DUSP6 is a memory retention feedback regulator of ERK signaling … – Nature.com


Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell https://doi.org/10.1016/j.cell.2006.07.024 (2006).

Article PubMed Google Scholar

Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 11451147. https://doi.org/10.1126/science.282.5391.1145 (1998).

Article ADS CAS PubMed Google Scholar

Chen, G. et al. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8, 424. https://doi.org/10.1038/nmeth.1593 (2011).

Article CAS PubMed PubMed Central Google Scholar

Nakagawa, M. et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci. Rep. 4, 35943594. https://doi.org/10.1038/srep03594 (2014).

Article PubMed PubMed Central Google Scholar

Vuoristo, S. et al. A novel feeder-free culture system for human pluripotent stem cell culture and induced pluripotent stem cell derivation. PLoS One 8, e76205. https://doi.org/10.1371/journal.pone.0076205 (2013).

Article ADS CAS PubMed PubMed Central Google Scholar

Ludwig, T. E. et al. Feeder-independent culture of human embryonic stem cells. Nat. Methods 3, 637646. https://doi.org/10.1038/nmeth902 (2006).

Article CAS PubMed Google Scholar

Yamamoto, T. et al. Differentiation potential of Pluripotent Stem Cells correlates to the level of CHD7. Sci. Rep. 8, 241. https://doi.org/10.1038/s41598-017-18439-y (2018).

Article ADS CAS PubMed PubMed Central Google Scholar

Yoo, D. H. et al. Simple differentiation method using FBS identifies DUSP6 as a marker for fine-tuning of FGF-ERK signaling activity in human pluripotent stem cells. Biochem. Biophys. Res. Commun. 521, 375382. https://doi.org/10.1016/j.bbrc.2019.10.081 (2020).

Article CAS PubMed Google Scholar

Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25, 681686. https://doi.org/10.1038/nbt1310 (2007).

Article CAS PubMed Google Scholar

Chen, G., Hou, Z., Gulbranson, D. R. & Thomson, J. A. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells. Cell Stem Cell 7, 240248. https://doi.org/10.1016/j.stem.2010.06.017 (2010).

Article CAS PubMed PubMed Central Google Scholar

Walker, A. et al. Non-muscle myosin II regulates survival threshold of pluripotent stem cells. Nat. Commun. 1, 7171. https://doi.org/10.1038/ncomms1074 (2010).

Article ADS CAS PubMed Google Scholar

Toh, Y. C., Xing, J. & Yu, H. Modulation of integrin and E-cadherin-mediated adhesions to spatially control heterogeneity in human pluripotent stem cell differentiation. Biomaterials 50, 8797. https://doi.org/10.1016/j.biomaterials.2015.01.019 (2015).

Article CAS PubMed Google Scholar

Li, D. et al. Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J. Cell Biol. 191, 631644. https://doi.org/10.1083/jcb.201006094 (2010).

Article CAS PubMed PubMed Central Google Scholar

Chowdhury, F. et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stemcells. Nat. Mater. 9, 8288. https://doi.org/10.1038/nmat2563 (2010).

Article ADS CAS PubMed Google Scholar

Gke, J., Chan, Y. S., Yan, J., Vingron, M. & Ng, H. H. Genome-wide kinase-chromatin interactions reveal the regulatory network of ERK signaling in human embryonic stem cells. Mol. Cell 50, 844855. https://doi.org/10.1016/j.molcel.2013.04.030 (2013).

Article CAS PubMed Google Scholar

Chen, H. et al. Erk signaling is indispensable for genomic stability and self-renewal of mouse embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 112, E5936-5943. https://doi.org/10.1073/pnas.1516319112 (2015).

Article CAS PubMed PubMed Central Google Scholar

Kunath, T. et al. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134, 28952902. https://doi.org/10.1242/dev.02880 (2007).

Article CAS PubMed Google Scholar

Grnert, S., Jechlinger, M. & Beug, H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat. Rev. Mol. Cell Biol. 4, 657665. https://doi.org/10.1038/nrm1175 (2003).

Article CAS PubMed Google Scholar

Hansen, S. H. et al. Induced expression of Rnd3 is associated with transformation of polarized epithelial cells by the Raf-MEK-extracellular signal-regulated kinase pathway. Mol. Cell Biol. 20, 93649375. https://doi.org/10.1128/mcb.20.24.9364-9375.2000 (2000).

