Category Archives: Stem Cell Treatment


Stem cell shield may protect body from chemotherapy side effects

A new study suggests stem cells may be able to act as a shield to protect the body from the harmful side effects of chemotherapy, the BBC News reported.

As chemotherapy drugs attempt to kill cancer drugs, they can also affect the bone marrow and other healthy tissues.

In a new study, however, researchers from the Fred Hutchinson Cancer Research Center in Seattle were able to use genetically modified stem cells to protect the bone marrow.

The bone marrow is very susceptible to chemotherapy, and in response to the treatment, produces less blood cells. This leaves the body more prone to infection and fatigue.

Stem cell shielding appeared to stave off some of these negative side effects. Researchers took bone marrow from patients with brain cancer and isolated the stem cells. They infected the cells with a virus which carried a gene to protect the cells against a chemotherapy drug, and then re-implanted the cells into the patients.

"We found that patients were able to tolerate the chemotherapy better, and without negative side effects, after transplantation of the gene-modified stem cells than patients in previous studies who received the same type of chemotherapy without a transplant of gene-modified stem cells, Professor Hans-Peter Kiem told the BBC News.

All three patients lived longer than the average survival time of 12 months. One patient was still alive 34 months after treatment, according to the BBC.

Click here to read more from the BBC News.

Link:
Stem cell shield may protect body from chemotherapy side effects

NY medical schools chart progress with stem cells

ALBANY, N.Y. (AP) -- Almost halfway through a $600 million state program supporting stem cell research, eight medical schools around New York are reporting progress on projects such as replicating liver cells and eradicating leukemia cells.

A new report from Associated Medical Schools of New York updates work at the institutions where hundreds of researchers are starting to unravel causes and potential treatments for conditions ranging from autism to heart disease and cancer. Stem cells are self-renewing and have the ability to develop into other types of cells.

The Mount Sinai School of Medicine reported finding a method to transform human skin cells into stem cells and turned differentiated human stem cells into heart cells. Those findings are expected to result in better understanding of how heart disease develops and allow initial testing of new treatments on stem cells before they are used on human subjects.

Dr. Ihor Lemischka, director of the Black Family Stem Cell Institute at Mount Sinai, said recreating heart cells in a dish from a patient with LEOPARD Syndrome, a disease caused by a genetic mutation, has opened ongoing avenues for researching the disease and screening potential drugs.

"It was a major achievement," Lemischka said. The initial work was reported in June 2010 in the journal Nature.

The shared research facility at Mount Sinai supports the work at 80 different labs, Lemischka said.

The Empire State Stem Cell Program was intended to fund projects in early stages, including those that initially have been unable to get federal or private funding. Grants have also been used for capital projects like renovating labs and establishing new stem cell centers.

The Albert Einstein College of Medicine reported replicating liver cells that could help reduce the need for liver transplants using live donors and cadavers.

Dr. Allen Spiegel said 12 new researchers have been hired with state funding at the Bronx school, which also lists anemia, brain disorders, heart disease and obesity among its stem cell research subjects.

"It offers tremendous potential for understanding the causes of and developing better treatments for diseases like cancer, type 1 diabetes and Parkinson's," he said.

Originally posted here:
NY medical schools chart progress with stem cells

Neuralstem Updates ALS Stem Cell Trial Progress

ROCKVILLE, Md., May 8, 2012 /PRNewswire/ --Neuralstem, Inc. (CUR) announced that the Federal Drug Administration (FDA) has approved the return of three patients from earlier cohorts in its ongoing Phase I safety trial to treat amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease) with its spinal cord stem cells (HSSC's). These patients will be permitted to return to the trial for second treatments as the next cohort of patients, provided they meet inclusion requirements at the scheduled time. They will be the first to receive stem cell transplantation along the length of the spinal cord.

(Logo: http://photos.prnewswire.com/prnh/20061221/DCTH007LOGO )

The first twelve patients in the trial, which is taking place at Emory University Hospital in Atlanta, Georgia, received stem cell transplants in the lumbar (lower back) region of the spinal cord only. Thelast cohort of three, completed in April, received transplants in the cervical (upper back) region of the spinal cord, where stem cell transplantation could help support breathing, a key function that is lost as ALS progresses. The next cohort of three patients is designed to receive 10 HSSC injections in the lumbar region and 5 in the cervical, for a total of 15 injections along the length of the spinal cord. In the case of the returning patients, who have already received 10 lumbar injections, they will receive five cervical injections. These patients are between 15-17 months out from their first dosing and appear to have tolerated the first procedure well.

