In Michael Levins laboratory at Tufts University, cells can expect to find themselves in unusual company.
Here, the precursors of frog skin sidle up to cells that, in another life, might have helped an amphibians heart beat. Theyre perfect strangers: biological entities that, up until this point, had no business being together. And yet, Levin and his colleagues have found that skin cells and heart cells can be coaxed into coalescing. Placed side by side, they will self-organize into intricate, three-dimensional mosaics of frog cells that arent actually frogs.
Designed by a computer algorithm and surgically shaped by human hands, these skin-heart hybrids, each roughly the size of a grain of sand, dont resemble anything found in nature. But the tasks they accomplish are eerily familiar: Without any external input, they can zoom around Petri dishes, push microscopic objects to and fro, and even stitch themselves back together after being cut.
Levin calls these clusters of cells a new form of lifeone thats not quite an organism and not quite a machine, but perhaps somewhere in between. Named xenobots in honor of the Xenopus laevis African clawed frogs from which their cells derive, they have enormous potential to reveal the rules that govern how the building blocks of life assemble.
With a lot of additional tinkering, xenobot technology could also someday be harnessed to deliver drugs, collect environmental contaminants, and more, Levin and his colleagues write today in Proceedings of National Academy of Sciences. Unlike traditional robots, they argue, the living, self-healing xenobots of the future could theoretically accomplish these feats without polluting the planetand repair themselves to boot.
As plastics and other difficult-to-degrade polymers continue to accumulate in the environment, the incredibly innovative approach offered by the xenobots could be really important for sustainability, says Tara Deans, a biomedical engineer and synthetic biologist at the University of Utah who wasnt involved in the study.
But xenobots also raise a bevy of ethical questions. If things go awry, humans may need protection against these and other forms of artificial lifeor, perhaps, vice versa. When youre creating life, you dont have a good sense of what direction its going to take, says Nita Farahany, who studies the ethical ramifications of new technologies at Duke University and was not involved in the study. Any time we try to harness life [we should] recognize its potential to go really poorly.
In the past several decades, humankind has made staggering advances in robotics. Machines can now master difficult board games, and navigate tough terrain; they can steer themselves as autonomous vehicles, and search for survivors in the wake of disaster. But many of the basic functions that living things accomplish still flummox devices built by human hands. Even in their most creative configurations, metals and plastics simply cant live up to cells.
Biological systems are kind of the envy of all robotics, Levin says. Theyre adaptable, theyre flexible, they self-repair. We dont have robots that can do that. So Levin and his colleagues decided to try and build one that could.
Teaming up with roboticists Sam Kriegman and Josh Bongard at the University of Vermont, Levin and Douglas Blackiston, also at Tufts, asked a computer algorithm to design a series of living machines, using only a few hundred or thousand frog skin or frog heart cells as raw ingredients. The algorithm was instructed to optimize each xenobot for a different basic function, like moving back and forth or manipulating objects.
Its pretty much a hands-off method, Bongard says. We tell the algorithm what we want xenobot to do, but we dont tell it how the xenobot should do it. So the algorithm can explore this infinite space of form and function.
After cycling through multiple configurations, the algorithm would spit out the digital blueprints it believed were best suited to the task at hand. The researchers would then attempt to recreate these designs in Levins lab.
Even after being scraped out of frog embryos and shaken apart in a fluid-filled dish, skin and heart cells will eagerly glom together, aggregating into amorphous clumps thousands of units thick. The cells like to be with each other, Levin says. Next, Blackiston, the teams resident microsurgeon, would take the nascent bots and sculpt them into shapes specified by the computer.
All the xenobots ingredients were bona fide frog. But there was nothing amphibian about the final forms they took. A few were crafted into two-lobed blobs, while others took the forms of hollow, prism-like structures. The bots lacked limbs, skeletons and nervous systems. But they handily tackled the tasks theyd been designed to do.
Tailored to maximize movement, some scooted along the bottom of a Petri dish like microscopic inchworms, powered solely by the contractions of the heart cells studding their interiors. Others, built to transport bits of particulate matter, herded their cargo like sheepdogs, while more still carried it in vacant pouches carved into their custom-made bodies. In some cases, xenobots even interacted, colliding and orbiting each other before eventually coming back apart.
