Immunophenotypic characterization of pre-migratory Callithrix jacchus primordial germ cells (cjPGCs) at embryonic day (E)50. (A) Bright field images of a cj embryo at E50 (Carnegie stage [CS]11). Scale bar, 1 mm. (B) (Left) Immunofluorescence (IF) images of the hindgut in the cj embryo as in (A) (transverse section), stained as indicated. Laminin outlines the basement membranes of the hindgut endoderm. The white dashed line highlights the hindgut endoderm. Scale bars, 50 m. (Right) Pie chart showing the number and location of cjPGCs present in representative cross sections. (C) IF of the same cj embryo for TFAP2C (green), SOX17 (red), PDPN (cyan), and DAPI (white). Magnified images of hindgut endoderm are shown at the bottom. Arrows denote nuclei of cjPGCs with lower DAPI intensity than that of surrounding endodermal cells. Scale bar, 50 m. (D) (Top) IF of the cj embryo stained for MKI67 (green), NANOG (red), and PDPN (cyan), merged with DAPI (white). An arrowhead indicates MKI67+ cjPGC. (Bottom) Pie chart showing the number of MKI67+ cells in PGCs. Scale bars, 50 m. (E) IF of the cj embryo for pre-migratory PGC markers (POU5F1 [green], SOX17 [red], and NANOG [red]) or gonadal stage PGC markers (DDX4 [red] and DAZL [green]), co-stained for PDPN (cyan). Merged images with DAPI (white) are shown on the right of each panel. Scale bars, 50 m. (F) IF of the cj embryo for PDPN (cyan), co-stained for H3K27me3 or H3K9me2 (green). Scale bars, 50 m. Relative fluorescence intensities of H3K27me3 and H3K9me2 in PDPN+ cjPGCs in comparison to those of surrounding somatic cells are shown on the left of each IF panel. Bar, mean. Statistical significance is determined by two-tailed Welchs t test. Credit: eLife (2023). DOI: 10.7554/eLife.82263
Different cell typessay, heart, liver, blood, and sperm cellspossess characteristics that help them carry out their unique jobs in the body. In general, those characteristics are hard-wired. Without intervention, a heart cell won't spontaneously transform into a liver cell.
Yet researchers from the University of Pennsylvania School of Veterinary Medicine, working with collaborators from the University of Texas at San Antonio and Texas Biomedical Research Institute, have prompted marmoset blood cells to acquire the flexibility of stem cells. Then they directed those stem cells to take on the characteristics of sperm precursors.
In the journal eLife, the researchers report on their step-by-step process of rewiring cells. The findingsthe first in the marmoset, a small monkeyopen new possibilities for studying primate biology and developing novel assisted reproductive technologies like in vitro gametogenesis, a process of generating germ cells, sperm or eggs, in a laboratory dish, akin to how in vitro fertilization involves the generation of an embryo outside the human body.
"Scientists know how to generate functional sperm and egg from induced pluripotent stem cells in mice, but mouse germ cells are very different from human germ cells," says Kotaro Sasaki, an assistant professor at Penn Vet. "By studying marmosets, whose biology more closely resembles ours, we can bridge the gap."
To understand how to generate germ cells, the researchers first studied germ cell precursors from marmoset embryos, which had never been rigorously characterized for the species. They found that these early-stage cells, known as primordial germ cells (PGCs), bore certain molecular markers that could be tracked over time.
Performing single-cell RNA sequencing on these cells revealed that PGCs expressed genes characteristic of early-stage germ cells and those related to epigenetic modifications, which regulate gene expression. PGCs did not, however, express genes known to be turned on later in the process of germ cell development, when precursor cells migrate to the ovaries or testes to complete their maturation.
Their findings were "consistent with the notion that marmoset germ cells undergo a reprogramming process," Sasaki says, that "turns off" certain markers and allows PGCs to proceed through the stages of germ cell development. The patterns the researchers observed in marmoset cells closely resembled what has been found in both humans and other monkey species but were distinct from those of mice, another reason why the marmoset could be a valuable model for reproductive biology studies.