Additionally, Neuralstem has submitted a trial amendment to the FDA to increase both the number of patients treated as well as the dose in future cohorts. The amendment would also expand the trial to include certain efficacy endpoints. The trial was initially designed as a safety trial to treat 18 patients.

"The return of these patients to the trial for second treatments is a continuing validation of the trial's safety. Typically, Phase I trials do not bring study subjects back, as that could increase their exposure to potentially harmful treatments," said Karl Johe, PhD, Neuralstem Chairman and Chief Scientific Officer. "Treating these patients who have already received injections in one part of their spine allows us to both increase the overall dosage for each patient as well as transplant them in regions of the spine where they have not been treated," Dr. Johe continued. "Thisnext cohort of patients will be the first in the world to receive stem cell transplants in both cervical and lumbar regions of their spinal cord. With cervical injections of the lumbar patients, for example, we could also potentially support their breathing function, which is vital for preserving quality of life."

"Patients 10-12, who might return to the trial, were among those studied in a paper examining the first safety data from the trial, published online in STEM CELLS last month," said Eva Feldman, MD, PhD, Director of the A. Alfred Taubman Medical Research Institute and Director of Research of the ALS Clinic at the University of Michigan Health System. "As the paper showed, we believe that the cells and the route of administration are safe. It is a further validation of the safety profile to be able to bring patients back for additional dosing several months past the period which was reported on in the journal." Dr. Feldman is also principal investigator (PI) of the ALS trial and an unpaid Neuralstem consultant.

The FDA-approved amendment to the protocol requires approval of the Emory Institutional Review Board before it can be implemented.

About the Study

The ongoing Phase I study is designed to assess the safety of Neuralstem's spinal cord stem cells (HSSC's) and transplantation technique in up to 18 patients with amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease).

The first twelve patients were all transplanted in the lumbar (lower back) region of the spine. Of these, the initial six (Cohort A) were all non-ambulatory with permanent paralysis. The first patient was treated on January 20, 2010. Successive surgeries have followed at the rate of one every one-to-two months. The first three patients (Cohort A1) were each treated with five unilateral HSSC injections in L2-L4 lumbar segments, while the next three patients (Cohort A2) received ten bilateral injections (5 on each side) in the same region. The next six patients (Cohort B and C) were all ambulatory. Of these, the first three (Cohort B) received five unilateral injections in the L2-L4 region. The last three patients (Cohort C) in this study group received ten bilateral injections in the same region.

Continued here:
Neuralstem Updates ALS Stem Cell Trial Progress

A single stem cell mutation triggers fibroid tumors: Mutated stem cell 'goes wild' in frenzied tumor expansion

ScienceDaily (May 4, 2012) Fibroid uterine tumors affect an estimated 15 million women in the United States, causing irregular bleeding, anemia, pain and infertility. Despite the high prevalence of the tumors, which occur in 60 percent of women by age 45, the molecular cause has been unknown.

New Northwestern Medicine preclinical research has for the first time identified the molecular trigger of the tumor -- a single stem cell that develops a mutation, starts to grow uncontrollably and activates other cells to join its frenzied expansion.

"It loses its way and goes wild," said Serdar Bulun, M.D., the chair of obstetrics and gynecology at Northwestern University Feinberg School of Medicine and Northwestern Memorial Hospital. "No one knew how these came about before. The stem cells make up only 1 percent of the cells in the tumor, yet they are the essential drivers of its growth."

The paper is published in the journal PLoS ONE. Masanori Ono, M.D., a post-doctoral student in Bulun's lab, is the lead author.

The stem cell initiating the tumor carries a mutation called MED12. Recently, mutations in the MED12 gene have been reported in the majority of uterine fibroid tissues. Once the mutation kicks off the abnormal expansion, the tumors grow in response to steroid hormones, particularly progesterone.

For the study, researchers examined the behavior of human fibroid stem cells when grafted into a mouse, a novel model initiated by Northwestern scientist Takeshi Kurita, a research associate professor of obstetrics and gynecology. The most important characteristic of fibroid stem cells is their ability to generate tumors. Tumors originating from the fibroid stem cell population grew 10 times larger compared to tumors initiated with the main cell population, suggesting a key role of these tumor stem cells is to initiate and sustain tumor growth.

