Gene Editing Hype
Gene editing has for a while been hailed as the new frontier in medicine. The peak enthusiasm with investors on this topic was in early 2020, with the related stocks having cooled off since. No matter the market sentiment, gene editing is still a big deal for medical and pharmaceutical companies as well as patients and doctors.
Gene editing is the next step after gene therapies. Gene therapies add a healthy gene to the genome but leave in place the defective gene. Editing in contrast actually repairs the faulty gene.
Two of the leading firms in the sector are CRISPR Therapeutics and Editas Medicine.
Which one, if any, should you pick as an investment?
Many diseases are due to defective genes, leading to non-functional organs or biochemical processes. They are very often difficult to cure diseases. Infectious diseases can be solved by killing pathogens. Other problems can be solved through surgery or drugs. But when the point of failure is in every cell and requires the body to be changed at the DNA level, this is a lot harder.
For a long time, it was believed that the only solution was gene editing at the early embryo stage, to solve the problem when there is only one cell or at most a few hundred stem cells. And even then, inserting a new, functional gene in defective cells was tricky and prone to failure, as the random entry of the new gene could damage other parts of the genome.
This was until the CRISPR-Cas9 system was discovered. It can be used to target a specific place in the genome. And then to do almost anything molecular biologists want, from knocking-out a gene, entirely deleting it, or also editing it. It can also insert in a controlled fashion entirely new genetic sequences.
This changed everything. Previous methods were too crude to be efficient or safe for most patients. CRISPR brings molecular biology to the next level, allowing precise and in-vivo gene editing to become repeatable and predictable.
Beyond CRISPR-Cas9, researchers have also discovered CRISPR-Cas12. It has slightly different characteristics that might prove better in some cases, like editing multiple genes at once. Or for cell types that do not tolerate Cas-9 well.
While CRISPR Therapeutics favors Cas9, Editas Medicine favors a version of Cas12. If you are technically minded and want to learn more about the difference between the 2 CRISPR systems, I recommend reading this scientific publicationand this article.
The company was founded in 2013 under the name Inception Genomics and went public in 2016.
One of the founders of CRISPR Therapeutics is Emmanuel Charpentier, the discoverer of CRISPR-Cas9 and the Nobel prize of Chemistry in 2020 for that discovery. So it is safe to assume that the company has a crack team when it comes to the scientific side of CRISPR-based gene editing.
Its technology is based on CRISPR-Cas9, allowing for the edition of precisely targeted sections of the genome.
Editas Medicine was founded in 2013 and went public in 2016. It initially started working with Cas9 but is now focused on a proprietary version of Cas12 that they engineered: AsCas12a.
We have covered in detail the unique capacities of Cas-12a in a dedicated article. To resume it shortly:
CRISPR Therapeutics has made the most progress on 2 diseases, Beta-thalassemia and sickle cell diseases (SCD).
This uses an ex-vivo technique: stem cells from the patients are collected, modified/repaired with CRISPR-Cas9, and reintroduced in the body.
Both are under clinical trials in collaboration with Vertex. In June 2022, results from a clinical trial revealedthat 42/44 patients with thalassemia were free from the need for blood transfusion, with the 2 others requiring a lot less blood transfusion.
No serious adverse event was found in SCD patients. Two thalassemia patients had serious adverse events, which have since been healed.
Overall, the blood therapies using CRISPR-Cas9 seem to be a success, and the safety profile acceptable considering how life-threatening and difficult to live with are the diseases treated. You can learn more about the experience of the cured patientin this podcast interviewing one of the participants in the trial.
Another application of CRISPR Therapeutics technology is cancer treatment. The idea is to use modified immune system cells to attack cancer cells. Until now, cells from the patient had to be genetically modified, which took several weeks, which often can be too late for a patients quickly degrading health.
Instead, the company is developing a modified cell that can be manufactured in advance and fit all patients. The method to target the cancer cell is not new, but the possibility to start treatment immediately is. The option to produce a batch of products for hundreds of patients at once is also precious, as it can reduce the complexity and costs of this therapy.
The company has currently 8 candidates in the pipeline, of which 2 already in clinical trials.
