Category Archives: Stem Cell Treatment


Osiris Wins Canadian Approval for First Stem-Cell Therapy

By Meg Tirrell - 2012-05-18T13:44:15Z

Osiris Therapeutics Inc. (OSIR) surged the most in two years after the company said it won the worlds first approval for a stem-cell drug, gaining clearance in Canada to sell Prochymal for a disease that can attack patients who received bone-marrow transplants.

Osiris rose 8.8 percent to $5.72 at 9:40 a.m. New York time, after earlier reaching $6 for the biggest intraday increase since June 2010. The shares had fallen 28 percent in the 12 months before today.

Prochymal was approved for the treatment of acute graft versus host disease in children for whom steroids havent worked, the Columbia, Maryland-based company said yesterday in a statement. Steroids have a 30 percent to 50 percent success rate, and severe GvHD can be fatal in 80 percent of cases, according to the company.

The therapy uses mesenchymal stem cells derived from bone marrow that can take on different forms to combat the immune reaction that causes patients to literally peel out of their skin and shed their intestinal lining, Osiris Chief Executive Officer Randal Mills said in a telephone interview. The disease has no equal.

The company hasnt sought approval for this indication in the U.S., where regulators asked for more data before considering whether to allow sales of the drug, Mills said. Prochymal is used in eight countries, including the U.S., on an expanded-access program basis, which allows patients to receive experimental medicines without participating in clinical trials.

This is the first regulatory approval of a stem-cell drug -- where the active ingredient of the drug is a stem cell -- in the world, Mills said. Its a huge deal for us and a huge deal for the entire field of stem-cell therapy.

Osiris shares declined from an all-time high of $28.56 in 2007 as the biotechnology company faced clinical setbacks, including two studies in 2009 that failed to show statistical improvement of Prochymal versus placebo.

The Canadian approval was based on data showing a clinically meaningful response 28 days after starting therapy for 61 percent to 64 percent of patients treated, Osiris said in the statement.

Prochymal may draw $16.7 million in revenue next year with Canadian approval, estimated Edward Tenthoff, an analyst with Piper Jaffray & Co., before the companys announcement. He said that while Prochymal would be the first stem-cell drug to receive approval, other regenerative products used for wound- healing that employ stem cells are already on the market, such as Carticel from Sanofis Genzyme unit.

Excerpt from:
Osiris Wins Canadian Approval for First Stem-Cell Therapy

First stem cell drug approved for systemic disease treatment

Osiris Therapeutics Inc said on Thursday that Canadian health regulators have approved its treatment for acute graft-versus host disease in children, making it the first stem cell drug to be approved for a systemic disease anywhere in the world.

Osiris shares rose 14 percent to $6.00 in extended trading after the news was announced.

Graft versus host disease (GvHD) is a potentially deadly complication from a bone marrow transplant, when newly implanted cells attack the patient's body. Symptoms range from abdominal pain and skin rash to hair loss, hepatitis, lung and digestive tract disorders, jaundice and vomiting.

The disease kills up to 80 percent of children affected, Osiris said. To date there have been no approved treatments for the disease. Canadian authorities approved the therapy, Prochymal, for use in children who have failed to respond to steroids.

Prochymal was approved with the condition that Osiris carry out further testing after it reaches the market. C. Randal Mills, the company's chief executive, said in an interview that could take three to four years.

Some investment analysts have been skeptical about Prochymal's future. In 2009, two late-stage clinical trials failed to show the drug was more effective overall than a placebo in treating the disease, though it showed promise in certain subgroups of patients.

Since then, the company has mined data from all its clinical trials to show that in patients with severe refractory acute GvHD -- those who have more or less failed all other therapies -- Prochymal demonstrated a clinically meaningful response at 28 days after therapy began in 61-64 percent of patients.

In addition, treatment with Prochymal resulted in a statistically significant improvement in survival when compared with a historical control population of pediatric patients with refractory GvHD.

The Canadian authorities approved the drug on the basis of that data, the company said.

FDA submission this year

Read more from the original source:
First stem cell drug approved for systemic disease treatment

World's First Approved Stem Cell Drug; Osiris Receives Marketing Clearance from Health Canada for Prochymal

COLUMBIA, Md.--(BUSINESS WIRE)--

Osiris Therapeutics Inc. (NASDAQ:OSIR - News) announced today it has received market authorization from Health Canada to market its stem cell therapy Prochymal (remestemcel-L), for the treatment of acute graft-vs-host disease (GvHD) in children. The historic decision marks the worlds first regulatory approval of a manufactured stem cell product and the first therapy approved for GvHD a devastating complication of bone marrow transplantation that kills up to 80 percent of children affected, many within just weeks of diagnosis.

