Category Archives: Stem Cell Treatment


Stem cell study points to cardiac treatment

SAN FRANCISCO — A UCSF stem cell study conducted in mice suggests a novel strategy for treating damaged cardiac tissue in patients following a heart attack. The approach potentially could improve cardiac function, minimize scar size, lead to the development of new blood vessels – and avoid the risk of tissue rejection.

In the investigation, reported online in the journal PLoS ONE, UCSF researchers isolated and characterized a novel type of cardiac stem cell from the heart tissue of middle-aged mice following a heart attack.

Then, in one experiment, they placed the cells in the culture dish and showed they had the ability to differentiate into cardiomyocytes, or “beating heart cells,” as well as endothelial cells and smooth muscle cells, all of which make up the heart.

In another, they made copies, or “clones,” of the cells and engrafted them in the tissue of other mice of the same genetic background who also had experienced heart attacks. The cells induced angiogenesis, or blood vessel growth, or differentiated, or specialized, into endothelial and smooth muscle cells, improving cardiac function.  

“These findings are very exciting,” said first author Jianqin Ye, Ph.D., M.D., senior scientist at UCSF’s Translational Cardiac Stem Cell Program. First, “we showed that we can isolate these cells from the heart of middle-aged animals, even after a heart attack.” Second, he said, “we determined that we can return these cells to the animals to induce repair.”

Importantly, the stem cells were identified and isolated in all four chambers of the heart, potentially making it possible to isolate them from patients’ hearts by doing right ventricular biopsies, said Ye. This procedure is “the safest way of obtaining cells from the heart of live patients, and is relatively easy to perform,” he said.

“The finding extends the current knowledge in the field of native cardiac progenitor cell therapy,” said senior author Yerem Yeghiazarians, M.D., director of UCSF’s Translational Cardiac Stem Cell Program and an associate professor at the UCSF Division of Cardiology. “Most of the previous research has focused on a different subset of cardiac progenitor cells. These novel cardiac precursor cells appear to have great therapeutic potential.”

The hope, he said, is that patients who have severe heart failure after a heart attack or have cardiomyopathy would be able to be treated with their own cardiac stem cells to improve the overall health and function of the heart. Because the cells would have come from the patients, themselves, there would be no concern of cell rejection after therapy.

The cells, known as Sca-1+ stem enriched in Islet (Isl-1) expressing cardiac precursors, play a major role in cardiac development. Until now, most of the research has focused on a different subset of cardiac progenitor, or early stage, cells known as, c-kit cells.

The Sca-1+ cells, like the c-kit cells, are located within a larger clump of cells called cardiospheres.

The UCSF researchers used special culture techniques and isolated Sca-1+ cells enriched in the Isl-1expressing cells, which are believed to be instrumental in the heart’s development. Since Isl-1 is expressed in the cell nucleus, it has been difficult to isolate them but the new technique enriches for this cell population.

The findings suggest a potential treatment strategy, said Yeghiazarians. “Heart disease, including heart attack and heart failure, is the number one killer in advanced countries. It would be a huge advance if we could decrease repeat hospitalizations, improve the quality of life and increase survival.” More studies are being planned to address these issues in the future.

An estimated 785,000 Americans will have a new heart attack this year, and 470,000 who will have a recurrent attack. Heart disease remains the number one killer in the United States, accounting for one out of every three deaths, according to the American Heart Association.

Medical costs of cardiovascular disease are projected to triple from $272.5 billion to $818.1 billion between now and 2030, according to a report published in the journal Circulation.

First author Ye, Henry Shih, Richard E. Sievers, Yan Zhang, and Megha Prasad are with the UCSF Division of Cardiology; Yeghiazarians and Andrew Boyle are with the UCSF Division of Cardiology and the UCSF Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; William Grossman is with the UCSF Division of Cardiology and the UCSF Cardiovascular Research Institute; Harold S. Bernstein is with the UCSF Cardiovascular Research Institute, the UCSF Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and the UCSF Department of Pediatrics; Hua Su is with UCSF Department of Anesthesia and Perioperative Care; and Yan Zhou with the UCSF Department of Cell and Tissue Biology.

The study was supported by funds from the Wayne and Gladys Valley Foundation, the UCSF Cardiac Stem Cell Fund and the Harold Castle Foundation.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Read the original post:
Stem cell study points to cardiac treatment

Stem Cell Research Heals Scarring from Heart Attacks

Infusing stem cells into the arteries of heart attack patients can heal damaging scars, according to new research, a feat previously thought impossible.