CRISPR Therapeutics is also collaborated with the company ViaCyte to improve its product. ViaCyte is aiming to cure type-1 diabetes. This is a disease affecting 8 million peopleand requiring lifelong treatment with insulin.
The issue with ViaCytes current design is that it requires a lifetime of immuno-suppression treatments, which come with their own set of risks and issues. This in turn drastically reduced the size of ViaCytes market.
With the help of CRISPR, ViaCyte is aiming at turning its solution into a lifelong cure for all type-1 diabetes.
Promisingly, the same idea could be used for many other diseases where a specific type of cell needs to be replaced. This could include type-2 diabetes, affecting more than 6% of the worlds population, as well as hepatitis, cirrhosis, or other degenerative diseases.
Each of these 3 applications uses the ex-vivo approach of modifying cells in a lab and re-injecting them in the patients. This is not possible for some diseases, for example, muscular or pulmonary diseases. So CRISPR Therapeutics is also trying to modify the cells of the patients directly in the body, with so-called in-vivo techniques. This either uses viruses as vectors of mRNA techniques not dissimilar to mRNA vaccines.
This is targeting a wide array of diseases including muscular dystrophia and cystic fibrosis (both in partnership with Regeneron), hemophilia (in partnership with Bayer), and cardiac diseases.
In the long run, CRISPR Therapeutics expect the in-vivo technology to become their flagship product and the center of their commercial strategy, able to solve 90% of the most prevalent severe monogenic diseases (see page 35)
Overall, CRISPR therapeutic has done a lot of progress.
It is currently applying for commercialization of its blood therapy products which could concern as many as 30,000 patients in the US and EU. Approval is never a sure thing, but published data last summer of 2022 indicates life-changing efficiency and an acceptable safety profile. Likely, the product could be approved for severe cases at least. This should prove a strong catalyst for the stock as it would be the first product approval for CRISPR Therapeutic.
Further improvement could grow this market to 166,000 patients, or even 450,000 if the in-vivo method proves successful(see the linked presentation page 8).
The cancer treatment trials are still in the early stages, so impossible to predict the outcome. Preliminary data have been encouraging.
The diabetes treatments entered trial on 2ndFebruary 2022. So it is too soon to judge it, but results from this trial could be another strong catalyst for the stock in 2023.
Editas Medicine was previously working, through its EDIT-101 treatment, on curing blindness due to Leber congenital amaurosis 10. The phase 1/2 clinical trial went well, demonstrating the proof of concept.
However, Editas is now looking to license out its technology for this disease, and focus exclusively on its blood disease treatment. It seems the strategic reorientation is due to:
Editas is now focusing on Sickle Cell Disease (SCD), hence going into direct competition with CRISPR Therapeutics own gene editing treatment for SCD.
Editas strategy is counting on the engineered AsCas12a CRISPR system, delivering a superior editing efficiency and specificity than its competitors system using Cas9.
The company is using ASCas12a to activate the genes of ftal hemoglobin in adults, producing functional ftal hemoglobin to replace the one not working in cases of SCD.
The company have also programs at an early stage in oncology (cancer) in partnership with BMS and Immatics. Other organs are also researched, likely for in-vivo therapies. Little has been disclosed about these programs so far.
The initial trial for SCD treatment on 2 patients has shown a good safety profile in the results published on December 2022. The initial results are also demonstrating the proof of concept of the treatment, having increased significantly the hemoglobin levels in the patients blood and reduced or removed symptoms of the disease. Data from additional patients should be published in mid-2023.
The next step is including 40 patients in a clinical trial at phase 1/2, with the first results expected by the end of 2023.
CRISPR Therapeutics valuation in early 2023 has shrunk significantly from a peak of $13.7B in January 2021.
As the company does not have a commercialized product yet, it is reliant on its cash balance and deals with larger pharmaceutical companies.
For example, it register $912M of revenue from its collaboration with Vertex in 2021. This can be compared to $438M in R&D spending and $102M in general administrative spending in the same year. With only 500 employees, the company seems rather lean, efficient, and focused on innovation.
The company has approximately $2B in cash, which should cover the companys needs up to 2024. It has no significant debt or liabilities beyond current operational liabilities and leases for its manufacturing facilities.