Article CAS PubMed PubMed Central Google Scholar

Janda, E. et al. Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: Dissection of Ras signaling pathways. J. Cell Biol. 156, 299313. https://doi.org/10.1083/jcb.200109037 (2002).

Article CAS PubMed PubMed Central Google Scholar

Lehmann, K. et al. Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: A mechanism leading to increased malignancy in epithelial cells. Genes Dev. 14, 26102622. https://doi.org/10.1101/gad.181700 (2000).

Article CAS PubMed PubMed Central Google Scholar

Dowd, S., Sneddon, A. A. & Keyse, S. M. Isolation of the human genes encoding the pyst1 and Pyst2 phosphatases: characterisation of Pyst2 as a cytosolic dual-specificity MAP kinase phosphatase and its catalytic activation by both MAP and SAP kinases. J. Cell Sci. 111(Pt 22), 33893399 (1998).

Article CAS PubMed Google Scholar

Li, C., Scott, D. A., Hatch, E., Tian, X. & Mansour, S. L. Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development 134, 167176. https://doi.org/10.1242/dev.02701 (2007).

Article CAS PubMed Google Scholar

Doehn, U. et al. RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol. Cell 35, 511522. https://doi.org/10.1016/j.molcel.2009.08.002 (2009).

Article CAS PubMed PubMed Central Google Scholar

Ekerot, M. et al. Negative-feedback regulation of FGF signalling by DUSP6/MKP-3 is driven by ERK1/2 and mediated by Ets factor binding to a conserved site within the DUSP6/MKP-3 gene promoter. Biochem. J. 412, 287298. https://doi.org/10.1042/bj20071512 (2008).

Article CAS PubMed Google Scholar

Arkell, R. S. et al. DUSP6/MKP-3 inactivates ERK1/2 but fails to bind and inactivate ERK5. Cell Signal 20, 836843. https://doi.org/10.1016/j.cellsig.2007.12.014 (2008).

Article CAS PubMed Google Scholar

Slack-Davis, J. K. et al. Cellular characterization of a novel focal adhesion kinase inhibitor. J. Biol. Chem. 282, 1484514852. https://doi.org/10.1074/jbc.M606695200 (2007).

Article CAS PubMed Google Scholar

Aoki, K. et al. A RhoA and Rnd3 cycle regulates actin reassembly during membrane blebbing. Proc. Natl. Acad. Sci. U. S. A. 113, E1863-1871. https://doi.org/10.1073/pnas.1600968113 (2016).

Article CAS PubMed PubMed Central Google Scholar

Maillet, M. et al. DUSP6 (MKP3) null mice show enhanced ERK1/2 phosphorylation at baseline and increased myocyte proliferation in the heart affecting disease susceptibility. J. Biol. Chem. 283, 3124631255. https://doi.org/10.1074/jbc.M806085200 (2008).

Article CAS PubMed PubMed Central Google Scholar

Mansour, S. J. et al. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265, 966970. https://doi.org/10.1126/science.8052857 (1994).

Article ADS CAS PubMed Google Scholar

Robinson, M. J., Stippec, S. A., Goldsmith, E., White, M. A. & Cobb, M. H. A constitutively active and nuclear form of the MAP kinase ERK2 is sufficient for neurite outgrowth and cell transformation. Curr. Biol. 8, 11411150. https://doi.org/10.1016/s0960-9822(07)00485-x (1998).

Article CAS PubMed Google Scholar

Murphy, L. O. & Blenis, J. MAPK signal specificity: The right place at the right time. Trends Biochem. Sci. 31, 268275. https://doi.org/10.1016/j.tibs.2006.03.009 (2006).

Article CAS PubMed Google Scholar

Hamilton, W. B. & Brickman, J. M. Erk signaling suppresses embryonic stem cell self-renewal to specify endoderm. Cell Rep. 9, 20562070. https://doi.org/10.1016/j.celrep.2014.11.032 (2014).

Article CAS PubMed Google Scholar

Li, Z., Theus, M. H. & Wei, L. Role of ERK 1/2 signaling in neuronal differentiation of cultured embryonic stem cells. Dev. Growth Differ. 48, 513523. https://doi.org/10.1111/j.1440-169X.2006.00889.x (2006).