"Understanding how this mutation directs the tumor growth gives us a new direction to develop therapies," said Bulun, also the George H. Gardner Professor of Clinical Gynecology.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

See more here:
A single stem cell mutation triggers fibroid tumors: Mutated stem cell 'goes wild' in frenzied tumor expansion

Stem cell therapy to battle HIV?

(SACRAMENTO, Calif.) -- UC Davis Health System researchers are a step closer to launching human clinical trials involving the use of an innovative stem cell therapy to fight the virus that causes AIDS.

In a paper published in the May issue of the Journal of Virology, the UC Davis HIV team demonstrated both the safety and efficacy of transplanting anti-HIV stem cells into mice that represent models of infected patients. The technique, which involves replacing the immune system with stem cells engineered with a triple combination of HIV-resistant genes, proved capable of replicating a normally functioning human immune system by protecting and expanding HIV-resistant immune cells. The cells thrived and self-renewed even when challenged with an HIV viral load.

"We envision this as a potential functional cure for patients infected with HIV, giving them the ability to maintain a normal immune system through genetic resistance," said lead author Joseph Anderson, an assistant adjunct professor of internal medicine and a stem cell researcher at the UC Davis Institute for Regenerative Cures. "Ideally, it would be a one-time treatment through which stem cells express HIV-resistant genes, which in turn generate an entire HIV-resistant immune system."

To establish immunity in mice whose immune systems paralleled those of patients with HIV, Anderson and his team genetically modified human blood stem cells, which are responsible for producing the various types of immune cells in the body.

Building on work that members of the team have pursued over the last decade, they developed several anti-HIV genes that were inserted into blood stem cells using standard gene-therapy techniques and viral vectors (viruses that efficiently insert the genes they carry into host cells). The resulting combination vector contained:

These engineered blood stem cells, which could be differentiated into normal and functional human immune cells, were introduced into the mice. The goal was to validate whether this experimental treatment would result in an immune system that remained functional, even in the face of an HIV infection, and would halt or slow the progression toward AIDS.

The results were successful on all counts.

"After we challenged transplanted mice with live HIV, we demonstrated that the cells with HIV-resistant genes were protected from infection and survived in the face of a viral challenge, maintaining normal human CD4 levels," said Anderson. CD4+ T-cells are a type of specialized immune cell that HIV attacks and uses to make more copies of HIV.

"We actually saw an expansion of resistant cells after the viral challenge, because other cells which were not resistant were being killed off, and only the resistant cells remained, which took over the immune system and maintained normal CD4 levels," added Anderson.

The data provided from the study confirm the safety and efficacy of this combination anti-HIV lentiviral vector in a hematopoietic stem cell gene therapy setting for HIV and validated its potential application in future human clinical trials. The team has submitted a grant application for human clinical trials and is currently seeking regulatory approval, which is necessary to move on to clinical trials.

Go here to see the original:
Stem cell therapy to battle HIV?

VistaGen Licenses Breakthrough Stem Cell Culture Technology To Speed Development Of Drug Screening And Cell Therapy …

South San Francisco, CA (Marketwire) - VistaGen Therapeutics, Inc. (OTCBB:VSTA) (OTCQB:VSTA), a biotechnology company applying stem cell technology for drug rescue and cell therapy, has licensed breakthrough stem cell culture technology from the McEwen Centre for Regenerative Medicine located at the University Health Network (UHN) in Toronto, Canada.

VistaGen will be utilizing the licensed technology to develop hematopoietic precursor stem cells from human pluripotent stem cells, with the goal of developing drug screening and cell therapy applications for human blood system disorders. The breakthrough technology is included in a new United States patent application.

Hematopoietic precursor stem cells give rise to all red and white blood cells and platelets in the body. VistaGen will use the UHN invention to improve the cell culture methods used to efficiently produce hematopoietic stem cell populations.

"This technology dramatically advances our ability to produce and purify this important blood stem cell precursor for both in vitro drug screening and in vivo cell therapy applications," said H. Ralph Snodgrass, PhD, VistaGen's President and Chief Scientific Officer.