With that information in hand, the team set about trying to reconstitute the process of development artificially, in the lab. The first step: to transform blood cells into induced pluripotent stem cells (iPSCs), cells that retain the ability to give rise to a number of other cell types.
"I have a lot of experience in working with cell culture and induced pluripotent stem cells, but establishing a stable culture for the marmoset cells was a difficult part of the study," says Yasunari Seita, a postdoctoral researcher in Sasaki's lab and a lead author.
After much trial and error and applying lessons learned from mouse, human, and other investigations, Seita landed upon a strategy that enabled him to generate and sustain stable cultures of iPSCs. A key to success was the addition of an inhibitor of the signaling pathway governed by the Wnt protein, which is involved in a variety of cellular functions, such as cell differentiation.
The next step was to move from iPSCs to germ cell precursors. Once again, considerable experimentation went into developing the protocol for this transformation. The method that worked best involved adding a cocktail of growth factors to successfully prompt between 15-40% of their culture to take on the characteristics of these germ cell precursors.
"We were excited to see that efficiency and were able to expand our cultures, passaging them multiple times and seeing nice, exponential growth," Sasaki says. "The cells maintained key germ cell markers but didn't express other markers that are associated with the migration to the gonad.
In a final stage of the study, the research team coaxed these lab-grown cells to take on the characteristics of later-stage germ cells. Based on a method Sasaki and colleagues had established earlier in human cells and reported in a 2020 Nature Communications paper, they cultured the cells with mouse testicular cells over the course of a month. The result was a successful growth with some cells beginning to turn on genes associated with later-stage sperm cell precursors.
Developing new approaches to study the marmoset sets up the Penn and University of Texas at San Antonio teamsas well as the scientific community in generalto make use of the species as an important research model. Marmosets, for example, have cognitive functioning that resembles that of humans in many ways and thus could lead to new insights in neuroscience.
For Sasaki's group, most interested in development of the reproductive system, marmosets represent a new avenue for pursuing studies of normal and abnormal development as well as fertility.
"When you think about the clinical applications of an assisted reproductive technology like in vitro gametogenesis, there are a lot of ethical, legal, and safety concerns that could arise," Sasaki says. "We definitely need a good preclinical model to explore before we move to human clinical translation."
More information: Yasunari Seita et al, Efficient generation of marmoset primordial germ cell-like cells using induced pluripotent stem cells, eLife (2023). DOI: 10.7554/eLife.82263
Journal information: eLife , Nature Communications
Follow this link:
Rewiring blood cells to give rise to precursors of sperm - Phys.org
- Stem Cell Research Article, Embryonic Cells Information ... [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Practical Problems with Embryonic Stem Cells [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- What are embryonic stem cells? [Stem Cell Information] [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Embryonic stem cell - Science Daily [Last Updated On: May 7th, 2015] [Originally Added On: May 7th, 2015]
- What is Wrong With Embryonic Stem Cell Research? [Last Updated On: May 22nd, 2015] [Originally Added On: May 22nd, 2015]
- Destructive Embryonic Stem Cell Research | Antiochian ... [Last Updated On: June 13th, 2015] [Originally Added On: June 13th, 2015]
- NIH Human Embryonic Stem Cell Registry - Research Using ... [Last Updated On: June 22nd, 2015] [Originally Added On: June 22nd, 2015]
- Embryonic Stem Cell Research Pros and Cons | HRF [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- Embryonic stem cells: where do they come from and what can ... [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- Embryonic Stem Cells - HowStuffWorks [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- Pros & Cons of Embryonic Stem Cell Research [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Children's Hospital Boston Glossary - Stem cell [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- 1. Embryonic Stem Cells [Stem Cell Information] [Last Updated On: August 23rd, 2015] [Originally Added On: August 23rd, 2015]