"I am very proud of the leadership role Canada has taken in advancing stem cell therapy and particularly gratified that this historic decision benefits children who would otherwise have little hope," said Andrew Daly, M.D., Clinical Associate Professor, Department of Medicine and Oncology at the University of Calgary, Canada and Principal Investigator in the phase 3 clinical program for Prochymal. "As a result of Health Canada's comprehensive review, physicians now have an off-the-shelf stem cell therapy in their arsenal to fight GvHD. Much like the introduction of antibiotics in the late 1920's, with stem cells we have now officially taken the first step into this new paradigm of medicine."

Prochymal was authorized under Health Canada's Notice of Compliance with conditions (NOC/c) pathway, which provides access to therapeutic products that address unmet medical conditions and which have demonstrated a favorable risk/benefit profile in clinical trials. Under the NOC/c pathway, the sponsor must agree to carry out confirmatory clinical testing.

Today is not only a great day for Osiris, but for everyone involved in the responsible development of stem cell therapies, said C. Randal Mills, Ph.D., President and Chief Executive Officer of Osiris. Most importantly, today is a great day for children and their families who bravely face this horrific disease. While today marks the first approval of a stem cell drug, now that the door has been opened, it will surely not be the last.

Health Canadas authorization was made following the recommendation of an independent expert advisory panel, commissioned to evaluate Prochymal's safety and efficacy. In Canada, Prochymal is now authorized for the management of acute GvHD in children who fail to respond to steroids. The approval was based on the results from clinical studies evaluating Prochymal in patients with severe refractory acute GvHD. Prochymal demonstrated a clinically meaningful response at 28 days post initiation of therapy in 61-64 percent of patients treated. Furthermore, treatment with Prochymal resulted in a statistically significant improvement in survival when compared to a historical control population of pediatric patients with refractory GvHD (p=0.028). The survival benefit was most pronounced in patients with the most severe forms of GvHD. As a condition of approval, the clinical benefit of Prochymal will be further evaluated in a case matched confirmatory trial and all patients receiving Prochymal will be encouraged to participate in a registry that will monitor the long-term effects of the therapy.

Refractory GvHD is not just deadly to the patients it afflicts, but is devastating for the family, friends, and caregivers who watch helplessly as the disease progresses, said Joanne Kurtzberg, MD, Head of the Pediatric Bone Marrow Transplant Program at Duke University and Lead Investigator for Prochymal. "I have personally seen Prochymal reverse the debilitating effects of severe GvHD in many of my patients and now, after nearly two decades of research, the data demonstrating consistently high response rates, a strong safety profile and improved survival clearly support the use of Prochymal in the management of refractory GvHD."

Prochymal is currently available in several countries, including the United States, under an Expanded Access Program (EAP). Prochymal will be commercially available in Canada later this year.

Today Osiris turns the promise of stem cell research into reality, delivering on decades of medical and scientific research, said Peter Friedli, Chairman and Co-founder of Osiris. It took 20 years of hard work and perseverance and I want to personally thank everyone involved for their dedication to this important mission.

In addition to the extensive intellectual property protection Osiris has around Prochymal, which includes 48 issued patents, Health Canada's decision will also provide Prochymal with regulatory exclusivity within the territory. Canada affords eight years of exclusivity to Innovative Drugs such as Prochymal, and an additional six-month extension is available since it addresses a pediatric population.

See the rest here:
World's First Approved Stem Cell Drug; Osiris Receives Marketing Clearance from Health Canada for Prochymal

Lenalidomide prolongs disease control for multiple myeloma patients after stem cell transplant

Public release date: 15-May-2012 [ | E-mail | Share ]

Contact: Elisa Williams willieli@ohsu.edu 503-494-4530 Oregon Health & Science University

PORTLAND, Ore. Multiple myeloma patients are better equipped to halt progression of this blood cancer if treated with lenalidomide, or Revlimid, following a stem cell transplant, according to a study co-authored by a physician with the Oregon Health & Science University Knight Cancer Institute.

The study, published in the New England Journal of Medicine, found a 63 percent reduction in the risk of progressive myeloma or death for the stem cell transplant patients that were treated with lenalidomide maintenance therapy.