Article CAS PubMed Google Scholar

Patel, A. L. & Shvartsman, S. Y. Outstanding questions in developmental ERK signaling. Development https://doi.org/10.1242/dev.143818 (2018).

Article PubMed PubMed Central Google Scholar

Pokrass, M. J. et al. Cell-cycle-dependent ERK signaling dynamics direct fate specification in the mammalian preimplantation embryo. Dev. Cell 55, 328-340.e325. https://doi.org/10.1016/j.devcel.2020.09.013 (2020).

Article CAS PubMed PubMed Central Google Scholar

Simon, C. S., Rahman, S., Raina, D., Schrter, C. & Hadjantonakis, A. K. Live visualization of ERK activity in the mouse blastocyst reveals lineage-specific signaling dynamics. Dev Cell 55, 341-353.e345. https://doi.org/10.1016/j.devcel.2020.09.030 (2020).

Article CAS PubMed PubMed Central Google Scholar

Sulzbacher, S., Schroeder, I. S., Truong, T. T. & Wobus, A. M. Activin A-induced differentiation of embryonic stem cells into endoderm and pancreatic progenitors-the influence of differentiation factors and culture conditions. Stem Cell Rev. Rep. 5, 159173. https://doi.org/10.1007/s12015-009-9061-5 (2009).

Article CAS PubMed Google Scholar

Huang, T. S. et al. A regulatory network involving -catenin, e-cadherin, PI3k/Akt, and slug balances self-renewal and differentiation of human pluripotent stem cells in response to Wnt signaling. Stem Cells 33, 14191433. https://doi.org/10.1002/stem.1944 (2015).

Article CAS PubMed Google Scholar

Kunisada, Y., Tsubooka-Yamazoe, N., Shoji, M. & Hosoya, M. Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res. 8, 274284. https://doi.org/10.1016/j.scr.2011.10.002 (2012).

Article CAS PubMed Google Scholar

Sances, S. et al. Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat. Neurosci. 19, 542553. https://doi.org/10.1038/nn.4273 (2016).

Article CAS PubMed PubMed Central Google Scholar

Isagawa, T. et al. DNA methylation profiling of embryonic stem cell differentiation into the three germ layers. PLoS One 6, e26052. https://doi.org/10.1371/journal.pone.0026052 (2011).

Article ADS CAS PubMed PubMed Central Google Scholar

Mohn, F. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755766. https://doi.org/10.1016/j.molcel.2008.05.007 (2008).

Article CAS PubMed Google Scholar

Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766770. https://doi.org/10.1038/nature07107 (2008).

Article ADS CAS PubMed PubMed Central Google Scholar

Harb, N., Archer, T. K. & Sato, N. The Rho-Rock-Myosin signaling axis determines cell-cell integrity of self-renewing pluripotent stem cells. PLoS One 3, e3001. https://doi.org/10.1371/journal.pone.0003001 (2008).

Article ADS CAS PubMed PubMed Central Google Scholar

Riento, K. & Ridley, A. J. Rocks: Multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell Biol. 4, 446456. https://doi.org/10.1038/nrm1128 (2003).

Article CAS PubMed Google Scholar

Ohgushi, M., Minaguchi, M. & Sasai, Y. Rho-signaling-directed YAP/TAZ activity underlies the long-term survival and expansion of human embryonic stem cells. Cell Stem Cell 17, 448461 (2015).

Article CAS PubMed Google Scholar

Boulton, T. G., Gregory, J. S. & Cobb, M. H. Purification and properties of extracellular signal-regulated kinase 1, an insulin-stimulated microtubule-associated protein 2 kinase. Biochemistry 30, 278286. https://doi.org/10.1021/bi00215a038 (1991).

Article CAS PubMed Google Scholar

Boulton, T. G. et al. An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 249, 6467. https://doi.org/10.1126/science.2164259 (1990).

Article ADS CAS PubMed Google Scholar

Yao, Y. et al. Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proc. Natl. Acad. Sci. U. S. A. 100, 1275912764. https://doi.org/10.1073/pnas.2134254100 (2003).

Article ADS CAS PubMed PubMed Central Google Scholar

Continue reading here:
DUSP6 is a memory retention feedback regulator of ERK signaling ... - Nature.com

Related Posts