"In addition to defining new cell culture methods for our use, the technology describes the surface characteristics of stem cell-derived adult hematopoietic stem cells. Most groups study embryonic blood development from stem cells, but, for the first time, we are able to not only purify the stem cell-derived precursor of all adult hematopoietic cells, but also pinpoint the precise timing when adult blood cell differentiation takes place in these cultures," Snodgrass added. "It is our belief that these early cells will be the precursors of the ultimate adult, bone marrow-repopulating hematopoietic stem cells."

Bone marrow-derived hematopoietic stem cells are able to repopulate the blood and immune system when transplanted into patients prepared for bone marrow transplantation. These cells have important potential therapeutic applications for the restoration of healthy blood and immune systems in individuals undergoing transplantation therapies for cancer, organ grafts, HIV infections or for acquired or genetic blood and immune deficiencies.

About VistaGen Therapeutics VistaGen is a biotechnology company applying human pluripotent stem cell technology for drug rescue and cell therapy. VistaGen's drug rescue activities combine its human pluripotent stem cell technology platform, Human Clinical Trials in a Test Tube, with modern medicinal chemistry to generate new chemical variants (Drug Rescue Variants) of once-promising small-molecule drug candidates. These are drug candidates discontinued due to heart toxicity after substantial development by pharmaceutical companies, the U.S. National Institutes of Health (NIH) or university laboratories. VistaGen uses its pluripotent stem cell technology to generate early indications, or predictions, of how humans will ultimately respond to new drug candidates before they are ever tested in humans, bringing human biology to the front end of the drug development process.

Additionally, VistaGen's small molecule drug candidate, AV-101, is in Phase 1b development for treatment of neuropathic pain. Neuropathic pain, a serious and chronic condition causing pain after an injury or disease of the peripheral or central nervous system, affects approximately 1.8 million people in the U.S. alone. VistaGen is also exploring opportunities to leverage its current Phase 1 clinical program to enable additional Phase 2 clinical studies of AV-101 for epilepsy, Parkinson's disease and depression. To date, VistaGen has been awarded over $8.5 million from the NIH for development of AV-101.

Visit VistaGen athttp://www.VistaGen.com, follow VistaGen athttp://www.twitter.com/VistaGenor view VistaGen's Facebook page athttp://www.facebook.com/VistaGen

Cautionary Statement Regarding Forward Looking Statements The statements in this press release that are not historical facts may constitute forward-looking statements that are based on current expectations and are subject to risks and uncertainties that could cause actual future results to differ materially from those expressed or implied by such statements. Those risks and uncertainties include, but are not limited to, risks related to regulatory approvals, the issuance and protection of patents and other intellectual property, the success of VistaGen's ongoing clinical studies, including the safety and efficacy of its drug candidate, AV-101, the failure of future drug rescue and pilot preclinical cell therapy programs related to VistaGen's stem cell technology-based Human Clinical Trial in a Test Tube platform, its ability to enter into drug rescue collaborations, risks and uncertainties relating to the availability of substantial additional capital to support VistaGen's research, development and commercialization activities, and the success of its research, development, regulatory approval, marketing and distribution plans and strategies, including those plans and strategies related to AV-101 and any drug rescue variants identified and developed by VistaGen. These and other risks and uncertainties are identified and described in more detail in VistaGen's filings with the Securities and Exchange Commission (SEC). These filings are available on the SEC's website at http://www.sec.gov. VistaGen undertakes no obligation to publicly update or revise any forward-looking statements.

Read the original here:
VistaGen Licenses Breakthrough Stem Cell Culture Technology To Speed Development Of Drug Screening And Cell Therapy ...

Stem cell therapy for WCMS student has remarkable results

When Tyler was born, the umbilical cord was wrapped around his neck, causing a lack of oxygen to his brain that led to Tyler suffering a stroke during delivery. The stroke caused damage to the back of Tylers brain. Tyler was diagnosed with cerebral palsy and his mother, Lisa Biermann, was told to expect the worst: a child who would never walk, talk, or have any chance at a normal life.

Lisa refused to give up hope. She tried everything she could to help Tyler. Tyler could not walk because his feet would not sit flat on the floor. She tried botox injections every three months, braces, casts and even ankle cord surgery. Nothing worked.

Lisa said Tyler could not communicate with her at all. She never knew when he was in pain because he was unable to tell her.