"These results add to the evidence that the combination of standard therapies such as stem cell transplantation with the emerging biologic therapies, like lenalidomide, have extended the lives of multiple myeloma patients," said Richard Maziarz, M.D., of the OHSU Knight Cancer Institute who was one of the study's co-authors. Maziarz serves as medical director of the Adult Stem Cell Transplantation Program & Center for Hematologic Malignancies at the OHSU Knight Cancer Institute. "We know that for at least three years following a transplant that maintenance therapy with this drug vastly improves the chances that the cancer won't come back and worsen."

These data were supported by similar Phase III studies reported from France and Italy in the same issue of the New England Jounal of Medicine demonstrating that maintenance therapy after stem cell transplantation was associated with improved disease control.

Multiple myeloma is a cancer that affects plasma cells, a type of white blood cell normally responsible for producing antibodies. In patients impacted by multiple myeloma, collections of abnormal plasma cells accumulate in the bone marrow, interfering with the production of normal blood cells. The study focused on patients who received an autologous hematopoietic cell transplant (AHCT). AHCT procedures use patients' own blood stem cells.

While lenalidomide increased a patient's ability to stave off progression of the disease, questions remain regarding future approaches recognizing that quality of life measurements were not incorporated within these studies, that long-term safety issues remain unclear as there was a small but discernable risk of second cancers observed in the treated patients. In addition to the need for that cost-benefit analysis, a comparison remains to be performed with other emerging myeloma maintenance therapies.

This Phase III study of lenalidomide was conducted at 47 medical centers and involved 568 patients. It was sponsored by the National Cancer Institute (NCI). Revlimid's manufacturer, Celgene Corp., provided the NCI with lenalidomide for this research.

###

See the original post here:
Lenalidomide prolongs disease control for multiple myeloma patients after stem cell transplant

Sebastian veterinarian performs stem cell treatment for pets

SEBASTIAN Toby, a 6-year-old golden retriever, loves to run and play catch. And Oreo, a 12-year-old border collie mix, also is a bundle of energy.

Movement for both dogs got easier about a month ago when they received a revolutionary stem cell treatment at the Highlands Animal Hospital.

Veterinarian Marcus Kramer performed the successful transplant procedures, which were developed by Kentucky-based MediVet-America.

Both dogs had been in significant pain with a restricted range of motion, as shown on X-rays.

"It's made a big difference," said Kramer. "The really amazing thing is that they both healed so quickly. Both dogs had problems with their hips and were suffering from osteoarthritis. Just 30-days later, they are able to walk and run again."

Adult animal stem cell technology uses the pet's own regenerative healing power to treat dogs, cats and horses suffering from arthritis, hip dysplasia and tendon, ligament and cartilage injuries. Under anesthesia, Kramer removed about 40 grams of fat from each dog and separated the stem cells from the fat. He then activated the stem cells under an LED light, and injected them back into the dogs.

Stem cell therapy allows an animal to get off pain and anti-inflammatory drugs, Kramer said. MediVet-America's therapy is done entirely at the animal hospital in about three hours, and costs about $1,800 for dogs and $2,400 for horses. That compares to thousands of dollars that pet owners could expect to pay for medication over a pet's lifetime.

Erica Kent, a spokesman for MediVet-America, said using the LED light is integral to the patented-process, because the light helps to awaken stem cells and makes them more active. The three-color light stimulates millions of dormant cells to initiate repair from the moment the cells are injected into the animal's body, according to the MediVet-America website.

The company is also offering a program that allows pet owners to bank stem cells when animals are younger to use if their pet develops illnesses like arthritis in old age.

STEM CELL THERAPY

Read more from the original source:
Sebastian veterinarian performs stem cell treatment for pets

Stem cell donors needed for former schools superintendent

Friends of John Glaser, the former superintendent of the Napa Valley Unified School District, are seeking stem cell donors to help with his medical treatment.

Glaser is dealing with two cancers: Multiple myeloma and leukemia. He is in need of a second stem cell transplant, his supporters said.

Potential donors can request a cheek swab kit online, and mail the swab in to be registered in the worldwide pool of stem cell donors. To qualify for the registry, a person needs to be between the ages of 18 and 60 and in good health.

Those who match Glaser or another transplant patient would be asked to go to a nearby lab for a blood draw and have their blood cells further analyzed.

People who are chosen as donors would then return to the lab for a blood donation, where the stem cells would be extracted and their blood would be returned to them. The process takes three to four hours.

For more information on how to donate stem cells, visit marrow.org.

View post:
Stem cell donors needed for former schools superintendent

Two stem cell therapies from Cytomedix to start trials; stroke study expands

When regenerative medicine firm Cytomedix (OTC:CMXI) acquired biotechnology company Aldagen, the stem cell-based stroke treatment in clinical trials was the centerpiece of the all stock deal.

