Challenges and perspectives of heart repair with pluripotent stem cell-derived cardiomyocytes – Nature.com


Nabel, E. G. & Braunwald, E. A tale of coronary artery disease and myocardial infarction. N. Engl. J. Med. 366, 5463 (2012).

Article CAS PubMed Google Scholar

McDonagh, T. A. et al. Group ESCSD. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42, 35993726 (2021).

Article CAS PubMed Google Scholar

Goldenberg, B. Ueber Atrophie und Hypertrophie der Muskelfasern des Herzens. Arch. Pathol. Anat. Physiol. Klin. Med. 103, 88130 (1886).

Article Google Scholar

Linzbach, A. J. Heart failure from the point of view of quantitative anatomy. Am. J. Cardiol. 5, 370382 (1960).

Article CAS PubMed Google Scholar

Linzbach, A. J. Hypertrophy, hyperplasia and structural dilatation of the human heart. Adv. Cardiol. 18, 114 (1976).

Article CAS PubMed Google Scholar

Soonpaa, M. H., Kim, K. K., Pajak, L., Franklin, M. & Field, L. J. Cardiomyocyte DNA synthesis and binucleation during murine development. Am. J. Physiol. 271, H2183H2189 (1996).

CAS PubMed Google Scholar

Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98102 (2009).

Article CAS PubMed PubMed Central Google Scholar

Olivetti, G. et al. Apoptosis in the failing human heart. N. Engl. J. Med. 336, 11311141 (1997).

Article CAS PubMed Google Scholar

Quaini, F. et al. Chimerism of the transplanted heart. N. Engl. J. Med. 346, 515 (2002).

Article PubMed Google Scholar

Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701705 (2001).

Article CAS PubMed Google Scholar

Jeyaraman, M. M. et al. Autologous bone marrow stem cell therapy in patients with st-elevation myocardial infarction: a systematic review and meta-analysis. Can. J. Cardiol. 33, 16111623 (2017).

Article PubMed Google Scholar

Blau, H. M., Brazelton, T. R. & Weimann, J. M. The evolving concept of a stem cell: entity or function? Cell 105, 829841 (2001).

Article CAS PubMed Google Scholar

Dimmeler, S., Zeiher, A. M. & Schneider, M. D. Unchain my heart: the scientific foundations of cardiac repair. J. Clin. Invest. 115, 572583 (2005).

Article CAS PubMed PubMed Central Google Scholar

Beltrami, A. P. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763776 (2003).

Article CAS PubMed Google Scholar

Oh, H. et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. USA 100, 1231312318 (2003).

Article CAS PubMed PubMed Central Google Scholar

Laugwitz, K. L. et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature. 433, 647653 (2005).

Article CAS PubMed PubMed Central Google Scholar

Planat-Benard, V. et al. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ. Res. 94, 223229 (2004).

Article CAS PubMed Google Scholar

Condorelli, G. et al. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: Implications for myocardium regeneration. Proc. Natl Acad. Sci. USA 98, 1073310738 (2001).

Article CAS PubMed PubMed Central Google Scholar

Li, Y. et al. Genetic lineage tracing of nonmyocyte population by dual recombinases. Circulation 138, 793805 (2018).

Article CAS PubMed Google Scholar

Murry, C. E. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664668 (2004).

Article CAS PubMed Google Scholar

Nygren, J. M. et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10, 494501 (2004).

Article CAS PubMed Google Scholar

Laflamme, M. A., Myerson, D., Saffitz, J. E. & Murry, C. E. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ. Res. 90, 634640 (2002).

Article CAS PubMed Google Scholar

Hocht-Zeisberg, E. et al. Cellular repopulation of myocardial infarction in patients with sex-mismatched heart transplantation. Eur. Heart J. 25, 749758 (2004).

Article PubMed Google Scholar

Partners HealthCare and Brigham and Womens Hospital agree to pay $10 million to resolve research fraud allegations. US Attorneys Office District of Massachusetts https://www.justice.gov/usao-ma/pr/partners-healthcare-and-brigham-and-women-s-hospital-agree-pay-10-million-resolve (2017).

Eschenhagen, T. et al. Cardiomyocyte regeneration: a consensus statement. Circulation 136, 680686 (2017).

Article PubMed PubMed Central Google Scholar

Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433436 (2013).