Tyler was considered to be blind, with a prescription that was over nine units nearsighted, and his eyes jumped around. Even with glasses, he could not focus his vision, and doctors did not believe he could see, or ever would see.

Until he was 8 years old, Lisa would carry Tyler from his classes at Woodland Park Elementary.

When Tyler was 8, he had a seizure. Dr. David Steenblock, who is based in California, heard about Tyler and offered to help him with umbilical cord stem cell therapy. Lisa said she thought hard about it, and because she had tried everything else and nothing had worked, she decided to try the stem cell therapy, which Dr. Steenblock told her had no side effects.

In December 2007, Lisa, Dr. Steenblock and his team took Tyler for the treatment, which had to be done in Tijuana, Mexico, because stem cells injection is currently not legal in the United States. Three months later, they went for a second injection.

The stem cells were given to Tyler intravenously for a period of approximately 45 minutes.

Lisa said within weeks, she saw monumental changes in Tyler. All the milestones he never reached as a baby, he began reaching.

Within three months Tyler could put his feet flat on the floor and could walk independently. At six months post-treatment, he no longer needed the painful braces that gave him bunions.

See the article here:
Stem cell therapy for WCMS student has remarkable results

How stem cell therapy can keep the immune system under control

A new study, appearing in Cell Stem Cell and led by researchers at the University of Southern California, outlines the specifics of how autoimmune disorders can be controlled by infusions of mesenchymal stem cells.

Mesenchymal stem cells (MSC) are highly versatile stem cells that originate from the mesoderm, or middle layer of tissue, in a developing embryo. MSC can be isolated from many different kinds of human tissue, including bone marrow and the umbilical cord.

Principal investigator Songtao Shi, professor at the Ostrow School of Dentistry of USC Center for Craniofacial Molecular Biology, said that recent studies have shown the benefits of administering MSC to patients with immune-related disorders such as graft versus host disease, systemic lupus erythematosus, rheumatoid arthritis, and more.

These studies showed that infusions of MSC appeared to quell the production and function of overactive immune cells, including T- and B-lymphocytes. However, the specific mechanism behind how MSC get the immune cells under control hasn't been fully understood.

"Mesenchymal-Stem-Cell-Induced Immunoregulation Involves FAS-Ligand-/FAS-Mediated T Cell Apoptosis" shines light on how infused MSCs target and defeat overactive immune cells.

Examining the effects of MSC infusion in mice with systemic sclerosis (SS)-like immune disorders, Shi and his colleagues discovered that a specific cellular mechanism known as the FAS/FAS-ligand pathway was the key to the remarkable immune system benefits.

Specifically, in mice with SS-like disorders, infusions of MSC caused T-lymphocyte death with FASL/FAS signaling and lessened symptoms of the immune disorder. However, MSC deficient in FAS-ligand failed to treat immune disorders in SS-afflicted mice.

With the hopeful results of the animal model study in mind, Shi's colleagues in China performed a pilot study with patients suffering from systemic sclerosis. Infusions of MSCs provided similar clinical benefits to patients, and experimental analysis revealed that the FASL/FAS pathway was also at work in humans with SS.

The identification of the cellular workings responsible for the stem cell treatments' success may eventually help doctors find optimal cell-based treatment for some immune diseases, Shi said.

Basic research portions of this study were supported by the National Institute of Dental and Craniofacial Research and the California Institute for Regenerative Medicine. Clinical studies were supported by a grant from the China Major International (Regional) Joint Research Project.

Here is the original post:
How stem cell therapy can keep the immune system under control

Pharmaceutical Company Merck Serono Signs an Agreement to Use Kadimastem's Platform for Drug Screening

NES ZIONA, Israel--(BUSINESS WIRE)--

Kadimastem, an Israeli Biotechnology company that develops human pluripotent stem cell-related products, today announced the signing of a five year framework agreement with Merck Serono, a division of Merck KGaA, Darmstadt, Germany. The agreement concerns the use of Kadimastem's drug-screening platform to discover new oral drugs for the treatment of the neurological disease Multiple Sclerosis (MS).