Overall, the company finances are sounds, even if it might need to raise more money at one point if its sickle cell disease and thalassemia drugs are not quickly approved. In that respect, the elevated share price of 2021 should have been better utilized to raise funds than risking the current lower valuation.
Like most biotech companies, Editas Medicines valuation is quite lower than its peak at $5.6B in January 2021.
When it comes to the maturity of its portfolio, Editas is just launching now the 40+ patient trials that CRISPR Therapeutics has already finished. So it is likely lagging 1-2 years behind when discussing possible commercialization.
The company has been losing $193M in 2021, of which $142M was spent on R&D. As it currently has $507M in current assets, its liquidity is sufficient for the whole of 2023, even taking into account the extra cost of the incoming clinical trial.
Editas Medicine might need extra funding before reaching commercialization, but this will likely not be the cause of a serious dilution of shareholders, thanks to the solid current cash position. It issued shares worth $203M in 2020 and $249M in 2021, making good use of the then-higher share prices.
Overall, Editas Medicine is at an earlier stage than CRISPR Therapeutics. But thanks to its focused approach centered on only one treatment and disease, it has a similar risk profile when it comes to cash balance and risk of dilution.
CRISPR Therapeutics isthe leader of the sector, benefiting from its first mover advantage, having been founded by the discoverer of Cas9 technology. It also has a much wider portfolio, covering SCD but also another blood disease, cancer, and even diabetes. So its overall potential addressable market is much wider.
It is also more advanced in its clinical trial, having a realistic chance to see at least one product commercialized in a 12-24 months time frame.
Where CRISPR Therapeutics might be lacking, is in its reliance on Cas9 technology, which might be better understood, but slightly less efficient in the long run. It is difficult to judge if these technical differences will result in practical differences in therapeutic efficiency.
Editas Medicine is a trailblazer in turning Cas12a into a practical medical tool. By concentrating its effort on SCD, it is directly targeting CRISPR Therapeutics own SCD treatment. So a lot of the future success or failure of Editas will depend if its treatment for SCD proves superior to CRISPR Therapeutics.
Both company valuations can be considered somewhat equivalent, as CRISPR Therapeutics has a much higher valuation, but also a much more diverse pipeline. Especially as both share a similar risk profile with a large cash cushion enough to cover the next 1-2 years of spending.
It is also possible that both companies will reach commercialization, and share the SCD market on relatively equal terms.
For investors looking at a very innovative and focused company, Editas Medicine might be a favored choice.
For investors looking at a more spread R&D risk, CRISPR Therapeutics wider pipeline should prove more reassuring. The upside in the 4-6 years timeframe of CRISPR Therapeutics might be also larger, thanks to its venture into the very large diabetes market.
The rest is here:
CRISPR Therapeutics vs Editas Medicine - Securities.io
- Stem Cell Research Article, Embryonic Cells Information ... [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Practical Problems with Embryonic Stem Cells [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- What are embryonic stem cells? [Stem Cell Information] [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Embryonic stem cell - Science Daily [Last Updated On: May 7th, 2015] [Originally Added On: May 7th, 2015]
- What is Wrong With Embryonic Stem Cell Research? [Last Updated On: May 22nd, 2015] [Originally Added On: May 22nd, 2015]
- Destructive Embryonic Stem Cell Research | Antiochian ... [Last Updated On: June 13th, 2015] [Originally Added On: June 13th, 2015]
- NIH Human Embryonic Stem Cell Registry - Research Using ... [Last Updated On: June 22nd, 2015] [Originally Added On: June 22nd, 2015]
- Embryonic Stem Cell Research Pros and Cons | HRF [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- Embryonic stem cells: where do they come from and what can ... [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- Embryonic Stem Cells - HowStuffWorks [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- Pros & Cons of Embryonic Stem Cell Research [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Children's Hospital Boston Glossary - Stem cell [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- 1. Embryonic Stem Cells [Stem Cell Information] [Last Updated On: August 23rd, 2015] [Originally Added On: August 23rd, 2015]