The teams approach, which relies on a mashup of computational and biological techniques, resembles other technologies that have rejiggered the known building blocks of life, says Deans. But rather than tweaking a known template like DNA, the teams techniquewhich simply rearranges existing cells into new configurationsfeels more organic, she says. This process has a resounding respect for the biology thats involved.
At just a millimeter or so across, the xenobots arent capable of much yet. Devoid of mouths or digestive systems, theyre fueled exclusively by the bits of embryonic yolk they came with, and die after about a week when that juice runs dry, Bongard says. But he and his colleagues think the bots could someday be used to deliver drugs into human bodies, or scrape plaque out of arteries. Released into the environment, they could quantify toxins, or sweep microplastics out of oceans.
The team is already experimenting with different sorts of cells, tasked with new types of chores. In a haunting echo of their particle-herding behavior, their xenobots also seem capable of making new versions of themselves, corralling single cells together until they start to coalesce, Levin says. Theyre also resilient: When sliced open, the bots simply repair their wounds and carry on.
While a lot of good could come out of this technology, its also important to consider potential downsides, says Susan Anderson, a philosopher and machine ethics expert at the University of Connecticut who wasnt involved in the study. In the wrong hands, the power of xenobots could easily be exploited as a bioweapon, ferrying poisons instead of medicines into people. Theres also cultural acceptance to consider: The mere idea of reassembling existing life forms could be troubling to some, evoking thoughts of Frankensteins monster or the experimental vivisection in H.G. Wells 1896 science fiction novel The Island of Doctor Moreau.
Humans have certainly tinkered with the recipes of life before. In recent years, bioengineers have reprogrammed cells to churn out life-saving drugs, stripped genomes down to their most minimal states, and cobbled together amalgamations of cells from one animal that resemble the final form of another. But bespoke forms of multicellular life, synthesized from scratch, are still few and far betweenin part because much of biological development remains a black box: Researchers still arent sure, for instance, how tissues, organs and appendages manifest out of single cells.
Studying xenobots could certainly help crack that developmental code. But to get there, scientists will first have to experiment with techniques and technologies they dont fully understand, from the machine learning algorithm that designs these life forms to the cells that spontaneously comprise them, Anderson says.
What the team has presented so far is an early advance, and there are no guarantees about what will emerge from the research, Farahany says. But for this kind of work, its going to be integral to think about what the appropriate ethical frameworks and safeguards would be, she adds. When you have something living, you need fail-safe measures, and you need to know that you can pull the plug.
Bongard and his colleagues acknowledge the gravity of their work. The ethics around this are non-trivial, he says. Though the team hasnt yet brought bioethicists into their research, its something well need to do in the discussion of what to do with this technology, he adds. First, though, we just wanted to demonstrate that this was possible.
View post:
Scientists Assemble Frog Stem Cells Into First 'Living Machines' - Smithsonian.com
- Stem Cell Research Article, Embryonic Cells Information ... [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Practical Problems with Embryonic Stem Cells [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- What are embryonic stem cells? [Stem Cell Information] [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Embryonic stem cell - Science Daily [Last Updated On: May 7th, 2015] [Originally Added On: May 7th, 2015]
- What is Wrong With Embryonic Stem Cell Research? [Last Updated On: May 22nd, 2015] [Originally Added On: May 22nd, 2015]
- Destructive Embryonic Stem Cell Research | Antiochian ... [Last Updated On: June 13th, 2015] [Originally Added On: June 13th, 2015]
- NIH Human Embryonic Stem Cell Registry - Research Using ... [Last Updated On: June 22nd, 2015] [Originally Added On: June 22nd, 2015]