Stem cells - cells that form different tissue of in the body - helped half of tested heart attack patients recover from their scars over a six-month period, according to the study. The control group did not see any additional recovery in their hearts.

The researchers recommended the experimental therapy expand into clinical trials beyond the 17 patients who received the original treatment.

"This has never been accomplished before, despite a decade of cell therapy trials for patients with heart attacks. Now we have done it," Eduardo Marban, director of the Cedars-Sinai Heart Institute and one of the study's co-authors, said in a statement. "The effects are substantial."

The research included a group of 25 patients who had suffered from heart attacks caused by a blockage in an artery. The online version of The Lancet published the research on Valentine's Day.

Like us on Facebook

The year-long study tested the effects of the stem cells on 17 patients, compared to eight control patients who received standard treatments of medication along with diet and exercise recommendations.

For each test patient, clinicians created a stock of stem cells from a heart sample smaller than a raisin. The researchers then injected the stem cells back into an artery damaged from the heart attack.

The authors reported no deaths or major side effects in either group. However, four patients in the stem cell group showed adverse reactions to the treatment whereas only one control showed complications. Adverse reactions included problems that required implantation of a defibrillator, according to the study.

"These results signal an approaching paradigm shift in the care of heart attack patients," Shlomo Melmed, dean of the Cedars-Sinai Heart Institute and a study co-author, said in a statement. "In the past, all we could do was to try to minimize heart damage by promptly opening up an occluded artery. Now, this study shows there is a regenerative therapy that may actually reverse the damage caused by a heart attack."

Other doctors expressed cautious optimism based on the results of the trial therapy.

"By preventing the consequences of a heart attack you may be able to prevent further down the heart failure that happens in [many of these] patients," Dr. Sonia Skarlatos, deputy director of the division of cardiovascular sciences at the NIH's National Heart, Lung, and Blood Institute, told CNN.

The researchers from the Cedars-Sinai Heart Institute initially set out to determine if the use of stem cells in heart attack patients was safe, and said they were surprised and excited to see the reduction in heart scarring and increase in healthy muscle tissue.

Marbán said the study will revolutionize how heart attacks are treated. "This discovery challenges the conventional wisdom that, once established, scar is permanent and that, once lost, healthy heart muscle cannot be restored."

To report problems or to leave feedback about this article, e-mail:
To contact the editor, e-mail:

Read the rest here:
Stem Cell Research Heals Scarring from Heart Attacks

Stem Cell Study in Mice Offers Hope for Treating Heart Attack Patients

Newswise — A UCSF stem cell study conducted in mice suggests a novel strategy for treating damaged cardiac tissue in patients following a heart attack. The approach potentially could improve cardiac function, minimize scar size, lead to the development of new blood vessels – and avoid the risk of tissue rejection.

In the investigation, reported online in the journal PLoS ONE, the researchers isolated and characterized a novel type of cardiac stem cell from the heart tissue of middle-aged mice following a heart attack.

Then, in one experiment, they placed the cells in the culture dish and showed they had the ability to differentiate into cardiomyocytes, or “beating heart cells,” as well as endothelial cells and smooth muscle cells, all of which make up the heart.

In another, they made copies, or “clones,” of the cells and engrafted them in the tissue of other mice of the same genetic background who also had experienced heart attacks. The cells induced angiogenesis, or blood vessel growth, or differentiated, or specialized, into endothelial and smooth muscle cells, improving cardiac function.

“These findings are very exciting,” said first author Jianqin Ye, PhD, MD, senior scientist at UCSF’s Translational Cardiac Stem Cell Program. First, “we showed that we can isolate these cells from the heart of middle-aged animals, even after a heart attack.” Second, he said, “we determined that we can return these cells to the animals to induce repair.”

Importantly, the stem cells were identified and isolated in all four chambers of the heart, potentially making it possible to isolate them from patients’ hearts by doing right ventricular biopsies, said Ye. This procedure is “the safest way of obtaining cells from the heart of live patients, and is relatively easy to perform,” he said.

“The finding extends the current knowledge in the field of native cardiac progenitor cell therapy,” said senior author Yerem Yeghiazarians, MD, director of UCSF’s Translational Cardiac Stem Cell Program and an associate professor at the UCSF Division of Cardiology. “Most of the previous research has focused on a different subset of cardiac progenitor cells. These novel cardiac precursor cells appear to have great therapeutic potential.”