- Embryonic stem cell - ScienceDaily [Last Updated On: August 23rd, 2015] [Originally Added On: August 23rd, 2015]
- Researchers control embryonic stem cells with light [Last Updated On: August 30th, 2015] [Originally Added On: August 30th, 2015]
- Embryonic stem cells controlled with light: Study reveals ... [Last Updated On: August 30th, 2015] [Originally Added On: August 30th, 2015]
- Embryonic stem cell research: an ethical dilemma | Europe ... [Last Updated On: September 5th, 2015] [Originally Added On: September 5th, 2015]
- Scientists reveal how stem cells defend against viruses [Last Updated On: September 22nd, 2015] [Originally Added On: September 22nd, 2015]
- An Overview of Stem Cell Research | The Center for ... [Last Updated On: October 3rd, 2015] [Originally Added On: October 3rd, 2015]
- Scientific Experts Agree Embryonic Stem Cells Are ... [Last Updated On: October 8th, 2015] [Originally Added On: October 8th, 2015]
- Myths and Misconceptions About Stem Cell Research ... [Last Updated On: October 12th, 2015] [Originally Added On: October 12th, 2015]
- Embryonic Stem Cell Maintenance & Differentiation (Human) [Last Updated On: October 23rd, 2015] [Originally Added On: October 23rd, 2015]
- Are embryonic stem cells and artificial stem cells equivalent? [Last Updated On: October 31st, 2015] [Originally Added On: October 31st, 2015]
- What are human embryonic stem cells used for? | Europe's stem ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Stem Cell Basics I. | stemcells.nih.gov [Last Updated On: September 17th, 2016] [Originally Added On: September 17th, 2016]
- Stem Cell Basics III. | stemcells.nih.gov [Last Updated On: September 17th, 2016] [Originally Added On: September 17th, 2016]
- Pros and Cons of Stem Cell Research - thebalance.com [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Embryonic Stem Cells and the Germ Cell Lineage | InTechOpen [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Cloning/Embryonic Stem Cells - National Human Genome Research ... [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Embryonic stem cell research - alsa.org [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Embryonic Stem Cells | Stem Cells Freak [Last Updated On: October 4th, 2016] [Originally Added On: October 4th, 2016]
- Embryonic Stem Cells | stemcells.nih.gov [Last Updated On: October 9th, 2016] [Originally Added On: October 9th, 2016]
- Embryonic stem cell - Wikipedia [Last Updated On: October 17th, 2016] [Originally Added On: October 17th, 2016]
- Stem-cell therapy - Wikipedia [Last Updated On: October 19th, 2016] [Originally Added On: October 19th, 2016]
- Stem cell - Wikipedia [Last Updated On: October 23rd, 2016] [Originally Added On: October 23rd, 2016]
- What are embryonic stem cells or ES cells? [Last Updated On: October 25th, 2016] [Originally Added On: October 25th, 2016]
- Embryonic Stem Cell Research - rtl.org [Last Updated On: November 8th, 2016] [Originally Added On: November 8th, 2016]
- Guest View: No to embryonic stem cells - htrnews.com [Last Updated On: November 9th, 2016] [Originally Added On: November 9th, 2016]
- Blood-Forming Stem Cell Transplants - National Cancer Institute [Last Updated On: December 5th, 2016] [Originally Added On: December 5th, 2016]
- How Embryonic Stem Cells Become Tissue Specific | TFOT [Last Updated On: December 12th, 2016] [Originally Added On: December 12th, 2016]
- Embryonic Stem Cell Research - An Ethical Dilemma [Last Updated On: December 12th, 2016] [Originally Added On: December 12th, 2016]
- Scientists reprogram embryonic stem cells to expand their ... [Last Updated On: January 15th, 2017] [Originally Added On: January 15th, 2017]
- Embryonic Stem Cell Research Threatened - Hartford Courant [Last Updated On: January 27th, 2017] [Originally Added On: January 27th, 2017]
- Embryonic stem (ES) cells - eurostemcell.org [Last Updated On: February 5th, 2017] [Originally Added On: February 5th, 2017]
- Researchers engineer new thyroid cells - Science Daily [Last Updated On: February 8th, 2017] [Originally Added On: February 8th, 2017]
- Yes There's Hope, But Treating Spinal Injuries With Stem Cells Is Not A Reality Yet - IFLScience [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- SEQUEIRA: Stem cell research must remain in foreground - University of Virginia The Cavalier Daily [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Stem cells: a miracle cure or playing God? - The Student [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- How does the Catholic Church resolve new bioethical questions? - The Tidings [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Possible key to regeneration found in planaria's origins - Phys.Org [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Novel Nanofiber Matrix Improves Stem Cell Production - R & D Magazine [Last Updated On: February 14th, 2017] [Originally Added On: February 14th, 2017]