- Embryonic Stem Cell Research Pros and Cons | HRF [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- Embryonic stem cells: where do they come from and what can ... [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- Embryonic Stem Cells - HowStuffWorks [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- Pros & Cons of Embryonic Stem Cell Research [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Children's Hospital Boston Glossary - Stem cell [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- 1. Embryonic Stem Cells [Stem Cell Information] [Last Updated On: August 23rd, 2015] [Originally Added On: August 23rd, 2015]
- Embryonic stem cell - ScienceDaily [Last Updated On: August 23rd, 2015] [Originally Added On: August 23rd, 2015]
- Researchers control embryonic stem cells with light [Last Updated On: August 30th, 2015] [Originally Added On: August 30th, 2015]
- Embryonic stem cells controlled with light: Study reveals ... [Last Updated On: August 30th, 2015] [Originally Added On: August 30th, 2015]
- Embryonic stem cell research: an ethical dilemma | Europe ... [Last Updated On: September 5th, 2015] [Originally Added On: September 5th, 2015]
- Scientists reveal how stem cells defend against viruses [Last Updated On: September 22nd, 2015] [Originally Added On: September 22nd, 2015]
- An Overview of Stem Cell Research | The Center for ... [Last Updated On: October 3rd, 2015] [Originally Added On: October 3rd, 2015]
- Scientific Experts Agree Embryonic Stem Cells Are ... [Last Updated On: October 8th, 2015] [Originally Added On: October 8th, 2015]
- Myths and Misconceptions About Stem Cell Research ... [Last Updated On: October 12th, 2015] [Originally Added On: October 12th, 2015]
- Embryonic Stem Cell Maintenance & Differentiation (Human) [Last Updated On: October 23rd, 2015] [Originally Added On: October 23rd, 2015]
- Are embryonic stem cells and artificial stem cells equivalent? [Last Updated On: October 31st, 2015] [Originally Added On: October 31st, 2015]
- What are human embryonic stem cells used for? | Europe's stem ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Stem Cell Basics I. | stemcells.nih.gov [Last Updated On: September 17th, 2016] [Originally Added On: September 17th, 2016]
- Stem Cell Basics III. | stemcells.nih.gov [Last Updated On: September 17th, 2016] [Originally Added On: September 17th, 2016]
- Pros and Cons of Stem Cell Research - thebalance.com [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Embryonic Stem Cells and the Germ Cell Lineage | InTechOpen [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Cloning/Embryonic Stem Cells - National Human Genome Research ... [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Embryonic stem cell research - alsa.org [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Embryonic Stem Cells | Stem Cells Freak [Last Updated On: October 4th, 2016] [Originally Added On: October 4th, 2016]
- Embryonic Stem Cells | stemcells.nih.gov [Last Updated On: October 9th, 2016] [Originally Added On: October 9th, 2016]
- Embryonic stem cell - Wikipedia [Last Updated On: October 17th, 2016] [Originally Added On: October 17th, 2016]
- Stem-cell therapy - Wikipedia [Last Updated On: October 19th, 2016] [Originally Added On: October 19th, 2016]
- Stem cell - Wikipedia [Last Updated On: October 23rd, 2016] [Originally Added On: October 23rd, 2016]
- What are embryonic stem cells or ES cells? [Last Updated On: October 25th, 2016] [Originally Added On: October 25th, 2016]
- Embryonic Stem Cell Research - rtl.org [Last Updated On: November 8th, 2016] [Originally Added On: November 8th, 2016]
- Guest View: No to embryonic stem cells - htrnews.com [Last Updated On: November 9th, 2016] [Originally Added On: November 9th, 2016]
- Blood-Forming Stem Cell Transplants - National Cancer Institute [Last Updated On: December 5th, 2016] [Originally Added On: December 5th, 2016]
- How Embryonic Stem Cells Become Tissue Specific | TFOT [Last Updated On: December 12th, 2016] [Originally Added On: December 12th, 2016]
- Embryonic Stem Cell Research - An Ethical Dilemma [Last Updated On: December 12th, 2016] [Originally Added On: December 12th, 2016]
- Scientists reprogram embryonic stem cells to expand their ... [Last Updated On: January 15th, 2017] [Originally Added On: January 15th, 2017]
- Embryonic Stem Cell Research Threatened - Hartford Courant [Last Updated On: January 27th, 2017] [Originally Added On: January 27th, 2017]
- Embryonic stem (ES) cells - eurostemcell.org [Last Updated On: February 5th, 2017] [Originally Added On: February 5th, 2017]
- Researchers engineer new thyroid cells - Science Daily [Last Updated On: February 8th, 2017] [Originally Added On: February 8th, 2017]