The hope, he said, is that patients who have severe heart failure after a heart attack or have cardiomyopathy would be able to be treated with their own cardiac stem cells to improve the overall health and function of the heart. Because the cells would have come from the patients, themselves, there would be no concern of cell rejection after therapy.

The cells, known as Sca-1+ stem enriched in Islet (Isl-1) expressing cardiac precursors, play a major role in cardiac development. Until now, most of the research has focused on a different subset of cardiac progenitor, or early stage, cells known as, c-kit cells.

The Sca-1+ cells, like the c-kit cells, are located within a larger clump of cells called cardiospheres.

The UCSF researchers used special culture techniques and isolated Sca-1+ cells enriched in the Isl-1expressing cells, which are believed to be instrumental in the heart’s development. Since Isl-1 is expressed in the cell nucleus, it has been difficult to isolate them but the new technique enriches for this cell population.

The findings suggest a potential treatment strategy, said Yeghiazarians. “Heart disease, including heart attack and heart failure, is the number one killer in advanced countries. It would be a huge advance if we could decrease repeat hospitalizations, improve the quality of life and increase survival.” More studies are being planned to address these issues in the future.

An estimated 785,000 Americans will have a new heart attack this year, and 470,000 who will have a recurrent attack. Heart disease remains the number one killer in the United States, accounting for one out of every three deaths, according to the American Heart Association.

Medical costs of cardiovascular disease are projected to triple from $272.5 billion to $818.1 billion between now and 2030, according to a report published in the journal Circulation.

First author Ye, Henry Shih, Richard E. Sievers, Yan Zhang, and Megha Prasad are with the UCSF Division of Cardiology; Yeghiazarians and Andrew Boyle are with the UCSF Division of Cardiology and the UCSF Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; William Grossman is with the UCSF Division of Cardiology and the UCSF Cardiovascular Research Institute; Harold S. Bernstein is with the UCSF Cardiovascular Research Institute, the UCSF Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and the UCSF Department of Pediatrics; Hua Su is with UCSF Department of Anesthesia and Perioperative Care; and Yan Zhou with the UCSF Department of Cell and Tissue Biology.

The study was supported by funds from the Wayne and Gladys Valley Foundation, the UCSF Cardiac Stem Cell Fund and the Harold Castle Foundation.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Follow UCSF
UCSF.edu | Facebook.com/ucsf | Twitter.com/ucsf | YouTube.com/ucsf

Comment/Share

Read more here:
Stem Cell Study in Mice Offers Hope for Treating Heart Attack Patients

Stem Cell Stocks: Mending Scarred Hearts

A new study at Johns Hopkins University has shown that stem cells from patients' own cardiac tissue can be used to heal scarred tissue after a heart attack. This is certainly exciting news considering heart failure is still the No. 1 cause of death in men and women.

The study included 25 heart attack victims, 17 of whom got the stem cell treatment. Those patients saw a 50% reduction in cardiac scar tissue after one year, while the eight control patients saw no improvement.

The procedure involves removing a tiny portion of heart tissue through a needle, cultivating the stem cells from that tissue, and reinserting them in a second minimally invasive procedure, according to Bloomberg.

"If we can regenerate the whole heart, then the patient would be completely normal," said Eduardo Marban, director of Cedars-Sinai Heart Institute who was the study's lead author. "We haven't fulfilled that yet, but we've gotten rid of half of the injury, and that's a good start."

Business section: Investing ideas
Interested in investing in the promise that stem cell therapy holds? For a look at the investing landscape, we compiled a list of the 10 largest companies involved in stem cell therapy.

Do you think this industry will see growth from stem cell research? (Click here to access free, interactive tools to analyze these ideas.)

1. BioTime (NYSE: BTX  ) : Focuses on regenerative medicine and blood plasma volume expanders. Market cap at $291.95M. The company develops and markets research products in the field of stem cells and regenerative medicine. It develops therapeutic products derived from stem cells for the treatment of retinal and neural degenerative diseases; cardiovascular and blood diseases; therapeutic applications of stem cells to treat orthopedic diseases, injuries, and cancer; and retinal cell product for use in the treatment of age-related macular degeneration.