- Embryonic stem cell - ScienceDaily [Last Updated On: August 23rd, 2015] [Originally Added On: August 23rd, 2015]
- Researchers control embryonic stem cells with light [Last Updated On: August 30th, 2015] [Originally Added On: August 30th, 2015]
- Embryonic stem cells controlled with light: Study reveals ... [Last Updated On: August 30th, 2015] [Originally Added On: August 30th, 2015]
- Embryonic stem cell research: an ethical dilemma | Europe ... [Last Updated On: September 5th, 2015] [Originally Added On: September 5th, 2015]
- Scientists reveal how stem cells defend against viruses [Last Updated On: September 22nd, 2015] [Originally Added On: September 22nd, 2015]
- An Overview of Stem Cell Research | The Center for ... [Last Updated On: October 3rd, 2015] [Originally Added On: October 3rd, 2015]
- Scientific Experts Agree Embryonic Stem Cells Are ... [Last Updated On: October 8th, 2015] [Originally Added On: October 8th, 2015]
- Myths and Misconceptions About Stem Cell Research ... [Last Updated On: October 12th, 2015] [Originally Added On: October 12th, 2015]
- Embryonic Stem Cell Maintenance & Differentiation (Human) [Last Updated On: October 23rd, 2015] [Originally Added On: October 23rd, 2015]
- Are embryonic stem cells and artificial stem cells equivalent? [Last Updated On: October 31st, 2015] [Originally Added On: October 31st, 2015]
- What are human embryonic stem cells used for? | Europe's stem ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Stem Cell Basics I. | stemcells.nih.gov [Last Updated On: September 17th, 2016] [Originally Added On: September 17th, 2016]
- Stem Cell Basics III. | stemcells.nih.gov [Last Updated On: September 17th, 2016] [Originally Added On: September 17th, 2016]
- Pros and Cons of Stem Cell Research - thebalance.com [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Embryonic Stem Cells and the Germ Cell Lineage | InTechOpen [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Cloning/Embryonic Stem Cells - National Human Genome Research ... [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Embryonic stem cell research - alsa.org [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Embryonic Stem Cells | Stem Cells Freak [Last Updated On: October 4th, 2016] [Originally Added On: October 4th, 2016]
- Embryonic Stem Cells | stemcells.nih.gov [Last Updated On: October 9th, 2016] [Originally Added On: October 9th, 2016]
- Embryonic stem cell - Wikipedia [Last Updated On: October 17th, 2016] [Originally Added On: October 17th, 2016]
- Stem-cell therapy - Wikipedia [Last Updated On: October 19th, 2016] [Originally Added On: October 19th, 2016]
- Stem cell - Wikipedia [Last Updated On: October 23rd, 2016] [Originally Added On: October 23rd, 2016]
- What are embryonic stem cells or ES cells? [Last Updated On: October 25th, 2016] [Originally Added On: October 25th, 2016]
- Embryonic Stem Cell Research - rtl.org [Last Updated On: November 8th, 2016] [Originally Added On: November 8th, 2016]
- Guest View: No to embryonic stem cells - htrnews.com [Last Updated On: November 9th, 2016] [Originally Added On: November 9th, 2016]
- Blood-Forming Stem Cell Transplants - National Cancer Institute [Last Updated On: December 5th, 2016] [Originally Added On: December 5th, 2016]
- How Embryonic Stem Cells Become Tissue Specific | TFOT [Last Updated On: December 12th, 2016] [Originally Added On: December 12th, 2016]
- Embryonic Stem Cell Research - An Ethical Dilemma [Last Updated On: December 12th, 2016] [Originally Added On: December 12th, 2016]
- Scientists reprogram embryonic stem cells to expand their ... [Last Updated On: January 15th, 2017] [Originally Added On: January 15th, 2017]
- Embryonic Stem Cell Research Threatened - Hartford Courant [Last Updated On: January 27th, 2017] [Originally Added On: January 27th, 2017]
- Embryonic stem (ES) cells - eurostemcell.org [Last Updated On: February 5th, 2017] [Originally Added On: February 5th, 2017]
- Researchers engineer new thyroid cells - Science Daily [Last Updated On: February 8th, 2017] [Originally Added On: February 8th, 2017]
- Yes There's Hope, But Treating Spinal Injuries With Stem Cells Is Not A Reality Yet - IFLScience [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- SEQUEIRA: Stem cell research must remain in foreground - University of Virginia The Cavalier Daily [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Stem cells: a miracle cure or playing God? - The Student [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- How does the Catholic Church resolve new bioethical questions? - The Tidings [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Possible key to regeneration found in planaria's origins - Phys.Org [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Novel Nanofiber Matrix Improves Stem Cell Production - R & D Magazine [Last Updated On: February 14th, 2017] [Originally Added On: February 14th, 2017]
