Evaluation of A-ring hydroxymethylene-amino- triterpenoids as … – Nature.com


World Health Organization: Coronavirus disease (COVID-19) situation report. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. Accessed 21 Dec 2022.

Banerjee R, Perera L, Tillekeratne LMV. Potential SARS-CoV-2 main protease inhibitors. Drug Discov Today. 2021;26:80416. https://doi.org/10.1016/j.drudis.2020.12.005

Article CAS PubMed Google Scholar

Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20:20016. https://doi.org/10.1038/s41573-020-00114-z

Article CAS PubMed PubMed Central Google Scholar

Battineni JK, Koneti PK, Bakshi V, Boggula N. Triterpenoids: a review. Int J Pharm Pharm Sci. 2018;2:9196.

Google Scholar

Hou W, Liu B, Xu H. Celastrol: progresses in structure-modifications, structure-activity relationships, pharmacology and toxicology. Eur J Med Chem. 2020;189:112081. https://doi.org/10.1016/j.ejmech.2020.112081

Article CAS PubMed Google Scholar

Hordyjewska A, Ostapiuk A, Horecka A, Kurzepa J. Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential. Phytochem Rev. 2019;18:92951. https://doi.org/10.1007/s11101-019-09623-1

Article CAS Google Scholar

Hussain H, Green IR, Ali I, Khan IA, Ali Z, Al-Sadi AM, Ahmed I. Ursolic acid derivatives for pharmaceutical use: a patent review (20122016). Expert Opin Ther Pat. 2017;27:106172. https://doi.org/10.1080/13543776.2017.1344219

Article CAS PubMed Google Scholar

Xiao S, Tian Z, Wang Y, Si L, Zhang L, Zhou D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med Res Rev. 2018;38:95176. https://doi.org/10.1002/med.21484

Article PubMed PubMed Central Google Scholar

Ryu YB, Park SJ, Kim YM, Lee JY, Seo WD, Chang JS, Park KH, Rho MC, Lee WS. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorg Med Chem Lett. 2010;20:18736. https://doi.org/10.1016/j.bmcl.2010.01.152

Article CAS PubMed PubMed Central Google Scholar

Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003;361:20456. https://doi.org/10.1016/S0140-6736(03)13615-X

Article CAS PubMed PubMed Central Google Scholar

Wu CY, Jan JT, Ma SH, Kuo C-J, Juan H-F, Cheng Y-SE, Hsu H-H, Huang H-C, Wu D, Brik A, Liang F-S, Liu R-S, Fang J-M, Chen S-T, Liang P-H, Wong C-H. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc Natl Acad Sci USA. 2004;101:100127. https://doi.org/10.1073/pnas.0403596101

Article CAS PubMed PubMed Central Google Scholar

Hoever G, Baltina L, Michaelis M, Kondratenko R, Baltina L, Tolstikov GA, Doerr HW, Cinatl J Jr. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J Med Chem. 2005;48:12569. https://doi.org/10.1021/jm0493008

Article CAS PubMed Google Scholar

Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG, Lee CK, Chang ST, Kuo CJ, Lee SS, Hou CC, Hsiao PW, Chien SC, Shyur LF, Yang NS. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem. 2007;50:408795. https://doi.org/10.1021/jm070295s

Article CAS PubMed Google Scholar

Stevaert B, Krasniqi B, Van Loy B, Nguyen T, Thomas J, Vandeput J, Jochmans D, Thiel V, Dijkman R, Dehaen W, Voet A, Naesens L. Betulonic acid derivatives interfering with human coronavirus 229E replication via the nsp15 endoribonuclease. J Med Chem. 2021;64:563244. https://doi.org/10.1021/acs.jmedchem.0c02124

Article CAS PubMed Google Scholar

Krasilnikov IV, Kudriavtsev AV, Vakhrusheva AV, Frolova ME, Ivanov AV, Stukova MA, Romanovskaya-Romanko EA, Vasilyev KA, Mushenkova NV, Isaev AA. Design and immunological properties of the novel subunit virus-like vaccine against SARS-CoV-2. Vaccines. 2020;10:69. https://doi.org/10.3390/vaccines10010069

Article CAS Google Scholar

Yarovaya OI, Shcherbakov DN, Borisevich SS, Sokolova AS, Gureev MA, Khamitov EM, Rudometova NB, Zybkina AV, Mordvinova ED, Zaykovskaya AV, Rogachev AD, Pyankov OV, Maksyutov RA, Salakhutdinov NF. Borneol ester derivatives as entry inhibitors of a wide spectrum of SARS-CoV-2 viruses. Viruses. 2022;14:1295. https://doi.org/10.3390/v14061295

