatory diseases. Founded by industry veterans, including the scientists behind the discovery of Tr1 cells, the company's pipeline of off-the-shelf allogeneic cell therapies is being developed for the treatment of and potential cure of autoimmune diseases with high unmet medical need. The company is backed by leading investors, including The Column Group, NEVA SGR and Alexandria Venture Investments, and has received additional grant support from the California Institute for Regenerative Medicine (CIRM). For more information visit http://www.tr1x.bio.

Investor Contact: Tr1X Investor Relations investors@tr1x.bio

Media Contact: Julie Normart jnormart@realchemistry.com

View original content to download multimedia:https://www.prnewswire.com/news-releases/tr1x-announces-fda-clearance-of-first-investigational-new-drug-application-for-trx103-an-allogeneic-regulatory-t-cell-therapy-to-treat-autoimmune-diseases-302112587.html

SOURCE Tr1X, Inc.

Follow this link:
Tr1X Announces FDA Clearance of First Investigational New Drug Application for TRX103, an Allogeneic Regulatory T ... - BioSpace

Pluripotent positives in allogeneic stem cell therapies – BioProcess Insider

Ricardo Baptista, former chief technology officer at cell therapy developer Alder Therapeutics, told delegates The use of pluripotent stem cells is gaining traction when it comes to allogeneic stem cell therapies.

Baptista said there are several reasons for this and listed the benefits of using pluripotent stem cells. He discussed how pluripotent cells can be cultured in all systems, including 2D, 3D, static and dynamic. Additionally, Baptista said the lines can be edited [which equates] to the concept of a universal cell line and theoretically an unlimited choice of cells.

In turn, this means the therapies can be used off-the-shelf and target diseases with point-of-care therapy. Moreover, it is cell banks-based and there is the possibility to generate universal cells and the potential to leverage processing technologies from biopharma.

Baptista added there is an increased number of doses per lot and the costs of goods [is] spread across multiple doses, meaning the therapies are more easily accessible to a wider patient population.

Currently all approved chimeric antigen receptor (CAR) T-cell therapies are autologous. Autologous products are made by taking, reengineering, and reintroducing a patients own cells. Autologous methods of treatment usually have a low risk of rejection but are not always suitable for all patients because of the limitations in the quality and availability of the individuals cells.

Allogeneic therapies, however, can use cells or tissues from different individuals. As these are not personalized therapies, one advantage over autologous is the relative ease to mass-produce such products and thus, increase patient access. While allogeneic treatments could potentially treat more people, it has not yet fully reached commercialization due to the risk of rejection and immunosuppressive and matching measures required.

More here:
Pluripotent positives in allogeneic stem cell therapies - BioProcess Insider

Stem cell treatment for spinal injury, and BRCA breakthrough | Podcasts – The Naked Scientists

Could an injection of stem cells grown from your own abdominal fat be the key to improving outcomes for people with spinal cord injuries? In an early stage trial in America, scientists have found that over two thirds of the small group of patients they treated showed improvements. They think that the stem cells are boosting the blood supply to the injured region of the spinal cord, and helping to control inflammation, which may lead to reduced scarring and better prospects for recovering some of the lost nerve connections. Mohamad Bydon is a neurosurgeon at the Mayo Clinic and led the new study

Mohamad - The historical teaching around spinal cord injury is you deliver surgery, you do physiotherapy, and that's basically it. And things haven't really advanced in a long, long time. So what we wanted to do was really impact the space and say, are there other treatments that we could add to augment the recovery, to aid the recovery, to improve the recovery?

Chris - And your intervention? What's the rationale behind what you're doing and how are you doing it?

Mohamad - So at a very high level, at a 30,000 foot view, the question becomes, what are the other things that we can add? And that's where we believe regenerative medicine will be a part of this paradigm. It's not going to be the only answer: you still need your surgery, you still need your physical therapy, there's other things like stimulation that are being discussed, but we believe regenerative therapy, specifically with stem cells, will be beneficial in helping to improve outcomes for patients.

Chris - So what stem cells? Where from and what do you do with them?

Mohamad - So stem cells are cells that can become a number of different things once they enter the body and they come from a number of different areas. Specifically in this study we used what are known as mesenchymal stem cells, adipose derived. Those words mean stem cells from your own fat, belly fat. I had a colleague who said to me recently, 'Who knew that belly fat could be so useful?' So, from your own belly fat, we remove that and expand the cells until we get to the right number of cells and then we proceed to reinject those cells once they're expanded and cultured into the spinal cord.

Chris - How many cells were you putting in once you'd grown them or expanded them and where exactly were they going? Were they going into the substance of the spinal cord or around it?

Mohamad - There were 100 million cells. Frankly, we need to work on dosing still, but a hundred million is the dose that we expand the cells to. Once we do that expansion, we proceed to inject it into the faecal sac. There's the substance of the spinal cord itself, and then there's a sac that surrounds the spinal cord - it's called the faecal sac or the dura mater - and that is a lining that surrounds the spinal cord. It also surrounds the brain. Inside that layer there's something called cerebrospinal fluid. So what we do is we put these cells inside the dura, into the fluid, and then the cells go to the area of highest injury and area of highest inflammation, which is the area of injury.

Chris - What do the cells look like? Are they still very much stem cells at this time when you're doing this? And then when they go to the areas of injury, is this only in people who've just had an injury or will they go to areas of injury that happened years ago?

Mohamad - Good question. The cells definitively are stem cells and there are certain markers and hallmark features that stem cells have. To your question on longevity, our current trial is in patients who've had their injury within a year. Many trials deliver therapy to patients who've had the injury right away; you had your injury yesterday, we're going to give you therapy today. This trial was not designed like that because some patients have natural improvement and so the earliest we injected any patient was at seven months. The latest that we injected any patient was at 22 months. Some of the patients that we injected out to 22 months had a very significant response. Now, we haven't done studies looking at longer, although now we're starting studies to look longer out. So what would it look like if we did patients after five years, ten years? What would that look like? Those are also things that we're evaluating and looking to treat.