2. Cleveland BioLabs (Nasdaq: CBLI  ) : Market cap at $111.50M. Its products include Protectan CBLB502, a radioprotectant molecule with multiple medical and defense applications for reducing injury from acute stresses, such as radiation and chemotherapy by mobilizing various natural cell protecting mechanisms, including inhibition of apoptosis, reduction of oxidative damage, and induction of factors that induce protection and regeneration of stem cells in bone marrow and the intestines, and Protectan CBLB612, a modified lipopeptide mycoplasma that acts as a stimulator and mobilizer of hematopoietic stem cells to peripheral blood, providing hematopoietic recovery during chemotherapy and during donor preparation for bone marrow transplantation.

3. Gentium: Focuses on the development and manufacture of its primary product candidate, defibrotide, an investigational drug based on a mixture of single-stranded and double-stranded DNA extracted from pig intestines. Market cap at $128.29M. The company develops defibrotide for the treatment and prevention of hepatic veno-occlusive disease (VOD), a condition that occurs when veins in the liver are blocked as a result of cancer treatments, such as chemotherapy or radiation, that are administered prior to stem cell transplantation.

4. Geron (Nasdaq: GERN  ) : Develops biopharmaceuticals for the treatment of cancer and chronic degenerative diseases, including spinal cord injury, heart failure, and diabetes. Market cap at $265.57M. The company has licensing agreement with the University Campus Suffolk to develop human embryonic stem cell-derived chondrocytes for the treatment of cartilage damage and joint disease.

5. Harvard Bioscience: Develops, manufactures, and markets apparatus and scientific instruments used in life science research in pharmaceutical and biotechnology companies, universities, and government laboratories in the United States and internationally. Market cap at $118.28M. Develops devices used by clinicians and researchers in the field of regenerative medicine, including bioreactors for growing tissue and organs outside the body, and injectors for stem cell therapy.

6. Lydall (NYSE: LDL  ) : Designs and manufactures specialty engineered products for thermal/acoustical, filtration/separation, and bio/medical applications in the United States. Market cap at $163.44M. In addition, it offers Cell-Freeze, a medical device used for cryogenic storage of peripheral blood stem cells.

8. Osiris Therapeutics (Nasdaq: OSIR  ) : Focuses on the development and marketing of therapeutic products to treat various medical conditions in the inflammatory, autoimmune, orthopedic, and cardiovascular areas. Market cap at $157.26M. A stem cell company, focuses on the development and marketing of therapeutic products to treat various medical conditions in the inflammatory, autoimmune, orthopedic, and cardiovascular areas.

7. Verastem: Market cap at $229.00M. Focuses on discovering and developing proprietary small molecule drugs targeting cancer stem cells (CSCs) in breast and other cancers.

Interactive Chart: Press Play to compare changes in analyst ratings over the last two years for the stocks mentioned above. Analyst ratings sourced from Zacks Investment Research.

Kapitall's Alexander Crawford does not own any of the shares mentioned above.

Original post:
Stem Cell Stocks: Mending Scarred Hearts

Family wants foundation in memory of paraplegic

Family wants foundation in memory of paraplegic


The mother of a paraplegic man who died during controversial stem cell treatment in South America will establish a foundation to campaign for better information for the paralysed.

Ricky Chick was 22, a budding body builder and running the family business, when a motorbike accident on Brighton Road, South Croydon, left him paralysed from the chest down.

The following five years of turmoil for Ricky and his family culminated in his body leaving an Ecuadorian hospital on the back of a pick-up truck.

His mother Chris Chick, 51, Wontford Road, Purley travelled to Ecuador with her son in August 2009 as he sought life-changing stem cell treatment on his severed spinal cord.

She describes a harrowing experience of misinformation, malpractice, and misinformation at the San Francisco Hospital, Guayaquil, as she saw her son fall into a coma before experiencing a massive brain haemorrhage and die.

She even described how he was taken to have a brain scan in a camper van.

She said: "The trauma a spinally injured patient and their family goes through is something I would wish on my worst enemy, but to get through that only for that to happen, you can’t comprehend. It has shattered this family."

Booked to have stem cells taken from his bone marrow injected into his spine, Mrs Chick described how doctors also chose to inject cells into his legs, treatment she believes led to his death.

Mrs Chick said: "He couldn’t deal with that amount of pain. If they told him they were planning this he would have said no."

Forced to undergo 18 months of reconstructive surgery and rehabilitation following his accident, Ricky and his family immediately began looking at stem cells treatment.

Carly Chick, his younger sister, said: "As soon as he was confirmed paralysed it was something we were looking at. It was the talk of the hospital - everyone was talking about stem cell research."