- Your brain's got rhythm: Synthetic brain mimics - Science Daily [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Nanofiber matrix sends stem cells sprawling in all directions - New Atlas [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Vitamins and aminoacids regulate stem cell biology - Phys.Org [Last Updated On: February 16th, 2017] [Originally Added On: February 16th, 2017]
- How does the Catholic Church resolve new bioethical questions? - Catholic Free Press [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]
- New Nanofiber Matrix Enhances Stem Cell Production - Drug Discovery & Development [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]
- Transplanted Human Embryonic Stem Retinal Pigment Cells Survive 22 months in a Human Recipient - MedicalResearch.com (blog) [Last Updated On: February 18th, 2017] [Originally Added On: February 18th, 2017]
- Iowa GOP takes aim at research - The Daily Iowan [Last Updated On: February 21st, 2017] [Originally Added On: February 21st, 2017]
- Nanofiber Matrix Improves Stem Cell Growth - Asian Scientist Magazine [Last Updated On: February 22nd, 2017] [Originally Added On: February 22nd, 2017]
- The clone armies never happened, but Dolly the sheep still changed the world - Quartz [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- Harvard scientist worries we're 'reverting to a pre-Enlightenment form of thinking' - Washington Post [Last Updated On: February 25th, 2017] [Originally Added On: February 25th, 2017]
- 20 Years After Dolly the Sheep, Potential of Cloning Remains Unclear - FOX40 [Last Updated On: February 25th, 2017] [Originally Added On: February 25th, 2017]
- Harvard scientist worries we're 'reverting to a pre-Enlightenment form of thinking' - SCNow [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Stem cells derived neuronal networks grown on a chip as an alternative to animal testing - Science Daily [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Facts About Cloning - Live Science [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Exclusive: CBMG CEO Talks Stem-Cell Therapies, Cancer Treatments, Financials & The Chinese Market - Benzinga [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Artificial Mouse Embryo Created in Culture - Technology Networks [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Artificial embryo grown in a dish from two types of stem cells - New Scientist [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Artificial mouse embryo created out of stem cells - BioNews [Last Updated On: March 7th, 2017] [Originally Added On: March 7th, 2017]
- Scientists Have Created the First Artificial Embryo Without Using an ... - Gizmodo [Last Updated On: March 8th, 2017] [Originally Added On: March 8th, 2017]
- Artificial Mouse 'Embryo' Created from Stem Cells for First Time - Laboratory Equipment [Last Updated On: March 8th, 2017] [Originally Added On: March 8th, 2017]
- Role of Stem Cell Reprogramming Factor Uncovered - Technology Networks [Last Updated On: March 8th, 2017] [Originally Added On: March 8th, 2017]
- COMMENTARY: Saving a 10-year-old's life but at what cost? - Globalnews.ca [Last Updated On: March 10th, 2017] [Originally Added On: March 10th, 2017]
- No egg? No sperm? No problem. First artificial embryo made from stem cells - Genetic Literacy Project [Last Updated On: March 10th, 2017] [Originally Added On: March 10th, 2017]
- For The First Time Ever, Scientists Have Successfully Created An ... - Wall Street Pit [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- Treating sickle cell disease with gene therapy - Jamaica Observer [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- Here's the first 3D glimpse of how DNA is packaged up in a single cell - Ars Technica [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- The craftsmanship of mimicking embryogenesis in a dish - BioNews [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- Stem Cells Used to Create Artificial Embryo for the First Time Ever - TrendinTech [Last Updated On: March 15th, 2017] [Originally Added On: March 15th, 2017]
- Scientists create first 3D structure of active DNA - The Indian Express [Last Updated On: March 15th, 2017] [Originally Added On: March 15th, 2017]