The system developed by Kadimastem allows using human functional tissues produced industrially from pluripotent stem cells as a means to search for potential new drugs, a direct approach that has advantages over the use of animals. In Multiple Sclerosis, the insulating myelin sheaths which cover many nerves in the brain and spinal cord are destroyed due to loss of the myelin-forming cells resulting in the impairment of nerve function and severe neurological disabilities. It is estimated that 2.5 million patients suffer from this disease around the globe. While the existing treatments act by slowing down the loss of myelin-forming cells, there is great interest in finding new medications that could repair the myelin by stimulating the regeneration of myelin-forming cells. The drug-screening project, to be carried out through the Kadimastem-Merck Serono agreement, aims precisely at the discovery of potential oral drugs that act by stimulating myelin repair.

We are pleased to announce this agreement with Merck-Serono, a company with robust experience in drug discovery, development and marketing in the Multiple Sclerosis area, said Mr. Yossi Ben-Yossef, CEO of Kadimastem. The undisclosed compensation for this agreement will provide financial support for Kadimastem's own in-house drug discovery initiatives, in the field of neurodegenerative diseases as well as in the field of Diabetes. Kadimastem also produces pancreatic islet cells from pluripotent stem cells, for screening of drugs enhancing insulin secretion and eventually for cellular therapy of Diabetes.

Prof. Michel Revel, Chief Scientist of Kadimastem, further commented: We are very proud that after a thorough evaluation, Merck Serono decided to sign an agreement with us. We see it as a proof of our excellence in developing human myelin-forming cells and our capabilities in drug screening. We believe that this agreement is a first step towards further collaboration with Merck Serono and other Pharmaceutical companies, in which our capabilities in drug screening on human functional cell systems will synergize with their capabilities in medicinal chemistry and clinical development, to make drugs available more rapidly and more efficiently.

Prof. Revel from the Weizmann Institute of Science was the Chief Scientist of InterPharm, an Israeli biotech company part of the Merck Serono group that developed Prof. Revel's groundbreaking research which lead to Rebif (mammalian cell-produced recombinant Interferon beta-1a), today a leading drug for the treatment of Multiple Sclerosis with annual sales by Merck Serono of over US$ 2.3 billion.

Mr. Amir Naiberg, CEO of Yeda, the commercial arm of the Weizmann Institiute of Science, said: We are excited that Kadimastem, that was established around one of our technologies, is collaborating with Merck Serono. Merck Serono has a long and successful tradition of developing products that emerged from the Weizmann Institute labs,and we hope that Kadimastem will be another link in this chain.

About Kadimastem

Kadimastem (www.kadimastem.com) is a biotechnology company focused on the industrial development and commercialization of human pluripotent stem cell-based products. At Kadimastem, the pluripotent stem cell technology is used to produce specialized human cells and tissues for two major types of medical applications: 1) Drug-screening platforms using human functional cells and tissues as in vitro assays for discovering novel therapeutic drugs for neurological diseases and diabetes, and 2) Cell therapy for regenerative medicine, to repair tissues and organs affected by diseases, such as implanting insulin-secreting pancreatic islet cells as a treatment for insulin-dependent diabetes. Kadimastem is developing these technologies in its state of the art 1,000 m2 facilities in the Weizmann Science Park (Ness Ziona, Israel), for industrial research and production, with a staff of PhD-level and MSc-level scientists. Kadimastem uses pluripotent human stem cells made available through licensing agreements with the Embryonic Stem Cell Center of the Hadassah Medical center in Jerusalem (Prof. Benjamin Reubinoff) and the Shaarei Zedek Medical Center, Jerusalem, Israel.

About Merck Serono

Link:
Pharmaceutical Company Merck Serono Signs an Agreement to Use Kadimastem's Platform for Drug Screening

VistaGen Secures Key U.S. Patent Covering Stem Cell Technology Methods Used To Test Drug Candidates For Liver Toxicity

South San Francisco, CA (Marketwire) - VistaGen Therapeutics, Inc. (OTCBB: VSTA) (OTCQB: VSTA), a biotechnology company applying stem cell technology for drug rescue, has secured a new United States patent covering the company's proprietary methods used to measure and type the toxic effects produced by drug compounds in liver stem cells.

Test methods included in this new patent, (U.S. Patent 11/445,733), titled "Toxicity Typing Using Liver Stem Cells," cover all mammalian liver stem cells -- rat and mouse cells, for example, in addition to human cells. Liver stem cells used in drug testing can be derived from in vivo tissue or produced from embryonic stem cells (ES) or induced pluripotent stem cells (iPS).