Article CAS PubMed Google Scholar

Vagnozzi, R. J. et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature 577, 405409 (2020).

Article CAS PubMed Google Scholar

Sadek, H. & Olson, E. N. Toward the goal of human heart regeneration. Cell Stem Cell 26, 716 (2020).

Article CAS PubMed PubMed Central Google Scholar

Giacca, M. Fulfilling the promise of rna therapies for cardiac repair and regeneration. Stem Cells Transl. Med. 12, 527535 (2023).

Article PubMed PubMed Central Google Scholar

Yamada, Y., Sadahiro, T. & Ieda, M. Development of direct cardiac reprogramming for clinical applications. J. Mol. Cell Cardiol. 178, 18 (2023).

Article CAS PubMed Google Scholar

Soonpaa, M. H., Koh, G. Y., Klug, M. G. & Field, L. J. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264, 98101 (1994).

Article CAS PubMed Google Scholar

Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 11451147 (1998).

Article CAS PubMed Google Scholar

Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861872 (2007).

Article CAS PubMed Google Scholar

Kehat, I. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407414 (2001).

Article CAS PubMed PubMed Central Google Scholar

Kattman, S. J. et al. Stage-specific optimization of activin/nodal and bmp signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 8, 228240 (2011).

Article CAS PubMed Google Scholar

Burridge, P. W. & Zambidis, E. T. Highly efficient directed differentiation of human induced pluripotent stem cells into cardiomyocytes. Methods Mol. Biol. 997, 149161 (2013).

Article CAS PubMed Google Scholar

Breckwoldt, K. et al. Differentiation of cardiomyocytes and generation of human engineered heart tissue. Nat. Protoc. 12, 11771197 (2017).

Article CAS PubMed Google Scholar

Halloin, C., Coffee, M., Manstein, F. & Zweigerdt, R. Production of cardiomyocytes from human pluripotent stem cells by bioreactor technologies. Methods Mol. Biol. 1994, 5570 (2019).

Article CAS PubMed Google Scholar

Buikema, J. W. et al. Wnt activation and reduced cellcell contact synergistically induce massive expansion of functional human iPSC-derived cardiomyocytes. Cell Stem Cell 27, 5063 (2020).

Article CAS PubMed PubMed Central Google Scholar

Eschenhagen, T., Ridders, K. & Weinberger, F. How to repair a broken heart with pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol. 163, 106117 (2022).

Article CAS PubMed Google Scholar

Weinberger, F. & Eschenhagen, T. Cardiac regeneration: new hope for an old dream. Annu. Rev. Physiol. 83, 5981 (2021).

Article CAS PubMed Google Scholar

Shiba, Y. et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538, 388391 (2016).

Article CAS PubMed Google Scholar

Chong, J. J. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273277 (2014).

Article CAS PubMed PubMed Central Google Scholar

Liu, Y. W. et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat. Biotechnol. 36, 597605 (2018).

Article CAS PubMed PubMed Central Google Scholar

Querdel, E. et al. Human engineered heart tissue patches remuscularize the injured heart in a dose-dependent manner. Circulation 143, 19912006 (2021).

Article CAS PubMed PubMed Central Google Scholar

Riegler, J. et al. Human engineered heart muscles engraft and survive long term in a rodent myocardial infarction model. Circ. Res. 117, 720730 (2015).

Article CAS PubMed PubMed Central Google Scholar

Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 10151024 (2007).

Article CAS PubMed Google Scholar

Weinberger, F. et al. Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Sci. Transl. Med. 8, 363ra148 (2016).

Article PubMed Google Scholar

Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 15661575 (2015).

Article CAS PubMed Google Scholar

Lou, X. et al. N-cadherin overexpression enhances the reparative potency of human-induced pluripotent stem cell-derived cardiac myocytes in infarcted mouse hearts. Cardiovasc. Res. 116, 671685 (2020).

Article CAS PubMed Google Scholar

Kobayashi, H. et al. Intracoronary transplantation of pluripotent stem cell-derived cardiomyocytes: inefficient procedure for cardiac regeneration. J. Mol. Cell Cardiol. 174, 7787 (2023).

Here is the original post:
Challenges and perspectives of heart repair with pluripotent stem cell-derived cardiomyocytes - Nature.com

Related Posts