- Yes There's Hope, But Treating Spinal Injuries With Stem Cells Is Not A Reality Yet - IFLScience [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- SEQUEIRA: Stem cell research must remain in foreground - University of Virginia The Cavalier Daily [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Stem cells: a miracle cure or playing God? - The Student [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- How does the Catholic Church resolve new bioethical questions? - The Tidings [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Possible key to regeneration found in planaria's origins - Phys.Org [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Novel Nanofiber Matrix Improves Stem Cell Production - R & D Magazine [Last Updated On: February 14th, 2017] [Originally Added On: February 14th, 2017]
- Your brain's got rhythm: Synthetic brain mimics - Science Daily [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Nanofiber matrix sends stem cells sprawling in all directions - New Atlas [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Vitamins and aminoacids regulate stem cell biology - Phys.Org [Last Updated On: February 16th, 2017] [Originally Added On: February 16th, 2017]
- How does the Catholic Church resolve new bioethical questions? - Catholic Free Press [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]
- New Nanofiber Matrix Enhances Stem Cell Production - Drug Discovery & Development [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]
- Transplanted Human Embryonic Stem Retinal Pigment Cells Survive 22 months in a Human Recipient - MedicalResearch.com (blog) [Last Updated On: February 18th, 2017] [Originally Added On: February 18th, 2017]
- Iowa GOP takes aim at research - The Daily Iowan [Last Updated On: February 21st, 2017] [Originally Added On: February 21st, 2017]
- Nanofiber Matrix Improves Stem Cell Growth - Asian Scientist Magazine [Last Updated On: February 22nd, 2017] [Originally Added On: February 22nd, 2017]
- The clone armies never happened, but Dolly the sheep still changed the world - Quartz [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- Harvard scientist worries we're 'reverting to a pre-Enlightenment form of thinking' - Washington Post [Last Updated On: February 25th, 2017] [Originally Added On: February 25th, 2017]
- 20 Years After Dolly the Sheep, Potential of Cloning Remains Unclear - FOX40 [Last Updated On: February 25th, 2017] [Originally Added On: February 25th, 2017]
- Harvard scientist worries we're 'reverting to a pre-Enlightenment form of thinking' - SCNow [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Stem cells derived neuronal networks grown on a chip as an alternative to animal testing - Science Daily [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Facts About Cloning - Live Science [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Exclusive: CBMG CEO Talks Stem-Cell Therapies, Cancer Treatments, Financials & The Chinese Market - Benzinga [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Artificial Mouse Embryo Created in Culture - Technology Networks [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Artificial embryo grown in a dish from two types of stem cells - New Scientist [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Artificial mouse embryo created out of stem cells - BioNews [Last Updated On: March 7th, 2017] [Originally Added On: March 7th, 2017]
- Scientists Have Created the First Artificial Embryo Without Using an ... - Gizmodo [Last Updated On: March 8th, 2017] [Originally Added On: March 8th, 2017]
- Artificial Mouse 'Embryo' Created from Stem Cells for First Time - Laboratory Equipment [Last Updated On: March 8th, 2017] [Originally Added On: March 8th, 2017]
- Role of Stem Cell Reprogramming Factor Uncovered - Technology Networks [Last Updated On: March 8th, 2017] [Originally Added On: March 8th, 2017]
- COMMENTARY: Saving a 10-year-old's life but at what cost? - Globalnews.ca [Last Updated On: March 10th, 2017] [Originally Added On: March 10th, 2017]
- No egg? No sperm? No problem. First artificial embryo made from stem cells - Genetic Literacy Project [Last Updated On: March 10th, 2017] [Originally Added On: March 10th, 2017]
- For The First Time Ever, Scientists Have Successfully Created An ... - Wall Street Pit [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- Treating sickle cell disease with gene therapy - Jamaica Observer [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- Here's the first 3D glimpse of how DNA is packaged up in a single cell - Ars Technica [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- The craftsmanship of mimicking embryogenesis in a dish - BioNews [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- Stem Cells Used to Create Artificial Embryo for the First Time Ever - TrendinTech [Last Updated On: March 15th, 2017] [Originally Added On: March 15th, 2017]
- Scientists create first 3D structure of active DNA - The Indian Express [Last Updated On: March 15th, 2017] [Originally Added On: March 15th, 2017]