Phys.org – embryonic stem cells


The formation of a human embryo starts with the fertilization of the oocyte by the sperm cell. This yields the zygote, the primordial cell that carries one copy each of the maternal and paternal genomes. However, this genetic ...

Scientists are getting closer to understanding how naked mole rats, the world's longest living rodent species, avoid cancer, which could lead to safer stem cell therapies for human diseases.

Researchers at Karolinska Institutet have identified cell surface markers specific for the very earliest stem cells in the human embryo. These cells are thought to possess great potential for replacing damaged tissue but ...

Scientists have determined the first 3D structures of intact mammalian genomes from individual cells, showing how the DNA from all the chromosomes intricately folds to fit together inside the cell nuclei.

University of Tsukuba-led researchers explored the function of the reprogramming factor KLF4 in production of induced pluripotent stem cells (iPSCs). KLF4 was shown to bind upstream of the Tcl1 target gene, which controls ...

Scientists at the University of Cambridge have managed to create a structure resembling a mouse embryo in culture, using two types of stem cells - the body's 'master cells' - and a 3D scaffold on which they can grow.

An International Reserach Team coordinated by Igb-Cnr has discovered a key role of vitamins and amino acids in pluripotent stem cells. The research is published in Stem Cell Reports, and may provide new insights in cancer ...

A new nanofiber-on-microfiber matrix could help produce more and better quality stem cells for disease treatment and regenerative therapies.

A new report from the Stowers Institute for Medical Research chronicles the embryonic origins of planaria, providing new insight into the animal's remarkable regenerative abilities.

Freiburg plant biologist Prof. Dr. Thomas Laux and his research group have published an article in the journal Developmental Cell presenting initial findings on how shoot stem cells in plants form during embryogenesis, the ...

Embryonic stem cells (ES cells) are stem cells derived from the inner cell mass of an early stage embryo known as a blastocyst. Human embryos reach the blastocyst stage 45 days post fertilization, at which time they consist of 50150 cells.

Embryonic Stem (ES) cells are pluripotent. This means they are able to differentiate into all derivatives of the three primary germ layers: ectoderm, endoderm, and mesoderm. These include each of the more than 220 cell types in the adult body. Pluripotency distinguishes ES cells from multipotent progenitor cells found in the adult; these only form a limited number of cell types. When given no stimuli for differentiation, (i.e. when grown in vitro), ES cells maintain pluripotency through multiple cell divisions. The presence of pluripotent adult stem cells remains a subject of scientific debate; however, research has demonstrated that pluripotent stem cells can be directly generated from adult fibroblast cultures.

Because of their plasticity and potentially unlimited capacity for self-renewal, ES cell therapies have been proposed for regenerative medicine and tissue replacement after injury or disease. However Diseases treated by these non-embryonic stem cells include a number of blood and immune-system related genetic diseases, cancers, and disorders; juvenile diabetes; Parkinson's; blindness and spinal cord injuries. Besides the ethical concerns of stem cell therapy (see stem cell controversy), there is a technical problem of graft-versus-host disease associated with allogeneic stem cell transplantation. However, these problems associated with histocompatibility may be solved using autologous donor adult stem cells or via therapeutic cloning.

Read more here:
Phys.org - embryonic stem cells

Related Posts