Cytomedix is now making moves to develop other stem cell treatments from its Aldagen acquisition. Two more clinical trials will start later this year, CEO Martin Rosendale told analysts on a conference call to discuss first-quarter financial results. Rosendale wouldnt identify the indications that will be studied, and said only that they will be announced this summer: one for an arterial disease and the other a neurological condition.

Cytomedixs goal is to ultimately find large pharmaceutical partners to commercialize these treatments. These additional clinical studies dont represent those kinds of partnerships. Rosendale said there are two facilities that will conduct investigator-led clinical trials. But those trials will be funded by outside sources, not by Cytomedix.

Read this article:
Two stem cell therapies from Cytomedix to start trials; stroke study expands

Gamida Cell Closes $10 Million E Financing Round Earmarked to Support the Global Commercialization of the Company’s …

Clinical outcome of the Phase III clinical study of StemEx is expected in Q4/2012, with a market launch planned for 2013

JERUSALEM--(BUSINESS WIRE)--Gamida Cell announced today that it has closed an internal E financing round of $10 million. All major shareholders participated.

The investors were unanimous in their decision to reinvest, understanding the importance of bringing StemEx to market as well as maintaining the companys leadership role in the stem cell industry. Gamida Cell is a game changer.

The financing will be used to support the global commercialization of the companys lead cell therapy product, StemEx, in development as an alternative therapeutic treatment for patients with blood cancers, such as leukemia and lymphoma, who can be cured by bone marrow transplantation but do not have a matched bone marrow donor. The company is currently seeking a strategic partner to join in the global commercialization of StemEx.

The financing will also support the continued development of the companys pipeline of products, primarily the NiCord clinical trial for sickle cell disease and thalassemia.

Mr. Reuven Krupik, chairman of the board of Gamida Cell said, The investors were unanimous in their decision to reinvest, understanding the importance of bringing StemEx to market as well as maintaining the companys leadership role in the stem cell industry. Gamida Cell is a game changer.

The international, multi-center, pivotal registration, Phase III clinical trial of StemEx completed enrollment in February 2012. Clinical outcome is expected in Q4/2012. The market launch of StemEx is planned for 2013. StemEx is likely to be the first allogeneic stem cell product in the market. StemEx is being developed by the Gamida Cell-TEVA joint venture.

Dr. Yael Margolin, president and chief executive officer of Gamida Cell said, With the continued support of our shareholders and the analysis of the clinical results of the StemEx trial just around the corner, we are now focused on submitting the BLA.

StemEx is a graft of an expanded population of stem/progenitor cells, derived from part of a single unit of umbilical cord blood and transplanted by IV administration along with the remaining, non-manipulated cells from the same unit. Competing products in development use two units. As the average cost of a cord blood unit in the U.S. is $40K, StemEx is expected to be a significantly less expensive treatment option. StemEx is also expected to be available in the market several years before any of the competing products.

About Gamida Cell

Read the original post:
Gamida Cell Closes $10 Million E Financing Round Earmarked to Support the Global Commercialization of the Company’s ...

Scientists discover clues to muscle stem cell functions

ScienceDaily (May 15, 2012) A study conducted by Children's Hospital & Research Center Oakland scientists identifies how skeletal muscle stem cells respond to muscle injury and may be stimulated to improve muscle repair in Duchenne Muscular Dystrophy, a severe inherited disease of muscle that causes weakness, disability and, ultimately, heart and respiratory failure.

The study, led by Julie D. Saba, MD, PhD, senior scientist at Children's Hospital Oakland Research Institute (CHORI), shows that a lipid signaling molecule called sphingosine-1-phosphate or "S1P" can trigger an inflammatory response that stimulates the muscle stem cells to proliferate and assist in muscle repair. It further shows that mdx mice, which have a disease similar to Duchenne Muscular Dystrophy, exhibit a deficiency of S1P, and that boosting their S1P levels improves muscle regeneration in these mice. A research report describing the study findings will be published online on May 14, 2012 in the journal Public Library of Science ONE (PLoS ONE).

Skeletal muscle is the biggest "organ" system of the human body. It is important for all human activity. Muscles can be injured by trauma, inactivity, aging and a variety of inherited muscle diseases. Importantly however, skeletal muscle is one of the few tissues of the human body that has the potential to fully repair itself after injury. The ability of muscles to regenerate themselves is attributed to the presence of a form of adult stem cells called "satellite cells" that are essential for muscle repair. Normally, satellite cells lie quietly at the periphery of the muscle fiber and do not grow, move or become activated. However, after muscle injury, these stem cells "wake up" through unclear mechanisms and fuse with the injured muscle, stimulating a complicated process that results in the rebuilding of a healthy muscle fiber.