Internet research threw up information about successful treatment in Ecuador and Ricky began planning his journey.

Carly, said: "He was a realist, he never thought it was some miracle cure and he’d be able to walk again, he just hoped it would improve his life, give him back some control and stop the muscle wastage.

"There needs to be more information. There are so many people out there who are paralysed who might be tempted to try this. We still support the use of stem cells and if the process had been done here, Ricky would still be alive.

"In many ways Ricky was a Guinea Pig - a warning for people about the dangers."

The family plan to establish a charity in his name to highlight the danger of seeking treatment abroad, and give up-to-date information for those who have been paralysed.

Professor Chris Mason from University College London is an expert on stem cell research.

He said: "People have been using stem cells for decades using bone marrow for cancer patients. For more advanced treatment something like 20 to 30 patients have benefited from limbal stem cell therapy repairing damaged eyes.

"Research is underway into work on spinal injury but it is still at the animal stage and will probably be a few more years. This treatment is available elsewhere but my advice would be to seek advice from your doctors before considering it. At the end of the day it is the person’s choice."



See more here:
Family wants foundation in memory of paraplegic

Stem cell treatments improve heart function after heart attack

Public release date: 14-Feb-2012
[ | E-mail | Share ]

Contact: Jennifer Beal
healthnews@wiley.com
44-124-377-0633
Wiley-Blackwell

Stem cell therapy moderately improves heart function after a heart attack, according to a systematic review published in The Cochrane Library. But the researchers behind the review say larger clinical trials are needed to establish whether this benefit translates to a longer life.

In a heart attack, the blood supply to parts of the heart is cut off by a blocked artery, causing damage to the heart tissue. The cells in the affected area start to die. This is called necrosis and in the days and weeks that follow, the necrotic area may grow, eventually leaving a large part of the heart unable to contract and increasing the risk of further heart problems. Stem cell therapy uses cells from the patient's own bone marrow to try to repair and reduce this damage. Currently, the treatment is only available in facilities with links to scientific research.

The authors of the review drew together all the available evidence to ask whether adult bone marrow stem cells can effectively prevent and repair the damage caused by a heart attack. In 2008, a Cochrane review of 13 stem cell therapy clinical trials addressed the same question, but the new review adds 20 more recent trials, drawing its conclusions from all 33. By incorporating longer follow up, the later trials provide a better indication of the effects of the therapy several years after treatment.

The total number of patients involved in trials was 1,765. All had already undergone angioplasty, a conventional treatment that uses a balloon to open the blocked artery and reintroduce the blood supply. The review's findings suggest that stem cell therapy using bone marrow-derived stem cells (BMSCs) can produce a moderate long-term improvement in heart function, which is sustained for up to five years. However, there was not enough data to reach firm conclusions about improvements in survival rates.

"This new treatment may lead to moderate improvement in heart function over standard treatments," said lead author of the study, Enca Martin-Rendon, of the Stem Cell Research laboratory, NHS Blood and Transplant at the John Radcliffe Hospital in Oxford, UK. "Stem cell therapy may also reduce the number of patients who later die or suffer from heart failure, but currently there is a lack of statistically significant evidence based on the small number of patients treated so far."

It is still too early to formulate guidelines for standard practice, according to the review. The authors say further work is required to establish standard methods, including cell dosage, timing of cell transplantation and methods to measure heart function. "The studies were hard to compare because they used so many different methods," said Martin-Rendon. "Larger trials with standardised treatment procedures would help us to know whether this treatment is really effective.

Recently, the task force of the European Society of Cardiology for Stem Cells and Cardiac Repair received funding from the European Union Seventh Framework Programme for Research and Innovation (EU FP7-BAMI) to start such a trial. Principal Investigator for the BAMI trial, and co-author of this Cochrane review, Anthony Mathur, said, ''The BAMI trial will be the largest stem cell therapy trial in patients who have suffered heart attacks and will test whether this treatment prolongs the life of these patients."

###


[ | E-mail | Share ]

 

AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.

Originally posted here:
Stem cell treatments improve heart function after heart attack

Scarred Hearts Can Be Mended With Stem Cell Therapy

February 14, 2012, 3:17 PM EST

By Ryan Flinn

(Adds comment from researcher in 13th paragraph.)

Feb. 14 (Bloomberg) -- Stem cells grown from patients’ own cardiac tissue can heal damage once thought to be permanent after a heart attack, according to a study that suggests the experimental approach may one day help stave off heart failure.