Article CAS PubMed PubMed Central Google Scholar

Kadela-Tomanek M, Jastrzebska M, Marciniec K, Chrobak E, Bebenek E, Boryczka S. Lipophilicity, pharmacokinetic properties, and molecular docking study on SARS-CoV-2 target for betulin triazole derivatives with attached 1,4-quinone. Pharmaceutics. 2021;13:781. https://doi.org/10.3390/pharmaceutics13060781

Article CAS PubMed PubMed Central Google Scholar

Tretyakova EV, Ma X, Kazakova OB, Shtro AA, Petukhova GD, Smirnova AA, Xu H, Xiao S. Abietic, maleopimaric and quinopimaric dipeptide Ugi-4CR derivatives and their potency against influenza A and SARS-CoV-2. Nat Prod Res. Published online: 17 Aug 2022. https://doi.org/10.1080/14786419.2022.2112040

Tretyakova EV, Ma X, Kazakova OB, Shtro AA, Petukhova GD, Klabukov AM, Dyatlov DS, Smirnova AA, Xu H, Xiao S. Synthesis and Evaluation of diterpenic mannich bases as antiviral agents against influenza A and SARS-CoV-2. Phytochem Lett 2022;51:9196. https://doi.org/10.1016/j.phytol.2022.07.010

Article CAS PubMed PubMed Central Google Scholar

Szostak M, Yao L, Aube J. Proximity effects in nucleophilic addition reactions to medium-bridged twisted lactams: remarkably stable tetrahedral intermediates. J Am Chem Soc. 2010;132:207884. https://doi.org/10.1021/ja909792h

Article CAS PubMed PubMed Central Google Scholar

Evans DA, Borg G, Scheidt KA. Remarkably stable tetrahedral intermediates: carbinols from nucleophilic additions to N-acylpyrroles. Angew Chem Int Ed. 2002;41:318891. 10.1002/1521-3773(20020902)41:17<3188::AID-ANIE3188>3.0.CO;2-H

Article CAS Google Scholar

Iwasawa T, Hooley RJ, Rebek J. Stabilization of labile carbonyl addition intermediates by a synthetic receptor. Science 2007;317:4936. https://doi.org/10.1126/science.11432

Article CAS PubMed Google Scholar

Hooley RJ, Restorp P, Iwasawa T, Rebek J. Cavitands with introverted functionality stabilize tetrahedral intermediates. J Am Chem Soc. 2007;129:1563943. https://doi.org/10.1021/ja0756366

Article CAS PubMed Google Scholar

Subik P, Welc B, Wisz B, Wolowiec S. Stable hemiaminals attached to PAMAM dendrimers. Tetrahedron Lett. 2009;50:65124. https://doi.org/10.1016/j.tetlet.2009.09.031

Article CAS Google Scholar

Barys M, Ciunik Z, Drabent K, Kwiecien A. Stable hemiaminals containing a triazole ring. N J Chem. 2010;34:260511. https://doi.org/10.1039/C0NJ00346H

Article CAS Google Scholar

Scott MS, Lucas AC, Luckhurst CA, Prodger JC, Dixon DJ. Ligand-mediated enantioselective addition of lithium carbazolates to aldehydes. Org Biomol Chem. 2006;4:131327. https://doi.org/10.1039/B515356E

Article CAS PubMed Google Scholar

Viuff AH, Besenbacher LM, Kamori A, Jensen MT, Kilian M, Kato A, Jensen HH. Stable analogues of nojirimycinsynthesis and biological evaluation of nojiristegine and manno-nojiristegine. Org Biomol Chem. 2015;13:963758. https://doi.org/10.1039/C5OB01281C

Article CAS PubMed Google Scholar

Giniyatullina GV, Flekhter OB, Baikova IP, Starikova ZA, Tolstikov GA. Effective synthesis of methyl 3-amino-3-deoxybetulinate. Chem Nat Comp. 2008;44:6035. https://doi.org/10.1007/s10600-008-9138-4

Article CAS Google Scholar

Smirnova A, Petrova A, Lobov E, Minnibaeva T, Tran Thi Phoung L, Tran Van M, Myint Khine M, Esaulkova I, Slita A, Zarubaev V, Kazakova O. Azepanodipterocarpol is potential candidate for inhibits influenza H1N1 type among other lupane, oleanane, and dammarane A-ring amino-triterpenoids. J Antibiot. 2022;75:25867. https://doi.org/10.1038/s41429-022-00514-w