S1P is a lipid signaling molecule that controls the movement and proliferation of many human cell types. Other scientists had shown previously that S1P can activate satellite cells, but they did not know how this occurred.

"We have been studying S1P signaling for many years," states Dr. Saba. "In 2003, we published a report demonstrating that fruit fly mutants with defective S1P metabolism were unable to fly because they developed a muscle disease or "myopathy" that led to degeneration of their flight muscles. Based on that observation, I became convinced that S1P signaling played an important role in muscle stability and homeostasis, not just in flies but in mammals, including humans."

Dr. Saba's team has discovered how S1P is able to "wake up" the stem cells at the time of injury. It involves the ability of S1P to activate S1P receptor 2, one of its five cell surface receptors, leading to downstream activation of an inflammatory pathway controlled by a transcription factor called STAT3. They showed that S1P is rapidly produced in the muscle immediately after injury, leading to an S1P "signal." S1P, acting through S1P receptor 2, leads to activation of STAT3, resulting in changes in gene expression that cause the satellite cell to leave its "sleeping" state and start to proliferate and assist in muscle repair.

"These findings are important especially for certain muscle diseases or "myopathies" that can affect children," states Dr. Saba. The most common and one of the most severe myopathies is Duchenne Muscular Dystrophy, a disease that affects young boys and often leads to death from respiratory and heart failure in a patient's twenties. Although patients with Duchenne Muscular Dystrophy start out life with enough satellite cells to repair the patients' degenerating muscles, over time the satellite cells fail to keep up with the rate of muscle degeneration. "We found that mdx mice, which have a disease similar to Duchenne Muscular Dystrophy, are deficient in S1P. We were able to increase the S1P levels in the mice using a drug that blocks S1P breakdown. This treatment increased the number of satellite cells in the muscles and improved the efficiency of muscle regeneration after injury."

If these findings are also found to be true in humans with Duchenne Muscular Dystrophy, it may be possible to use similar approaches to boost S1P levels in order to improve satellite cell function and muscle regeneration in patients with the disease. Drugs that block S1P metabolism and boost S1P levels are now being tested for the treatment of other human diseases including rheumatoid arthritis. If these studies prove to be relevant in Duchenne patients, it may be possible to use the same drugs to improve muscle regeneration in these patients. Alternatively, new agents that can specifically activate S1P receptor 2 could also be beneficial in recruiting satellite cells and improving muscle regeneration in muscular dystrophy and potentially other diseases of muscle.

This work was supported by grants from the Muscular Dystrophy Association, the National Institutes of Health and a fellowship award from the California Institute of Regenerative Medicine.

Share this story on Facebook, Twitter, and Google:

See the original post here:
Scientists discover clues to muscle stem cell functions

Stem cell co Gamida Cell raises $10m

Stem cell therapies developer Gamida Cell Ltd. has raised $10 million in its fifth financing round from all its investors. The company will use the proceeds to support the global commercialization of its lead cell therapy product, StemEx, as an alternative therapeutic treatment for patients with blood cancers, such as leukemia and lymphoma, who can be cured by bone marrow transplantation but do not have a matched bone marrow donor.

Gamida Cell is developing StemEx with Teva Pharmaceutical Industries Ltd. (Nasdaq: TEVA; TASE: TEVA), and it is seeking a strategic partner for the product's global commercialization.

The company will also use the proceeds for the further development of other products, primarily a clinical trial of its NiCord treatment for sickle cell anemia and thalassemia.

Gamida Cell chairman Reuven Krupik said, The investors were unanimous in their decision to reinvest, understanding the importance of bringing StemEx to market as well as maintaining the companys leadership role in the stem cell industry. Gamida Cell is a game changer."

Gamida Cell completed enrollment for a pivotal Phase III clinical trial of StemEx in February, and expects results in the fourth quarter. The company plans to launch the product in 2013, and it could be the first allogeneic stem cell product in the market.

The company's current investors include Elbit Imaging Ltd. (Nasdaq: EMITF; TASE: EMIT), Clal Biotechnology Industries Ltd. (TASE: CBI), Israel Healthcare Venture, Teva, Amgen, Denali Ventures and Auriga Ventures.

Published by Globes [online], Israel business news - http://www.globes-online.com - on May 15, 2012

Copyright of Globes Publisher Itonut (1983) Ltd. 2012

Go here to read the rest:
Stem cell co Gamida Cell raises $10m