- Your brain's got rhythm: Synthetic brain mimics - Science Daily [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Nanofiber matrix sends stem cells sprawling in all directions - New Atlas [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Vitamins and aminoacids regulate stem cell biology - Phys.Org [Last Updated On: February 16th, 2017] [Originally Added On: February 16th, 2017]
- How does the Catholic Church resolve new bioethical questions? - Catholic Free Press [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]
- New Nanofiber Matrix Enhances Stem Cell Production - Drug Discovery & Development [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]
- Transplanted Human Embryonic Stem Retinal Pigment Cells Survive 22 months in a Human Recipient - MedicalResearch.com (blog) [Last Updated On: February 18th, 2017] [Originally Added On: February 18th, 2017]
- Iowa GOP takes aim at research - The Daily Iowan [Last Updated On: February 21st, 2017] [Originally Added On: February 21st, 2017]
- Nanofiber Matrix Improves Stem Cell Growth - Asian Scientist Magazine [Last Updated On: February 22nd, 2017] [Originally Added On: February 22nd, 2017]
- The clone armies never happened, but Dolly the sheep still changed the world - Quartz [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- Harvard scientist worries we're 'reverting to a pre-Enlightenment form of thinking' - Washington Post [Last Updated On: February 25th, 2017] [Originally Added On: February 25th, 2017]
- 20 Years After Dolly the Sheep, Potential of Cloning Remains Unclear - FOX40 [Last Updated On: February 25th, 2017] [Originally Added On: February 25th, 2017]
- Harvard scientist worries we're 'reverting to a pre-Enlightenment form of thinking' - SCNow [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Stem cells derived neuronal networks grown on a chip as an alternative to animal testing - Science Daily [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Facts About Cloning - Live Science [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Exclusive: CBMG CEO Talks Stem-Cell Therapies, Cancer Treatments, Financials & The Chinese Market - Benzinga [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Artificial Mouse Embryo Created in Culture - Technology Networks [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Artificial embryo grown in a dish from two types of stem cells - New Scientist [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Artificial mouse embryo created out of stem cells - BioNews [Last Updated On: March 7th, 2017] [Originally Added On: March 7th, 2017]
- Scientists Have Created the First Artificial Embryo Without Using an ... - Gizmodo [Last Updated On: March 8th, 2017] [Originally Added On: March 8th, 2017]
- Artificial Mouse 'Embryo' Created from Stem Cells for First Time - Laboratory Equipment [Last Updated On: March 8th, 2017] [Originally Added On: March 8th, 2017]
- Role of Stem Cell Reprogramming Factor Uncovered - Technology Networks [Last Updated On: March 8th, 2017] [Originally Added On: March 8th, 2017]
- COMMENTARY: Saving a 10-year-old's life but at what cost? - Globalnews.ca [Last Updated On: March 10th, 2017] [Originally Added On: March 10th, 2017]
- No egg? No sperm? No problem. First artificial embryo made from stem cells - Genetic Literacy Project [Last Updated On: March 10th, 2017] [Originally Added On: March 10th, 2017]
- For The First Time Ever, Scientists Have Successfully Created An ... - Wall Street Pit [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- Treating sickle cell disease with gene therapy - Jamaica Observer [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- Here's the first 3D glimpse of how DNA is packaged up in a single cell - Ars Technica [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- The craftsmanship of mimicking embryogenesis in a dish - BioNews [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- Stem Cells Used to Create Artificial Embryo for the First Time Ever - TrendinTech [Last Updated On: March 15th, 2017] [Originally Added On: March 15th, 2017]
- Scientists create first 3D structure of active DNA - The Indian Express [Last Updated On: March 15th, 2017] [Originally Added On: March 15th, 2017]