In a trial of 25 heart-attack patients, 17 who got the stem cell treatment showed a 50 percent reduction in cardiac scar tissue compared with no improvement for the eight who received standard care. The results, from the first of three sets of clinical trials generally needed for regulatory approval, were published today in the medical journal Lancet.

“The findings in this paper are encouraging,” Deepak Srivastava, director of the San Francisco-based Gladstone Institute of Cardiovascular Disease, said in an interview. “There’s a dire need for new therapies for people with heart failure, it’s still the No. 1 cause of death in men and women.”

The study, by researchers from Cedars-Sinai Heart Institute in Los Angeles and Johns Hopkins University in Baltimore, tested the approach in patients who recently suffered a heart attack, with the goal that repairing the damage might help stave off failure. While patients getting the stem cells showed no more improvement in heart function than those who didn’t get the experimental therapy, the theory is that new tissue regenerated by the stem cells can strengthen the heart, said Eduardo Marban, the study’s lead author.

“What our trial was designed to do is to reverse the injury once it’s happened,” said Marban, director of Cedars- Sinai Heart Institute. “The quantitative outcome that we had in this paper is to shift patients from a high-risk group to a low- risk group.”

Minimally Invasive

The stem cells were implanted within five weeks after patients suffering heart attacks. Doctors removed heart tissue, about the size of half a raisin, using a minimally invasive procedure that involved a thin needle threaded through the veins. After cultivating the stem cells from the tissue, doctors reinserted them using a second minimally invasive procedure. Patients got 12.5 million cells to 25 million cells.

A year after the procedure, six patients in the stem cell group had serious side effects, including a heart attack, chest pain, a coronary bypass, implantation of a defibrillator, and two other events unrelated to the heart. One of patient’s side effects were possibly linked to the treatment, the study found.

While the main goal of the trial was to examine the safety of the procedure, the decrease in scar tissue in those treated merits a larger study that focuses on broader clinical outcomes, researchers said in the paper.

Heart Regeneration

“If we can regenerate the whole heart, then the patient would be completely normal,” Marban said. “We haven’t fulfilled that yet, but we’ve gotten rid of half of the injury, and that’s a good start.”

While the study resulted in patients having an increase in muscle mass and a shrinkage of scar size, the amount of blood flowing out of the heart, or the ejection fraction, wasn’t different between the control group and stem-cell therapy group. The measurement is important because poor blood flow deprives the body of oxygen and nutrients it needs to function properly, Srivastava said.

“The patients don’t have a functional benefit in this study,” said Srivastava, who wasn’t not involved in the trial.

The technology is being developed by closely held Capricor Inc., which will further test it in 200 patients for the second of three trials typically required for regulatory approval. Marban is a founder of the Los Angeles-based company and chairman of its scientific advisory board. His wife, Linda Marban, is also a founder and chief executive officer.

“We’d like to study patients who are much sicker and see if we can actually spare them early death, or the need for a heart transplant, or a device,” Eduardo Marban said.

--Editors: Angela Zimm, Andrew Pollack

#<184845.409373.2.1.99.7.25># -0- Feb/14/2012 17:13 GMT

To contact the reporter on this story: Ryan Flinn in San Francisco at rflinn@bloomberg.net

To contact the editor responsible for this story: Reg Gale at rgale5@bloomberg.net

Original post:
Scarred Hearts Can Be Mended With Stem Cell Therapy

Stem Cells May Help Regenerate Heart Muscle

A promising stem cell therapy approach could soon provide a way to regenerate heart muscle damaged by heart attacks.

Researchers at Cedars-Sinai Heart Institute and The Johns Hopkins University harvested stem cells from the hearts of 17 heart attack patients and after prepping the cells, infused them back into the patients' hearts. Their study is published in the current issue of The Lancet.

The patients received the stem cell infusions about three months after their heart attacks.

Researchers found that six months after treatment, patients had significantly less scarring of the heart muscle and also showed a considerable increase the amount of healthy heart muscle, compared to eight post-heart attack patients studied who did not receive the stem cell infusions. One year after, scar size was reduced by about 50 percent.

"The damaged tissue of the heart was replaced by what looks like healthy myocardium," said Dr. Peter Johnston, a study co-author and an assistant professor of medicine at The Johns Hopkins University School of Medicine. "It's functioning better than the damaged myocardium in the control subjects, and there's evidence it's starting to contract and generate electrical signals the way healthy heart tissue does."