H. Ralph Snodgrass, Ph.D., VistaGen's President and Chief Scientific Officer, said, "This patent covers the monitoring of changes in gene expression as an assay for predicting drug toxicities. It is well known that drugs activate and suppress specific genes, and that the changes in gene expression reflect the mechanism of drug toxicities. The specific sets of genes that are affected become a profile of that drug."

VistaGen's new patent also covers techniques used to develop a database of gene expression profiles of drugs that have the same type of liver toxicity. Using sophisticated "pattern matching" database tools, drug developers can analyze these related profiles to determine "gene expression signatures" that are common and predictive of drugs that produce specific types of toxicity.

"Without this database capability, a drug's single gene expression profile could not be interpreted," Dr. Snodgrass added. "The ability to use liver stem cells to differentiate drug-dependent gene expression profiles, and to compare those profiles of drugs known to induce toxic liver effects, provides a powerful tool for predicting liver toxicity of new drug candidates, including drug rescue variants."

Shawn K. Singh, VistaGen's Chief Executive Officer, stated, "Strong and enforceable intellectual property rights are critical components of our plan to optimize the commercial potential of our Human Clinical Trials in a Test Tube platform. This new liver toxicity typing patent further solidifies our growing IP portfolio, and supports the continuing development of LiverSafe 3D, our human liver cell-based bioassay system, which complements our CardioSafe 3D human heart cell-based bioassay system for heart toxicity."

About VistaGen Therapeutics VistaGen is a biotechnology company applying human pluripotent stem cell technology for drug rescue and cell therapy. VistaGen's drug rescue activities combine its human pluripotent stem cell technology platform, Human Clinical Trials in a Test Tube, with modern medicinal chemistry to generate new chemical variants (Drug Rescue Variants) of once-promising small-molecule drug candidates. These are drug candidates discontinued due to heart toxicity after substantial development by pharmaceutical companies, the U.S. National Institutes of Health (NIH) or university laboratories. VistaGen uses its pluripotent stem cell technology to generate early indications, or predictions, of how humans will ultimately respond to new drug candidates before they are ever tested in humans, bringing human biology to the front end of the drug development process.

Additionally, VistaGen's small molecule drug candidate, AV-101, is in Phase 1b development for treatment of neuropathic pain. Neuropathic pain, a serious and chronic condition causing pain after an injury or disease of the peripheral or central nervous system, affects approximately 1.8 million people in the U.S. alone. VistaGen is also exploring opportunities to leverage its current Phase 1 clinical program to enable additional Phase 2 clinical studies of AV-101 for epilepsy, Parkinson's disease and depression. To date, VistaGen has been awarded over $8.5 million from the NIH for development of AV-101. Visit VistaGen at http://www.VistaGen.com, follow VistaGen at http://www.twitter.com/VistaGen or view VistaGen's Facebook page at http://www.facebook.com/VistaGen

Cautionary Statement Regarding Forward Looking Statements The statements in this press release that are not historical facts may constitute forward-looking statements that are based on current expectations and are subject to risks and uncertainties that could cause actual future results to differ materially from those expressed or implied by such statements. Those risks and uncertainties include, but are not limited to, risks related to regulatory approvals, the issuance and protection of patents and other intellectual property, the success of VistaGen's ongoing clinical studies, including the safety and efficacy of its drug candidate, AV-101, the failure of future drug rescue and pilot preclinical cell therapy programs related to VistaGen's stem cell technology-based Human Clinical Trial in a Test Tube platform, its ability to enter into drug rescue collaborations, risks and uncertainties relating to the availability of substantial additional capital to support VistaGen's research, development and commercialization activities, and the success of its research, development, regulatory approval, marketing and distribution plans and strategies, including those plans and strategies related to AV-101 and any drug rescue variants identified and developed by VistaGen. These and other risks and uncertainties are identified and described in more detail in VistaGen's filings with the Securities and Exchange Commission (SEC). These filings are available on the SEC's website at http://www.sec.gov. VistaGen undertakes no obligation to publicly update or revise any forward-looking statements.

SOURCE: VistaGen Therapeutics, Inc.

Link:
VistaGen Secures Key U.S. Patent Covering Stem Cell Technology Methods Used To Test Drug Candidates For Liver Toxicity