Article CAS Google Scholar

Santos RC, Salvador JAR, Marn S, Cascante M. Novel semisynthetic derivatives of betulin and betulinic acid with cytotoxic activity. Bioorg Med Chem. 2009;17:624150. https://doi.org/10.1016/j.bmc.2009.07.050

Article CAS PubMed Google Scholar

Kazakova O, Rubanik L, Lobov A, Poleshchuk N, Baikova I, Kapustina Y, Petrova A, Korzun T, Lopatina T, Fedorova A, Rybalova T, Polovianenko D, Mioc M, oica C. Synthesis of erythrodiol C-ring derivatives and their activity against Chlamydia trachomatis. Steroids. 2021;175:108912. https://doi.org/10.1016/j.steroids.2021.108912

Article CAS PubMed Google Scholar

Si L, Bai H, Rodas M, Cao W, Oh CY, Jiang A, Moller R, Hoagland D, Oishi K, Horiuchi S, Uhl S, Blanco-Melo D, Albrecht RA, Liu W-C, Jordan T, Nilsson-Payant BE, Golynker I, Frere J, Logue J, Haupt R, McGrath M, Weston S, Zhang T, Plebani R, Soong M, Nurani A, Min Kim S, Zhu DY, Benam KH, Goyal G, Gilpin SE, Prantil-Baun R, Gygi SP, Powers RK, Carlson KE, Frieman M, tenOever BR, Ingber DE. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng. 2021;5:81529. https://doi.org/10.1038/s41551-021-00718-9

Article CAS PubMed PubMed Central Google Scholar

Smee DF, Hurst BL, Evans WJ, Clyde N, Wright S, Peterson C, Jung KH, Day CW. Evaluation of cell viability dyes in antiviral assays with RNA viruses that exhibit different cytopathogenic properties. J Virol Methods. 2017;246:5157. https://doi.org/10.1016/j.jviromet.2017.03.012

Article CAS PubMed PubMed Central Google Scholar

Lopatina TV, Medvedeva NI, Baikova IP, Iskhakov AS, Kazakova OB. Synthesis and cytotoxicity of O- and N-acylderivatives of azepanobetulin. Russ J Bioorg Chem. 2019;45:292301. https://doi.org/10.1134/S106816201904006X

Article CAS Google Scholar

Kazakova OB, Rubanik LV, Smirnova IE, Savinova OV, Petrova AV, Poleschuk NN, Khusnutdinova EF, Boreko EI, Kapustina YM. Synthesis and in vitro activity of oleanane type derivatives against Chlamydia trachomatis. Org Commun. 2019;12:16975. https://doi.org/10.25135/acg.oc.66.19.07.1352

Article CAS Google Scholar

Kazakova OB, Brunel JM, Khusnutdinova EF, Negrel S, Giniyatullina GV, Lopatina TV, Petrova AV. A-ring modified triterpenoids and their spermidine-aldimines with strong antibacterial activity. Molbank. 2019;3:M1078. https://doi.org/10.3390/M1078

Article Google Scholar

Medvedeva NI, Kazakova OB, Lopatina TV, Smirnova IE, Giniyatullina GV, Baikova IP, Kataev VE. Synthesis and antimycobacterial activity of triterpeni A-ring azepanes. Eur J Med Chem. 2018;143:46472. https://doi.org/10.1016/j.ejmech.2017.11.035

Article CAS PubMed Google Scholar

Kazakova O, Smirnova I, Lopatina T, Giniyatullina G, Petrova A, Khusnutdinova E, Csuk R, Serbian I, Loesche A. Synthesis and cholinesterase inhibiting potential of A-ring azepano- and 3-amino-3,4-seco-triterpenoids. Bioorg Chem. 2020;101:104001. https://doi.org/10.1016/j.bioorg.2020.104001

Article CAS PubMed Google Scholar

Ma C, Nakamura N, Hattori M. Chemical modification of oleanene type triterpenes and their inhibitory activity against HIV-1 protease dimerization. Chem Pharm Bul. 2000;48:16818. https://doi.org/10.1248/cpb.48.1681

Article CAS Google Scholar

Jain SM, Atal CK. Synthesis of amino derivatives of ursolic acid. Ind J Chem., Section B 25B. 1986;4:427-8.

Schrdinger Release 2018-4: LigPrep, Schrdinger, LLC, New York, NY; 2018.

Schrdinger Release 2018-4: induced fit docking protocol; glide, Schrdinger, LLC, New York, NY, 2018; Prime, Schrdinger, LLC, New York, NY; 2018.

Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossvry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA. Amber 14 reference manual, University of California, San Francisco, 2014.

Continued here:
Evaluation of A-ring hydroxymethylene-amino- triterpenoids as ... - Nature.com

Related Posts