While this research is an early study designed to demonstrate that this stem cell therapy is safe, cardiologists say it's an approach that could potentially benefit millions of people who have suffered heart attacks. Damage to the heart muscle is permanent and irreparable, and little can be done to compensate for loss of heart function.

"In the U.S., six million patients have heart failure, and the vast majority have it because of a prior heart attack," said Johnston.

The damaged scar tissue that results from a heart attack diminishes heart function, which can ultimately lead to enlargement of the heart.

At best, Johnston said, there are measures doctors can try to reduce or compensate for the damage, but in many cases, heart failure ultimately sets in, often requiring mechanical support or a transplant.

"This type of therapy can save people's lives and reduce the chances of developing heart failure," he said.

Cardiac Regeneration A Promising Field

Other researchers have also had positive early results in experiments with stem cell therapy using different types of cells, including bone marrow cells and a combination of bone marrow and heart cells.

"It's exciting that studies using a number of different cell types are yielding similar results," said Dr. Joshua Hare, professor of cardiology and director of the University of Miami Interdisciplinary Stem Cell Institute.

The next steps, he said, include determining what the optimal cell types are and how much of the cells are needed to regenerate damaged tissue.

"We also need to move to larger clinical trials and measure whether patients are improving clinically and exhibiting a better quality of life after the therapy."

In an accompanying comment, Drs. Chung-Wah Siu amd Hung-Fat Tse of the University of Hong Kong wrote that given the promising results of these studies, health care providers will hopefully recognize the benefits that cardiac regeneration can offer.

And Hare added that someday, this type of regeneration can possibly offer hope to others who suffered other types of organ damage.

"This stategy might work in other organs," he said. "Maybe this can work in the brain, perhaps for people who had strokes."

Continued here:
Stem Cells May Help Regenerate Heart Muscle

VistaGen Updates Pipeline of Stem Cell Technology-Based Drug Rescue Candidates

SOUTH SAN FRANCISCO, CA--(Marketwire -02/14/12)- VistaGen Therapeutics, Inc. (OTC.BB: VSTA.OB - News) (OTCQB: VSTA.OB - News), a biotechnology company applying stem cell technology for drug rescue and cell therapy, has identified its initial Top 10 drug rescue candidates and plans to launch two formal drug rescue programs by the end of next quarter.

VistaGen's goal for each of its stem cell technology-based drug rescue programs is to generate and license a new, safer variant of a once-promising large market drug candidate previously discontinued by a pharmaceutical company no earlier than late-preclinical development.

"We are now at an advanced stage in our business model," said Shawn Singh, VistaGen's Chief Executive Officer. "After more than a decade of focused investment in pluripotent stem cell research and development, we are now at the threshold where game-changing science becomes therapeutically relevant to patients and commercially relevant to our shareholders. We have positioned our company and our stem cell technology platform to pursue multiple large market opportunities. We plan to launch two drug rescue programs by the end of the next quarter."

Over the past year, VistaGen, working with its network of strategic partners, identified over 525 once-promising new drug candidates that meet the Company's preliminary screening criteria for heart toxicity-focused drug rescue using CardioSafe 3D™, its human heart cell-based bioassay system. After internally narrowing the field to 35 compounds, VistaGen, working together with its external drug rescue advisors, including former senior pharmaceutical industry executives with drug safety and medicinal chemistry expertise, analyzed and carefully narrowed the group of 35 to the current Top 10.

About VistaGen Therapeutics

VistaGen is a biotechnology company applying human pluripotent stem cell technology for drug rescue and cell therapy. VistaGen's drug rescue activities combine its human pluripotent stem cell technology platform, Human Clinical Trials in a Test Tube™, with modern medicinal chemistry to generate new chemical variants of once-promising small-molecule drug candidates. These are once-promising drug candidates discontinued by pharmaceutical companies during development due to heart toxicity, despite positive efficacy data demonstrating their potential therapeutic and commercial benefits. VistaGen uses its pluripotent stem cell technology to generate early indications, or predictions, of how humans will ultimately respond to new drug candidates before they are ever tested in humans.