Chris - Do you know for sure that the stem cells when you put them in actually go to the injury side or do they just go everywhere and some randomly crop up at the site of the injury? Have you actually followed them to see what happens to them and how long they persist for after you put them in?

Mohamad - We've done testing on this and we know that the cells go to the site of injury at the same time. The cells have an impact across the spinal cord and the brain and that's okay. The impact that we've seen has been positive or had no impact. So, we haven't seen it be negative. The cells themselves then work through a couple of different potential mechanisms once they get there. There's potentially a regenerative mechanism through the stem cells themselves regenerating that area, but the other potential mechanism is a vascular mechanism where the stem cells induce a more vascular area where scar tissue would normally be a very nonvascular area without blood vessels. Blood vessels are important because they deliver good nutrients, they take out bad nutrients, and so areas of injury tend to wall themselves off and lose their vasculature. These cells can be very helpful because they can reset the vasculature in those areas, allowing the areas to heal more properly.

Chris - For the patients, what were the outcomes like and in what ways did people improve in ways that you wouldn't have anticipated had they just been managed the way we normally, historically, have been managing spinal cord injuries?

Mohamad - What we looked at, in terms of safety, we found adverse events. Mostly, they were headaches or back pain that would improve over a few days. We never saw any significant or long-term side effects. On the effectiveness side, in terms of our secondary endpoint on effectiveness, what we found was that seven of the ten patients showed some improvement, three of them being very significant improvement, four of them being mild to moderate improvement, and the other three patients showed no improvement but did not get worse. Some patients who required a harness and multiple assistance to be able to bear weight and get up could now walk without that: they could walk on their own. Other patients had improvement in bowel and bladder function.

Chris - How do you know, though, that you didn't, just by chance, select people for this study who are that bit fitter? They're more likely to have a good outcome and, had they been just left to their own devices with the gold standard care they would otherwise have had, they would've ended up at the same endpoint?

Mohamad - This is a good question, and this is a question that we debated at length with the regulatory bodies. Most studies in this space treat patients right after the injury, in which case your question becomes very relevant. In our case, we waited. Most of the improvement after a spinal cord injury occurs within the first six months. Much less improvement occurs as you keep going over time, much, much less. The earliest we ever treated a patient was seven months and we had patients that we treated as late as 22 months and everybody had plateaued. Nobody was continuing their improvement. Remember, this is a phase 1 trial of ten patients. The definitive trial would be randomised controlled, which we're doing now, which is a phase 2 randomised controlled trial of best medical management versus our interventional therapy. But this is a signal and this is an important signal that will inform our future trials.

Read the original here:
Stem cell treatment for spinal injury, and BRCA breakthrough | Podcasts - The Naked Scientists

Paralysed patients could regain movement and sensation, stem cell treatment trial finds – The Telegraph

Dr Mohamad Bydon, a Mayo Clinic neurosurgeon and first author of the study, said the results indicate that severe spinal cord injuries that were once thought hopeless, could be treatable in the future.

For years, treatment of spinal cord injury has been limited to supportive care, more specifically stabilisation surgery and physical therapy, said Dr Bydon.

Many historical textbooks state that this condition does not improve. In recent years, we have seen findings from the medical and scientific community that challenge prior assumptions.

This research is a step forward toward the ultimate goal of improving treatments for patients.

In Britain, an estimated 50,000 people are living with a spinal cord injury with about 2,500 new injuries each year.

Although operations to realign the spine and remove bone fragments or fuse bones can be effective, many people are left without movement below the site of the injury and show little improvement over time.

In the study, six people with neck injuries and four with back injuries, aged between 18 and 65 were assessed using the American Spinal Injury Association (ASIA) Impairment Scale, which has five levels, ranging from complete loss of function to normal function.

After treatment, seven participants who improved each moved up at least one level on the ASIA scale, with two patients moving up two levels. Three patients showed no improvement.

The spinal cord has limited ability to repair its cells or make new ones. Patients typically experience most of their recovery in the first six to 12 months after injuries occur. Improvement generally stops 12 to 24 months after injury.

However, during the trial two patients with cervical spine injuries of the neck received stem cells 22 months after their injuries and improved one level on the ASIA scale after treatment.

Some also regained movement and improved bowel function.

In spinal cord injury, even a mild improvement can make a significant difference in that patients quality of life, added Dr Bydon.

Spinal cord injury is a complex condition. Future research may show whether stem cells in combination with other therapies could be part of a new paradigm of treatment to improve outcomes for patients.

This study documents the safety and potential benefit of stem cells and regenerative medicine.

Fat tissue was used because it is abundant and easy to get hold of in the body and has the most mesenchymal stem cells.

Despite the success of the treatment, scientists are still unsure how the stem cells are boosting regeneration. In animal trials, it has been shown that they flock towards areas of inflammation, helping to regulate the immune response.

As part of the study, researchers took lumbar punctures from the patients to gather their cerebrospinal fluid before and after treatment to see if they could pick up any changes

After treatment, they found an increased level of a protein called Vascular endothelial growth factor, in seven patients. The protein promotes the growth of new blood vessels and forms part of the mechanism that restores the blood supply to cells and tissues.

The phase one trial, which was primarily looking at the safety of the treatment, reported no serious adverse events with only mild side effects such as headache and musculoskeletal pain that resolved with over-the-counter treatment. Further trials are expected to follow.

The study was published in the journal Nature Communications.

Original post:
Paralysed patients could regain movement and sensation, stem cell treatment trial finds - The Telegraph