Additionally, VistaGen's oral small molecule prodrug candidate, AV-101 (4-Cl-KYN), is in Phase 1b development for treatment of neuropathic pain. Unlike other NMDA receptor antagonists developed previously, AV-101 readily crosses the blood-brain barrier and is then efficiently converted into 7-chlorokynurenic acid (7-Cl-KYNA), one of the most potent and specific glycineB site antagonists currently known, and has been shown to reduce seizures and excitotoxic neuronal death. Neuropathic pain, a serious and chronic condition causing pain after an injury or disease of the peripheral or central nervous system, affects approximately 1.8 million people in the U.S. alone. To date, VistaGen has been awarded over $8.5 million from the NIH for development of AV-101. The Company anticipates pursuing Phase 2 development for neuropathic pain and other neurological indications, including depression, epilepsy, and/or Parkinson's disease in the event it receives additional non-dilutive development grant funding from the NIH or private foundations.

Visit VistaGen at http://www.VistaGen.com, follow VistaGen at http://www.twitter.com/VistaGen or view VistaGen's Facebook page at http://www.facebook.com/VistaGen.

Cautionary Statement Regarding Forward Looking Statements

The statements in this press release that are not historical facts may constitute forward-looking statements that are based on current expectations and are subject to risks and uncertainties that could cause actual future results to differ materially from those expressed or implied by such statements. Those risks and uncertainties include, but are not limited to, risks related to the success of VistaGen's stem cell technology-based drug rescue activities, ongoing AV-101 clinical studies, its ability to enter into drug rescue collaborations and/or licensing arrangements with respect to one or more drug rescue variants, risks and uncertainties relating to the availability of substantial additional capital to support VistaGen's research, drug rescue, development and commercialization activities, and the success of its research and development plans and strategies, including those plans and strategies related to AV-101 and any drug rescue variant identified and developed by VistaGen. These and other risks and uncertainties are identified and described in more detail in VistaGen's filings with the Securities and Exchange Commission (SEC). These filings are available on the SEC's website at http://www.sec.gov. VistaGen undertakes no obligation to publicly update or revise any forward-looking statements.

See original here:
VistaGen Updates Pipeline of Stem Cell Technology-Based Drug Rescue Candidates

Scarred hearts healed by stem cell treatment after heart attack

By Jenny Hope

Last updated at 1:03 PM on 14th February 2012

Breakthrough: The heart's own stem cells can be used to heal it, according to a new study

The heart’s own stem cells can be used to repair damage caused to it, scientists say.

They help the organ re-grow healthy muscle after a heart attack, a clinical trial shows.

The procedure was found to halve the size of scar left on a patient’s heart muscle and led to a ‘sizeable increase’ in healthy muscle.

Scientists said this discovery challenges a belief that scarring is permanent and that, once lost, healthy heart muscle cannot be restored.

One year after receiving the experimental treatment, scar size was reduced on average from 24 per cent to 12 per cent of the heart.

Patients who did not receive the heart stem cells had no reduction.

Results from the U.S. study, published online in The Lancet medical journal, offer hope for patients with heart failure, where the pumping action is diminished.

Researcher Eduardo Marb?n, director of the Cedars-Sinai Heart Institute, said: ‘While the primary goal of our study was to verify safety, we also looked for evidence that the treatment might dissolve scar and re-grow lost heart muscle.

‘The effects are substantial, and surprisingly larger in humans than they were in animal tests.’

Shlomo Melmed, dean of the Cedars-Sinai medical faculty, said the treatment could mark a new era in heart medicine. ‘This study shows there is a regenerative therapy that may actually reverse the damage caused by a heart attack,’ he said.

 

As an initial part of the trial in 2009, Mr Marb?n and his team completed the world’s first procedure in which a patient’s own heart tissue was used to grow specialised heart stem cells.

Hope: Researchers from Cedars-Sinai in Los Angeles, pictured, described the effects of the stem cells as 'substantial'

These cells were then injected back into their hearts. All the patients monitored – with an average age of 53 – had survived heart attacks.

Eight served as controls, receiving conventional care including prescription medicine, exercise recommendations and dietary advice.

The other 17 allocated to receive the stem cells had a minimally invasive biopsy, under local anaesthesia.

Previous trials have shown remarkable results from using stem cells, but they have been taken from different areas of a patient’s body.

Stem cells can become almost any type of cell, but are in short supply in adult organs.

Several thousand patients worldwide have received them from  bone marrow, but this trial seems to confirm cardiac stem cells may be the most effective for heart damage.

Professor Jeremy Pearson, of the British Heart Foundation charity, said the results were encouraging.

 

 

See the rest here:
Scarred hearts healed by stem cell treatment after heart attack